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Abstract. Computational notions of entropy have recently found
many applications, including leakage-resilient cryptography, determin-
istic encryption or memory delegation. The two main types of results
which make computational notions so useful are (1) Chain rules, which
quantify by how much the computational entropy of a variable decreases
if conditioned on some other variable (2) Transformations, which quan-
tify to which extend one type of entropy implies another.

Such chain rules and transformations typically lose a significant
amount in quality of the entropy, and are the reason why applying these
results one gets rather weak quantitative security bounds. In this paper
we for the first time prove lower bounds in this context, showing that
existing results for transformations are, unfortunately, basically optimal
for non-adaptive black-box reductions (and it’s hard to imagine how non
black-box reductions or adaptivity could be useful here.)

A variable X has k bits of HILL entropy of quality (ε, s) if there exists
a variable Y with k bits min-entropy which cannot be distinguished from
X with advantage ε by distinguishing circuits of size s. A weaker notion
is Metric entropy, where we switch quantifiers, and only require that for
every distinguisher of size s, such a Y exists.

We first describe our result concerning transformations. By definition,
HILL implies Metric without any loss in quality. Metric entropy often
comes up in applications, but must be transformed to HILL for meaning-
ful security guarantees. The best known result states that if a variable
X has k bits of Metric entropy of quality (ε, s), then it has k bits of
HILL with quality (2ε, s · ε2). We show that this loss of a factor Ω(ε−2)
in circuit size is necessary. In fact, we show the stronger result that this
loss is already necessary when transforming so called deterministic real
valued Metric entropy to randomised boolean Metric (both these vari-
ants of Metric entropy are implied by HILL without loss in quality).

The chain rule for HILL entropy states that if X has k bits of HILL
entropy of quality (ε, s), then for any variable Z of length m, X condi-
tioned on Z has k−m bits of HILL entropy with quality (ε, s·ε2/2m). We
show that a loss of Ω(2m/ε) in circuit size necessary here. Note that this
still leaves a gap of ε between the known bound and our lower bound.
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1 Introduction

There exist various information theoretic notions of entropy that quantify the
“uncertainty” of a random variable. A variable X has k bits of Shannon entropy
if it cannot be compressed below k bits. In cryptography we mostly consider min-
entropy, where we say that X has k bits of min-entropy, denoted H∞ (X) = k,
if for any x, Pr[X = x] ≤ 2−k.

In a cryptographic context, we often have to deal with variables that only
appear to have high entropy to computationally bounded observers. The most
important case is pseudorandomness, where we say that X ∈ {0, 1}n is pseudo-
random, if it cannot be distinguished from the uniform distribution over {0, 1}n.

More generally, we say that X ∈ {0, 1}n has k ≤ n bits of HILL pseudoen-
tropy [12], denoted HHILL

ε,s (X) = k if it cannot be distinguished from some Y
with H∞ (Y ) = k by any circuit of size s with advantage > ε, note that we get
pseudorandomness as a special case for k = n. We refer to k as the quantity and
to (ε, s) as the quality of the entropy.

A weak notion of pseudoentropy called Metric pseudoentropy [3] often comes
up in security proofs. This notion is defined like HILL, but with the quantifiers
exchanged: We only require that for every distininguisher there exists a distrib-
ution Y,H∞ (Y ) = k that fools this particular distinguisher (not one such Y to
fool them all).

HILL pseudoentropy is named after the authors of the [12] paper where it was
introduced as a tool for constructing a pseudorandom generator from any one-
way function. Their construction and analysis was subsequently improved in a
series of works [11,13,28]. A lower bound on the number of calls to the underlying
one-way function was given by [14].1 More recently HILL pseudoentropy has
been used in many other applications like leakage-resilient cryptography [6,17],
deterministic encryption [7] and memory delegation [4].

The two most important types of tools we have to manipulate pseudoentropy
are chain rules and transformations from one notion into another. Unfortunately,
the known transformations and chain rules lose large factors in the quality of
the entropy, which results in poor quantitative security bounds that can be
achieved using these tools. In this paper we provide lower bounds, showing that
unfortunately, the known results are tight (or almost tight for chain rules), at
least when considering non-adaptive black-box reductions. Although black-box
impossibility results have been overcome by non black-box constructions in the
past [2], we find it hard to imagine how non black-box constructions or adaptivity
could help in this setting. We believe that relative to the oracles we construct
also adaptive reductions are impossible as adaptivity “obviously” is no of use,
but proving this seems hard. Our results are summarized in Figs. 1 and 2.

Complexity of the Adversary. In order to prove a black-box separation, we
will construct an oracle and prove the separation unconditionally relative to this

1 Their Ω(n/log(n)) lower bound matches existing constructions from regular one-way
functions [10]. For general one-way functions this lower bound is still far of the best
construction [28] making Θ̃(n3) calls.
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oracle, i.e., assuming all parties have access to it. This then shows that any
construction/proof circumventing or separation in the plain model cannot be
relativizing, which in particular rules out all black-box constructions [1,16].

In the discussion below we measure the complexity of adversaries only in
terms of numbers of oracle queries. Of course, in the actual proof we also bound
them in terms of circuit size. For our upper bounds the circuits will be of basically
the same size as the number of oracle queries (so the number of oracle queries is
a good indication of the actual size), whereas for the lower bounds, we can even
consider circuits of exponential size, thus making the bounds stronger (basically,
we just require that one cannot hard-code a large fraction of the function table
of the oracle into the circuit).

X ∈ {0, 1}n

HMetric
ε,s

,det{0,1}(X) = k HMetric
ε′,s′ ,det[0,1](X) = k HMetric

ε′′,s′′ ,rand{0,1}(X) = k HHILL
ε′′′,s′′′(X) = k

ε′ = ε
s′ ≈ s

(due to [22])

ε′′′ = 2ε′

s′′′ = Ω(s′ · ε′2/(n − k + 1))
(due to [3, 25])

Theorem 1:
s′′ = O(s′ · ε′2/ln(1/ε′)) necessary
if ε′′ = O(ε′)

ε′′ = ε′′′

s′′ = s′′′ (by definition)
ε′ = ε′′

s′ = s′′ (due to [8])
ε = ε′

s = s′ (by definition)

Fig. 1. Transformations: our bound comparing to the state of art. Our Theorem 1,
stating that a loss of ε′2/ ln(1/ε′) in circuit size is necessary for black-box reductions
that show how deterministic implies randomized metric entropy (if the advantage ε′

remains in the same order) requires ε′ = 2−O(n−k+1) and thus ln(1/ε′) ∈ O(n−k+1), so
there’s no contradiction between the transformations from [3,25] and our lower bound
(i.e., the blue term is smaller than the red one). (Color figure online)

Transformations. It is often easy to prove that a variable X ∈ {0, 1}n has
so called Metric pseudoentropy against deterministic distinguishers, denoted
HMetric

ε,s
,det{0,1}(X) = k. Unfortunately, this notion is usually too weak to be

useful, as it only states that for every (deterministic, boolean) distinguisher,
there exists some Y with H∞ (Y ) = k that fools this particular distinguisher,
but one usually needs a single Y that fools all (randomised) distinguishers, this
is captured by HILL pseudoentropy.

Barak et al. [3] show that any variable X ∈ {0, 1}n that has Metric entropy,
also has the same amount of HILL entropy. Their proof uses the min-max the-
orem, and although it perseveres the amount k of entropy, the quality drops
from (ε, s) to (2ε,Ω(s ·ε2/n)). A slightly better bound

(
2ε,Ω(s · ε2/(n + 1 − k))

)

(where again k is the amount of Metric entropy), was given recently in [25]. The
argument uses the min-max theorem and some results on convex approximation
in Lp spaces.
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In Theorem 1 we show that this is optimal – up to a small factor Θ((n −
k + 1)/ ln(1/ε)) – as a loss of Ω(ln(1/ε)/ε2) in circuit size is necessary for any
black-box reduction. Note that for sufficiently small ε ∈ 2−Ω(n−k+1) our bound
even matches the positive result up to a small constant factor.

The high-level idea of our separation is as follows; We construct an oracle
O and a variable X ∈ {0, 1}n, such that relative to this oracle X can be dis-
tinguished from any variable Y with high min-entropy when we can make one
randomized query, but for any deterministic distinguisher A, we can find a Y
with high min-entropy which A cannot distinguish from X.

To define O, we first choose a uniformly random subset S ∈ {0, 1}n of
size |S| = 2m. Moreover we chose a sufficiently large set of boolean functions
D1(·), . . . , Dh(·) as follows: for every x ∈ S we set Di(x) = 1 with probability
1/2 and for every x �∈ S, Di(x) = 1 with probability 1/2 + δ.

Given any x, we can distinguish x ∈ S from x �∈ S with advantage ≈ 2δ by
quering Di(x) for a random i. This shows that X cannot have much more than
log(|S|) = m bits of HILL entropy (in fact, even probabilistic Metric entropy)
as any variable Y with H∞ (Y ) � m + 1 has at least half of its support outside
S, and thus can be distinguished with advantage ≈ 2δ/2 = δ with one query
as just explained. Concretely (recall that in this informal discussion we measure
size simply by the number of oracle queries).

HMetric
δ,1

,rand{0,1}(X) � m + 1

On the other hand, if the adversary is allowed q deterministic queries, then intu-
itively, the best he can do is to query D1(x), . . . , Dq(x) and guess that x ∈ S
if less than a 1/2 + δ/2 fraction of the outputs is 1. But even if q = 1/δ2, this
strategy will fail with constant probability. Thus, we can choose a Y with large
support outside S (and thus also high min-entropy) which will fool this adver-
sary. This shows that X does have large Metric entropy against deterministic
distinguishers, even if we allow the adversaries to run in time 1/δ2, concretely,
we show that

HMetric,det{0,1}
Θ(δ),O(1/δ2) (X) � n − O(log(1/δ))

The Adversary. Let us stress that we show impossibility in the non-uniform
setting, i.e., for any input length, the distinguisher circuit can depend arbitrarily
on the oracle. Like in many non-uniform black-box separation results (includ-
ing [19,22,24,30,31]), the type of adversaries for which we can rigorously prove
the lower bound is not completely general, but the necessary restrictions seem
“obviously” irrelevant. In particular, given some input x (where we must decide
if x ∈ S), we only allow the adversary queries on input x. This doesn’t seem
like a real restriction as the distribution of Di(x′) for any x′ �= x is independent
of x, and thus seems useless (but such queries can be used to make the suc-
cess probability of the adversary on different inputs correlated, and this causes
a problem in the proof). Moreover, we assume the adversary makes his queries
non-adaptively, i.e., it choses the indices i1, . . . , iq before seeing the outputs of
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the queries Di1(x), . . . , Diq (x). As the distribution of all the Di’s is identical,
this doesn’t seem like a relevant restriction either.

HHILL
ε,s (X) = k

HMetric
ε′,s′ (X|Z) = k′ HHILL

ε′′,s′′(X|Z) = k′ HHILL−rlx
ε′′′,s′′′ (X|Z) = k′ HHILL

ε′′′′,s′′′′(X|Z) = k′

s′ ≈ s
ε′ = ε · 2|Z|

k′ = k − |Z|
(due to [8])

k′ = k − |Z|
ε′′′ = 2ε
s′′′ = O

(
s · ε′′′2/2|Z| − 2|Z|ε′′′2

)

(due to [21])

This paper (Theorem 2)

s′′′ = Ω
(
s · ε′′′/2|Z|)

)
, k′ = k − |Z| necessary

if ε′′′ = O(ε)

ε′′ = 2ε′

s′′ = O s′ · ε′′2/(n + m)
)

(by [3])

ε′′′ = ε′′

s′′′ = s′′

(by definition)

ε′′′′ = 2ε′′′

s′′′′ = s′′′ − 2|Z|

(due to [17])

Fig. 2. Chain rules: our lower bounds comparing to the state of art. In the literature
there are basically three approaches to prove a chain rule for HILL entropy. The first
one reduces the problem to an efficient version of the dense model theorem [22], the
second one uses the so called auxiliary input simulator [17], and the last one is by a
convex optimization framework [21,26]. The last approach yields a chain rule with a
loss of ≈ 2m/ε2 in circuit size, where m is the length of leakage Z.

Chain Rules. Most (if not all) information theoretic entropy notions H(.) sat-
isfy some kind of chain rule, which states that the entropy of a variable X, when
conditioned on another variable Z, can decrease by at most the bitlength |Z| of
Z, i.e., H(X|Z) � H(X) − |Z|.

Such a chain rule also holds for some computational notions of entropy. For
HILL entropy a chain rule was first proven in [6,22] by a variant of the dense
model theorem, and was improved by Fuller and Reyzin [8]. A different approach
using a simulator was proposed in [17] and later improved by Vadhan and Zheng
[29]. A unified approach, based on convex optimization techniques was proposed
recently in [21,26] achieving best bounds so far.

The “dense model theorem approach” [8] proceeds as follows: one shows that
if X has k bits of HILL entropy, then X|Z has k−m (where Z ∈ {0, 1}m) bits of
Metric entropy. In a second step one applies a Metric to HILL transformation,
first proven by Barak et al. [3], to argue that X|Z has also large HILL. The
first step loses a factor 2m in advantage, the second another 22mε2 in circuit
size. Eventually, the loss in circuit size is 22m/ε2 and the loss in advantage is 2m

which measured in terms of the security ratio size/advantage gives a total loss
of 2m/ε2.

A more direct “simulator” approach [29] loses only a multiplicative factor
2m/ε2 in circuit size (there’s also an additive 1/ε2 term) but there is no loss in
advantage. The additive term can be improved to only 2mε2 as shown in [21,26].
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In this paper we show that a loss of 2m/ε is necessary. Note that this still
is a factor 1/ε away from the positive result. Our result as stated in Theorem2
is a bit stronger as just outlined, as we show that the loss is necessary even if
we only want a bound on the “relaxed” HILL entropy of X|Z (a notion weaker
than standard HILL).

To prove our lower bound, we construct an oracle O(.), together with a joint
distribution (X,Z) ∈ {0, 1}n × {0, 1}m. We want X to have high HILL entropy
relative to O(.), but when conditioning on Z it should decrease as much as
possible (in quantity and quality).

We first consider the case m = 1, i.e., the conditional part Z is just one bit.
For n � � � m = 1 the oracle O(.) and the distribution (X,Z) is defined as
follows. We sample (once and for all) two (disjoint) random subset X0,X1 ⊆
{0, 1}n of size |X0| = |X1| = 2�−1, let X = X0 ∪X1. The oracle O(.) on input x is
defined as follows (below Bp denotes the Bernoulli distribution with parameter
p, i.e., Pr[b = 1 : b ← Bp] = p).

– If x ∈ X0 output a sample of B1/2+δ.
– If x ∈ X1 output a sample of B1/2−δ.
– Otherwise, if x �∈ X , output a sample of B1/2.

Note that our oracle O(.) is probabilistic, but it can be “derandomized” as we’ll
explain at the beginning of Sect. 4. The joint distribution (X,Z) is sampled by
first sampling a random bit Z ← {0, 1} and then X ← XZ .

Given a tuple (V,Z), we can distinguish the case V = X from the case where
V = Y for any Y with large support outside of X (X has min-entropy �, so let’s
say we take a variable Y with H∞ (Y |Z) � � + 1 which will have at least half
of its support outside X ) with advantage Θ(δ) by quering α ← O(V,Z), and
outputting β = α ⊕ Z.

– If (V,Z) = (X,Z) then Pr[β = 1] = 1/2 + δ. To see this, consider the case
Z = 0, then Pr[β = 1] = Pr[α = 1] = Pr[O(X) = 1] = 1/2 + δ.

– If (V,Z) = (Y,Z) then Pr[β = 1] = Pr[Y �∈ X ](1/2) + Pr[Y ∈ X ](1/2 + δ) ≤
1/2 + δ/2.

Therefore X|Z doesn’t have � + 1 bits of HILL entropy

HHILL
δ/2,1(X|Z) < � + 1

On the other hand, we claim that X (without Z but access to O(.)) cannot be
distinguished from the uniform distribution over {0, 1}n with advantage Θ(δ)
unless we allow the distinguisher Ω(1/δ) oracle queries (the hidden constant in
Θ(δ) can be made arbitrary large by stetting the hidden constant in Ω(1/δ)
small enough), i.e.,

HHILL
Θ(δ),Ω(1/δ)(X) = n (1)

To see why (1) holds, we first note that given some V , a single oracle query is
useless to tell whether V = X or V = Un: although in the case where V = X ∈
XZ the output O(X) will have bias δ, one can’t decide in which direction the
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bias goes as Z is (unconditionally) pseudorandom. If we’re allowed in the order
1/δ2 queries, we can distinguish X from Un with constant advantage, as with
1/δ2 samples one can distinguish the distribution B1/2+δ (or B1/2−δ) from B1/2

with constant advantage. If we just want Θ(δ) advantage, Ω(1/δ) samples are
necessary, which proves (1). While it is easy to prove that for the coin with bias
δ one needs O

(
1/δ2

)
trials to achieve 99% of certainty, finding the number of

trials for some confidence level in o(1) as in our case, is more challenging. We
solve this problem by a tricky application of Renyi divergences2 The statement
of our “coin problem” with precise bounds is given in Lemma3.

So far, we have only sketched the case m = 1. For m > 1, we define a random
function π : {0, 1}n → {0, 1}m−1. The oracle now takes an extra m−1 bit string
j, and for x ∈ X , the output of O(x, j) only has bias δ if π(x) = j (and outputs a
uniform bit everywhere else). We define the joint distribution (X,Z) by sampling
X ← X , define Z ′ s.t. X ∈ XZ′ , and set Z = π(X)‖Z ′. Now, given Z, we can
make one query α ← O(V,Z[1 . . . m − 1]) and output β = α ⊕ Z[m], where, as
before, getting advantage δ in distinguishing X from any Y with min-entropy
≥ � + 1.

On the other hand, given some V (but no Z) it is now even harder to tell if
V = X or V = Y . Not only don’t we know in which direction the bias goes as
before in the case m = 1 (this information is encoded in the last bit Z[m] of Z),
but we also don’t know on which index π(V ) (in the case V = X) we have to
query the oracle to observe any bias at all. As there are 2m−1 possible choices
for π(V ), this intuitively means we need 2m−1 times as many samples as before
to observe any bias, which generalises (1) to

HHILL
Θ(δ),Ω(2m−1/δ)(X) = n

1.1 Some Implications of Our Lower Bounds

Leakage Resilient Cryptography. The chain rule for HILL entropy is a main
technical tool used in several security proofs like the construction of leakage-
resilient schemes [6,20]. Here, the quantitative bound provided by the chain rule
directly translates into the amount of leakage these constructions can tolerate.
Our Theorem2 implies a lower bound on the necessary security degradation for
this proof technique. This degradation is, unfortunately, rather severe: even if
we just leak m = 1 bit, we will lose a factor 2m/ε, which for a typical security
parameter ε = 2−80 means a security degradation of “80 bits”.

Let us also mention that Theorem 2 answers a question raised by Fuller and
Reyzin [8], showing that for any chain rule the simultaneous loss in quality and
quantity is necessary,3

2 Lower bounds [30,31] also require nontrivial binomial estimates. They were obtained,
however by direct and involved calculations.

3 Their question was about chain rules bounding the worst-case entropy, that is bound-
ing HHILL(X|Z = z) for every z. Our result, stated simply for average entropy
HHILL(X|Z), is much more general and applies to qualitatively better chain rules
obtained by simulator arguments.
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Faking Auxiliary Inputs. [17,27,29] consider the question how efficiently
one can “fake” auxiliary inputs. Concretely, given any joint distribution (X,Z)
with Z ∈ {0, 1}m, construct an efficient simulator h s.t. (X,h(X)) is (ε, s)-
indistinguishable from (X,Z). For example [29] gives a simulator h of complexity
O

(
2mε2 · s

)
(plus additive terms independent of s). This result has found many

applications in leakage-resilient crypto, complexity theory and zero-knowledge
theory. The best known lower bound (assuming exponentially hard OWFs) is
Ω (max(2m, 1/ε)). Since the chain rule for relaxed HILL entropy follows by a
simulator argument [17] with the same complexity loss, our Theorem 2 yields a
better lower bound Ω (2m/ε) on the complexity of simulating auxiliary inputs.

Dense Model Theorem. The computational dense model theorem [22] says,
roughly speaking, that dense subsets of pseudorandom distributions are com-
putationally indistinguishable from true dense distributions. It has found appli-
cations including differential privacy, memory delegation, graph decompositions
and additive combinatorics. It is well known that the worst-case chain rule for
HILL-entropy is equivalent to the dense model theorem, as one can think of
dense distributions as uniform distributions X given short leakage Z. For set-
tings with constant density, which correspond to |Z| = O (1), HILL and relaxed
HILL entropy are equivalent [17]; moreover, the complexity loss in the chain rule
is then equal to the cost of transforming Metric Entropy into HILL Entropy.
Now our Theorem 1 implies a necessary loss in circuit size Ω

(
1/ε2

)
if one wants

ε-indistinguishability. This way we reprove the tight lower bound due to Zhang
[31] for constant densities.

2 Basic Definitions

Let X1 and X2 be two distributions over the same finite set. The statistical
distance of X1 and X2 equals SD (X1;X2) = 1

2

∑
x |Pr[X1 = x] − Pr[X2 = x]|.

Definition 1 (Min-Entropy). A random variable X has min-entropy k,
denoted by H∞ (X) = k, if maxx Pr[X = x] ≤ 2−k.

Definition 2 (Average conditional min-Entropy [5]). For a pair (X,Z) of
random variables, the average min-entropy of X conditioned on Z is

H̃∞(X|Z) = − logEz←Z [max
x

Pr[X = x|Z = z]] = − logEz←Z [2−H∞(X|Z=z)]

Distinguishers. We consider several classes of distinguishers. With Drand,{0,1}
s

we denote the class of randomized circuits of size at most s with boolean output
(this is the standard non-uniform class of distinguishers considered in crypto-
graphic definitions). The class Drand,[0,1]

s is defined analogously, but with real val-
ued output in [0, 1]. Ddet,{0,1}

s ,Ddet,[0,1]
s are defined as the corresponding classes

for deterministic circuits. With ΔD(X;Y ) = |EX [D(X)]−EY [D(Y )] we denote
D’s advantage in distinguishing X and Y .
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Definition 3 (HILL pseudoentropy [12,15]). A variable X has HILL
entropy at least k if

HHILL
ε,s (X) ≥ k ⇐⇒ ∃Y, H∞ (Y ) = k ∀D ∈ Drand,{0,1}

s : ΔD(X;Y ) ≤ ε

For a joint distribution (X,Z), we say that X has k bits conditonal Hill entropy
(conditionned on Z) if

HHILL
ε,s (X|Z) ≥ k

⇐⇒ ∃(Y,Z), H̃∞(Y |Z) = k ∀D ∈ Drand,{0,1}
s : ΔD((X,Z); (Y,Z)) ≤ ε

Definition 4 (Metric pseudoentropy [3]). A variable X has Metric entropy
at least k if

HMetric
ε,s (X) ≥ k ⇐⇒ ∀D ∈ Drand,{0,1}

s ∃YD , H∞ (YD) = k : ΔD(X;YD) ≤ ε

Metric star entropy is defined analogousely but using deterministic real valued
distinguishers

HMetric∗
ε,s (X) ≥ k ⇐⇒ ∀D ∈ Ddet,[0,1]

s ∃YD, H∞ (YD) = k : ΔD(X;YD) ≤ ε

Relaxed Versions of HILL and Metric Entropy. A weaker notion of con-
ditional HILL entropy allows the conditional part to be replaced by some com-
putationally indistinguishable variable

Definition 5 (Relaxed HILL pseudoentropy [9,23]). For a joint distribu-
tion (X,Z) we say that X has relaxed HILL entropy k conditioned on Z if

HHILL−rlx
ε,s (X|Z) ≥ k

⇐⇒ ∃(Y,Z ′), H̃∞(Y |Z ′) = k,∀D ∈ Drand,{0,1}
s , : ΔD((X,Z); (Y,Z ′)) ≤ ε

The above notion of relaxed HILL satisfies a chain rule whereas the chain rule
for the standard definition of conditional HILL entropy is known to be false [18].
One can analogously define relaxed variants of metric entropy, we won’t give
these as they will not be required in this paper.

Pseudoentropy Against Different Distinguisher Classes. For randomized
distinguishers, it’s irrelevant if the output is boolean or real values, as we can
replace any D ∈ Drand,[0,1]

s with a D′ ∈ Drand,{0,1} s.t. E[D′(X)] = E[D(X)] by
setting (for any x) Pr[D′(x) = 1] = E[D(x)]. For HILL entropy (as well as for
its relaxed version), it also doesn’t matter if we consider randomized or deter-
ministic distinguishers in Definition 3, as we always can “fix” the randomness
to an optimal value. This is no longer true for metric entropy,4 and thus the
distinction between metric and metric star entropy is crucial.

4 It might be hard to find a high min-entropy distribution Y that fools a randomized
distinguisher D, but this task can become easy once D’s randomness is fixed.
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3 A Lower Bound on Metric-to-HILL Transformations

Theorem 1. For every n, k, m and ε such that n � k + log(1/ε) + 4, 1
8 > ε

and n − 1 ≥ m > 6 log(1/ε) there exist an oracle O and a distribution X over
{0, 1}n such that

HMetric
ε,T

,det{0,1}(X) � k (2)

here the complexity T denotes any circuit of size 2O(m) that makes at most ln(2/ε)
216ε2

non-adaptive queries and, simultaneously,

HMetric
2ε,T ′

,rand{0,1}(X) � m + 1 (3)

where the distinguishers size T ′ is only O(n) and the query complexity is 1.

Let S be a random subset of {0, 1}n of size 2m, where m � n − 1, and let
D1, . . . , Dh be boolean functions drawn independently from the following dis-
tribution D: D(x) = 1 on S with probability p if x ∈ S and D(x) = 1 with
probability q if x ∈ Sc, where p > q and p + q = 1. Denote X = US . We will
argue that the metric entropy against a probabilistic adversary who is allowed
one query is roughly m with advantage Ω(p−q). But the metric entropy against
non-adaptive deterministic adversary who can make t queries of the form Di(x)
is much bigger, even if t = O

(
(p − q)−2

)
. Let us sketch an informal argument

before we give the actual proof. We need to prove two facts:

(i) There is a probabilistic adversary A∗ such that with high probability over
X,D1, . . . , Dh we have ΔA∗

(X,Y ) = Ω(p−q) for all Y with H∞ (Y ) � m+1.
(ii) For every deterministic adversary A making at most t = O

(
(p − q)−2

)

non-adaptive queries, with high probability over X,D1, . . . , Dh we have
ΔA(X;Y ) = 0 for some Y with H∞ (Y ) = n − Θ(1).

To prove (i) we observe that the probabilistic adversary can distinguish between
S and Sc by comparing the bias of ones. We simply let A∗ forward its input to
Di for a randomly chosen i, i.e.,

A∗(x) = Di(x), i ← [1, . . . , h]

With extremely high probability we have Pr[A∗(x) = 1] ∈ [p − δ, p + δ] if x ∈ S
and Pr[A∗(x) = 1] ∈ [q − δ, q + δ] if x �∈ S for some δ � p − q (by a Chernoff
bound, δ drops exponentially fast in h, so we just have to set h large enough).
We have then Pr[A∗(X) = 1] � p + δ and Pr[A∗(Y ) = 1] � 1/2 · (p + q + 2δ)
for every Y of min-entropy at least m + 1 (since then Pr[Y ∈ S] � 1/2). This
yields ΔA∗

(X;Y ) = (p − q)/2. In order to prove (ii) one might intuitively argue
that the best a t-query deterministic adversary can do to contradict to (ii), is to
guess whether some value x has bias p or q = 1 − p, by taking the majority of t
samples

A(x) = Maj(D1(x), . . . , Dt(x))
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But even if t = Θ(1/(p−q)2), majority will fail to predict the bias with constant
probability. This means there exists a variable Y with min-entropy n−Θ(1) such
that Pr[A(Y ) = 1] = Pr[A(X) = 1]. The full proof gives quantitative forms of (i)
and (ii), showing essentially that “majority is best” and appears in AppendixA.

4 Lower Bounds on Chain Rules

For any n � � � m, we construct a distribution (X,Z) ∈ {0, 1}n × {0, 1}m and
an oracle O(.) such that relative to this oracle, X has very large HILL entropy
but the HILL entropy of X|Z is much lower in quantity and quality: for arbitrary
n � � � m (where |Z| = m, X ∈ {0, 1}n), the quantity drops from n to �−m+2
(it particular, by much more than |Z| = m), even if we allow for a 2m/ε drop in
quality.

Theorem 2 (A lower bound on the chain rule for HHILL−rlx). There exists
a joint distribution (X,Z) over {0, 1}n × {0, 1}m, and an oracle O such that,
relative to O, for any (�, δ) such that n

2 − log(1/δ)
2 > m and � > m + 6 log(1/δ),

we have

HHILL
δ/2,T (X) = n (4)

where5 T > c · 2m/δ with some absolute constant c but

HHILL−rlx
δ/2,T ′ (X|Z) < � + 1 (5)

where T ′ captures a circuit of size only O(n) making only 1 oracle query.

Remark 1 (On the technical restrictions). Note that the assumptions on � and
δ are automatically satisfied in most interesting settings, as typically we assume
m � n and log(1/δ) � n.

Remark 2 (A strict separation). The theorem also holds if we insist on a larger
distinguishing advantage after leakage. Concretely, allowing for more than just
one oracle query, the δ/2 advantage in (5) can be amplified to Cδ for any constant
C assuming δ is small enough to start with (see Remark 4 in the proof).

The full proof appears in AppendixB. The heart of the argument is a lower
bound on the query complexity for the corresponding “coin problem”: we need
to distinguish between T random bits, and the distribution where we sample
equally likely T independent bits Bp or T independent bits Bq where p = 1

2 + δ
and q = 1 − p. (see Appendix C for more details). The rest of the proof is based
on a standard concentration argument, using extensively Chernoff Bounds.

5 The class of adversaries here consists of all circuits with the total number of gates,
including oracle gates, at most T . Theorem 2 is also true when the circuit size s is
much bigger than the total number of oracle gates T (under some assumption on s,
�, ε). For simplicity, we do not state this version.
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5 Open Problems

As shown in Fig. 2, there remains a gap between the best proofs for the chain-
rule, which lose a factor ε2/2|Z| in circuit size, and the required loss of ε/2|Z|

we prove in this paper. Closing this bound by either improving the proof for the
chain-rule or give an improved lower bound remains an intriguing open problem.

Our lower bounds are only proven for adversaries that make their queries non-
adaptively. Adaptive queries don’t seem to help against our oracle, but rigorously
proving this fact seems tricky.

Finally, the lower bounds we prove on the loss of circuit size assume that the
distinguishing advantage remains roughly the same. There exist results which
are not of this form, in particular – as shown in Fig. 2 – the HILL to Metric
transformation from [8] only loses in distinguishing advantage, not in circuit
size (i.e., we have s ≈ s′). Proving lower bounds and giving constructions for
different circuit size vs. distinguishing advantage trade-offs leave many challenges
for future work.

A Proof of Theorem1

A.1 Majority Is Best

We prove two statements which are quantitative forms of (i) and (ii) discussed
after the statement of Theorem 1. First we show that the probabilistic adversary
A∗ easily distinguishes X from all Y of high min-entropy.

Claim 1 (Probabilistic Metric Entropy of X is small). Let A∗ be a prob-
abilistic adversary who on input x samples a random i ∈ [1, . . . , h], then queries
for Di(x) and outputs the response. Then for any δ � (p − q)/3 we have

Pr[∀Y : H∞ (Y ) � m + 1, ΔA∗
(X;Y ) � (p − q)/3] � 1 − 2max(n−1,m+1) exp(−hδ2). (6)

Remark 3 (The complexity of the probabilistic distinguisher). We can chose h in
Claim 1 to be 2n, then A∗ is of size O (n) and makes only one query.

Consider now a deterministic adversary A who on input x can make at most t
queries learning Di(x) for t different i ∈ [1, . . . , h]. We claim that

Claim 2 (Deterministic Metric Entropy is big). Suppose that we have
n � k + log(1/ε) + 4 and δ = ε2

2+2ε . Then for every nonadaptive adversary A

which makes t � ln(2/ε)
6(p−q)2 queries we have

Pr
X,D1,...,Dh

[∃Y : H∞ (Y ) � k, ΔA(X;Y ) � ε
]

� 1 − 4 exp(−2mδ2). (7)

Setting p − q = 6ε we see that Eq. (2) follows from Claim 1 and Eq. (3) follows
from Eq. (7) combined with the union bound over all distinguishers. Note that
the right hand side of Eq. (7) converges to 1 with the rate doubly exponential
in m, so we can even afford taking a union bound over all distinguishers of size
exponential in m.
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Proof (of Claim 1). By a Chernoff bound6 and the union bound

Pr
X,D1,...,Dh

[∀x ∈ Sc : Pr[A∗(x) = 1] � q + δ] � 1 − 2n−1 exp(−2δ2h) (8)

similarly

Pr
X,D1,...,Dh

[∀x ∈ S : |Pr[A∗(x) = 1] − p| � δ] � 1 − 2m · 2 exp(−2δ2h). (9)

The advantage of A∗, with probability 1 − 2n−1 exp(−2hδ2), equals

ΔA∗
(X;Y ) � (p − δ) − (p + δ) Pr[Y ∈ S] − (q + δ) Pr[Y ∈ Sc]

� p − q − (p − q) Pr[Y ∈ S] − 2δ.

Since by the assumption we have Pr[Y ∈ S] � 1
2 , Eq. (6) follows.

Proof (of Claim 2). The adversary A non-adaptively queries for Di(x) values for
t distinct i’s and then outputs a bit, this bit is thus computed by a function of
the form

f
(
x,Di1(x)(x), . . . , Dit(x)(x)

)
, (10)

for some fixed boolean function f : {0, 1}n × {0, 1}t → {0, 1}. We start by sim-
plifying the event (7) using the following proposition, which gives an alternative
characterization of the deterministic metric entropy.

Lemma 1 ([3,25]). Let D be a boolean deterministic function on {0, 1}n. Then
there exists Y of min-entropy at least k such that ΔD(X;Y ) � ε if and only if

ED′(X) � 2n−k
ED′(U) + ε (11)

holds for D′ ∈ {D,1 − D}
Since |Sc| � 2n−1, we have ED(U) � Ex←Sc D(x)/2 for any function D.

Therefore, by Lemma 1, the inequality (7) will be proved if we show that the
following inequality holds:

Pr
X,D1,...,Dh

[
∀A′ ∈ {A,1 − A} : Ex←S A′(x) � 2n−k−1

Ex←Sc A′(x) + ε
]

� 1 − 4 exp(−2mδ2)

(12)

By the union bound, it is enough to show that for A′ ∈ {A,1 − A} we have

Pr
X,D1,...,Dh

[
Ex←S A′(x) � 2n−k−1

Ex←Sc A′(x) + ε
]

� 1 − 2 exp(−2mδ2) (13)

In the next step we simplify the expressions Ex←S A′(x) and Ex←Sc A′(x). The
following fact is a direct consequence of the Chernoff bound.
6 We use the following version: let Xi for i = 1, . . . , N be independent ran-

dom variables such that Xi ∈ [ai, bi]. Then for any positive t we have

PrX1,...,XN

[∑N
i=1 Xi − E

[∑N
i=1 Xi

]
� t
]

� exp
(

2t2∑N
i=1(bi−ai)2

)
.



196 K. Pietrzak and M. Skórski

Proposition 1. For any function f ∈ {0, 1}n × {0, 1}t → [0, 1] we have
∣
∣Ex←S f

(
x,Di1(x)(x), . . . , Dit(x)(x)

) − E f(Un, B1
p , . . . , Bt

p)
∣
∣ � δ (14)

∣
∣Ex←Sc f

(
x,Di1(x)(x), . . . , Dit(x)(x)

) − E f(Un, B1
q , . . . , Bt

q)
∣
∣ � δ (15)

with probability 1 − 2 exp(−2 · 2mδ2) over the choice of X and D1, . . . , Dh.

For any r = (r1, r2, . . . , rt) ∈ [0, 1]t, and any (deterministic or randomized)
function f ∈ {0, 1}t → [0, 1] we denote Erf = Ef(Br1 , . . . , Brt). It is enough to
show that if r, r′ are both chosen from {p, q}t then we have

Erf + δ � 2n−k−1 max(Er′f − δ, 0) + ε. (16)

This inequality will follow by the following lemma (applied to f in the proposition
but considered as a function of {0, 1}t randomized with the first n input bits).

Lemma 2. Suppose that p, q > 0 are such that p+ q = 1. Let f : {0, 1}t → [0, 1]
be an arbitrary function and let r, r′ ∈ {p, q}t. Then for any c > 0 we have

Erf � exp
(

(c + 1)(p − q)2

q
· t

)
· Er′f + exp(−2c2(p − q)2t).

Proof. The idea of the proof is to show that for most values of z the ratio
Pr[Br = z]/Pr[Br′ = z] is bounded. We have

Pr[Br = z]/Pr[Br′ = z]

= (p/q)#{i:zi=1, ri>r′
i}−#{i:zi=1, ri<r′

i} · (q/p)#{i:zi=0, ri>r′
i}−#{i:zi=0, ri<r′

i}

= (p/q)#{i:zi=1, ri>r′
i}−#{i:zi=0, ri>r′

i}−#{i:zi=1, ri<r′
i}+#{i:zi=0, ri<r′

i} (17)

= (p/q)
∑t

i=1(2zi−1)·sgn(ri−r′
i) (18)

The random variables ξi = (2zi − 1) · sgn(ri − r′
i) for i = 1, . . . , t, where z is

sampled from Br, are independent with the expectations Eξi = (2ri −1)sgn(ri −
r′

i) � p − q. By the Chernoff bound for any c > 0 we get

Pr
z←Br

[
t∑

i=1

(2zi − 1) · sgn(ri − r′
i) � (p − q)t + c(p − q)t

]

� exp(−2c2(p − q)2t).

(19)

Therefore,

Erf � (p/q)(c+1)(p−q)t
Er′f + 2 exp(−2c2(p − q)2t) (20)

and the claim follows by observing that p/q = 1 + (p − q)/q � exp((p − q)/q).

From Lemma 2 it follows that Eq. (16) is satisfied with

δ � ε

2 exp ((c + 1)(p − q)2 · t/q) + 2
(21)
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provided that

exp(−2c2(p − q)2 · t) � ε/2 (22)

exp
(
(c + 1)(p − q)2 · t/q

)
� 2n−k−1 (23)

It is easy to see that Eqs. (23) and (22) are satisfied if and only if

ln(2/ε)
2c2(p − q)2

� t � (n − k − 3) ln 2 · q

(c + 1)(p − q)2
.

This inequality can be satisfied if and only if

ε � 2 · 2(k−n+3)· 2qc2c+1 .

If we set t = ln(2/ε)
2c2(p−q)2 then Eq. (21) becomes

δ � ε

(2/ε)
c+1
2qc2 + 2

Choosing c so that 2qc2

c+1 = 1 we see that it is enough to assume ε � 2 · 2k−n+3,

any δ such that δ � ε2

2+2ε and t ≈ ln(2/ε)
6(p−q)2 (the constant 6 is sightly bigger than

the exact value, but if Claim 2 holds true for some t then also for t′ < t). This
finishes the proof of Claim 2.

B Proof of Theorem2

A Remark on the Oracle. For convenience, the oracle O : {0, 1}n → {0, 1}
we use in the proof is probabilistic, in the sense that it flips some random coins
before answering a query (in particular, making the same query twice might give
different outputs). We remark that, as the adversaries considered are probabilis-
tic, one can replace this oracle with a deterministic one Odet by assigning to
every possible query x a 2L tuple (x, r), r ∈ {0, 1}L of queries (for some suffi-
ciently large L), where the output for Odet((x, r)) is sampled according to O(x)
for every r. We can emulate the output distribution O(x) by querying O((x, r))
for a random r. On the other hand, for a random x, even an exponential size
distinguisher will not be able to distinguish Odef((x, ·)) from an oracle which,
when queried on input (x, r) for the first time, samples the output according to
the distribution of O(x).7

Proof (of Theorem 2). We first describe how we construct the distribution (X,Z)
and the oracle O.
7 This can be shown along the lines of the proof that a random exponential size

subset is unconditionally pseudorandom against exponential size distinguishers, see
Goldreich’s book “Foundations of Cryptography – Basic Techniques”, Proposition
3.2.3.
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Construction details. We chose at random two disjoint sets X0,X1 ⊂ {0, 1}n

of size 2� and define X = X0 ∪ X1. Let π : {0, 1}n → {0, 1}m−1 be a random
function. The oracle O on input (x, j) ∈ X ×{0, 1}m−1 outputs a sample of B1/2

(i.e., a uniformly random bit), except if x ∈ X and π(x) = j, in this case the
output bit has bias δ; If x ∈ X0, the oracle outputs a sample of B1/2−δ, and
otherwise, if x ∈ X1, a sample of B1/2+δ. We define the joint distribution (X,Z)
by sampling Z ′ ← {0, 1},X ← XZ′ and setting Z = π(X)‖Z ′ (note that X is
uniform in X )

Adversaries. The adversary on input x ∈ {0, 1}n makes T non-adaptive
queries (x, j1(x)), . . . , (x, jT (x)) to the oracle. We denote O’s response with
R(x) =

(
Ri(x, ji(x))

)T

i=1
. The adversary’s final output f(x,R(x)) is computed

by a boolean function f : {0, 1}n × {0, 1}T → {0, 1}.

Formal proof. Let R(x) = (R1(x, j1(x)), . . . , RT (x, jT (x))) be the sequences of
the oracle’s responses and Let B(x) = (B1

1/2, . . . , B
T
1/2) be independent random

bits. For every x the number of useful responses, that is indexes i such that
Ri(x, ji(x)) is biased, is defined to be

T (x) =
T∑

i=1

[ji(x) = π(x)] (24)

On average we have EO(·) T (x) = T/2m−1. We claim that the adversary actually
learns basically nothing about X : the sequence of oracle outptus is close to the
sequence of unbiased bits. We start by showing that X is pseudorandom for our
adversary.

Claim 3 (X is pseudorandom, even given oracle responses). For any f
and ε > 0 we have

|Ex←X f(x,R(x)) − Ex←Un
f(x,R(x))| ≤ ε + O

(
δ2T/2m

)
(25)

with error probability at most O
(
exp (−Ω (2n−m)) + exp

(−Ω
(
2�ε2

)))
.

Proof. By Lemma 3 and the definition of O, for every x ∈ X we obtain

|Ef(x,R(x)) − Ef(x,B(x))| =
{

O
(
T (x)δ2

)
, x ∈ X

0, x �∈ X (26)

for every boolean function f and some absolute constant hidden under big-Oh.
Thus

∣
∣
∣
∣ E
x←X

f(x,R(x)) − E
x←X

f(x,B(x))
∣
∣
∣
∣ = O

(

E
x←X

T (x)δ2
)

(27)

Note that the random variables f(x,R(x)) for different values of x are indepen-
dent and similarly f(x,B(x)) for different values of x are independent. Since the
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set X is chosen at random by the Hoeffding-Chernoff bound we obtain that with
probability 1 − 2 exp

(−Ω
(
2�ε2

))
over O the following holds:

∣
∣
∣
∣ E
x←X

f(x,B(x)) − E
x←Un

f(x,B(x))
∣
∣
∣
∣ � ε (28)

Combining Eqs. (27) and (28) we obtain (with probability 1− 2 exp
(−Ω

(
2�ε2

))

over O).
∣
∣
∣
∣ E
x←X

f(x,R(x)) − E
x←Un

f(x,B(x))
∣
∣
∣
∣ � ε + O

(

E
x←X

T (x)δ2
)

(29)

By Eq. (26) we have
∣
∣
∣
∣ E
x←Un

f(x,R(x)) − E
x←Un

f(x,B(x))
∣
∣
∣
∣ � O

(

E
x←Un

T (x)δ2
)

. (30)

Now Eqs. (29) and (30) imply
∣
∣
∣
∣ E
x←X

f(x,R(x)) − E
x←Un

f(x,R(x))
∣
∣
∣
∣ � ε + O

(

E
x←Un

T (x)δ2
)

. (31)

The random variables T (x) for different x are independent, bounded by T and
have the first moment E

O
(T (x)) = T/2m−1. By the multiplicative Chernoff bound

with probability 1 − 2 exp (−Ω (2n−m)) over O it holds that E
x←Un

T (x) < 2 ·
T/2m−1. This implies Eq. (25) with error probability at most

Perr = O
(
exp

(−Ω
(
2n−m

))
+ exp

(−Ω
(
2�ε2

)))
.

Claim 4. There exists a distinguisher D : {0, 1}n × {0, 1}m → {0, 1} which
calls the oracle O one time and such that for any joint distribution Y,Z ′ over
{0, 1}n × {0, 1}m with entropy H̃∞(Y |Z ′) � � + 1 it holds that

ED(X,Z) − ED(Y,Z ′) � δ

2

with probability 1 − 2 exp(−Ω
(
2�δ2)

)
.

Remark 4 (Amplified distinguisher). Assuming that T is sufficiently large, we
can modify D by taking the majority vote over T queries on O(x, z). This will
boost the distinguishing advantage from δ/2 to Cδ where C can be an arbitrary
constant (for sufficiently small δ).

Proof (of Claim 4). The distinguisher D simply calls the oracle O on the
pair (x, z). The probability that D outputs 1 on input (Y,Z ′) is at most
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(the probabilities below are over the choice of O and Y,Z ′)

Pr (D(Y,Z ′) = 1) = E
z←Z′

Pr (D(Y |Z′=z, z) = 1)

= E
z←Z′

[Pr (D(Y, z) = 1 ∧ Y �∈ X | Z ′ = z)]

+ E
z←Z′

[Pr (D(Y, z) = 1 ∧ Y ∈ X | Z ′ = z)]

=
1
2

+ δ · E
z←Z′

[Pr (Y ∈ X | Z ′ = z)]

� 1
2

+ δ E
z←Z′

[
|X | · 2−H∞(Y |Z′=z)

]

=
1
2

+ δ · |X | · 2−H̃∞(Y |Z′)

which is at most 1
2 + δ

2 . On the other hand we have Pr(D(X,Z) = 1) = 1
2 + δ.

From this we see that the advantage is δ on average - but we need stronger
concentration guarantees. Note that Pr(D(X,Z) = 1) =

∑
x∈S Pr[X = x] ·

D(x, i(x)) can be viewed as a sum of independent random variables. By the
Chernoff-Hoeffding bound we get

Pr
O

[
Pr(D(X,Z) = 1) � 1

2
+ δ − δ

8

]
� 1 − exp(−Ω

(
2�δ2)

)
)

Similarly, Pr(D(Y,Z ′) = 1) =
∑

x,z Pr[Y = x,Z ′ = z] · D(x, z′). Since
∑

x,z

Pr[Y = x,Z ′ = z]2 =
∑

z

∑
x Pr[Z ′ = z]2 Pr[Y = x|Z ′ = z]2

�
∑

z

Pr[Z ′ = z]2−H∞(Y |Z′=z)

� 2−H̃∞(Y |Z),

the Chernoff-Hoeffding bound implies

Pr
O

[
Pr(D(Y ′, Z) = 1) � 1

2
+

δ

2
+

δ

8

]
� 1 − exp(−Ω

(
2�δ2

)
) (32)

and the result follows. We set ε = δ
3 and T = c · 2m/ε. Now Claim 4 directly

implies Eq. (5) whereas Eq. (4) follows, when c is sufficiently small, from Claim 3
by a union bound; To see this, note that the right hand side of (32) is doubly
exponentially close (in �) to 1, and recall that � > m + 6 log(1/δ). So we can
take a union bound over all O(exp(T )) circuits D of size T and deduce that with
high probability the left hand side of (32) hold for all of them.

C Proof of Lemma3

Lemma 3 (Lower bounds on the coin problem). Fix δ ∈ (0, 1/2) and
define p = 1

2 + δ and q = 1 − p. Consider the following two experiments:
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(a) We flip a fair coin, and depending on the result we toss T times a biased
coin Bp (probability of the head is p) or toss T times a coin Bq (probability
of the head is q). The output is the result of these T flips.

(b) We flip T times a fair coin and output the results.

Then one cannot distinguish (a) from (b) better than with advantage O
(
Tδ2

)
.

Remark 5. We give a simple proof based on calculating Renyi divergences. This
result can be also derived by more sophisticaed techniques from Fourier analysis
(the generalized XOR lemma).

Before we give the proof, let’s recall some basic facts about Pearson Chi-Squared
Distance. For any two distributions P,Q over the same space, their Chi-Squared
distance defined by

Dχ2(P ‖ Q) =
∑

x

Q(x)
(

P (x)
Q(x)

− 1
)2

=
∑

x

P (x)2

Q(x)2
− 1 (33)

Now let U1, . . . , Un be independent uniform bits, X1, . . . , Xn be i.i.d. bits where
1 appears with probability p = 1

2 +δ and Y1, . . . , Yn be i.i.d. bits where 1 appears
w ith probability q = 1 − p = 1

2 − δ. We want to estimate the distance between
U = U1, . . . , Un and Z distributed as an equally weighted combination of X =
X1, . . . , Xn and Y = Y1, . . . , Yn. We think of δ as a fixed parameter and n as
a growing number. Our statement will easily follow by combining the following
two claims

Claim 5. With U and Z as above, and for n = O
(
δ−2

)
, it holds that

Dχ2 (U ;Z) = O
(
n2δ4

)
(34)

Claim 6. For any R and uniform U

SD(R ‖ U) �
√

Dχ2(R ‖ U), (35)

Indeed, combining these claims we obtain SD(Z ‖ U) = O(nδ2) when n =
O

(
δ−2

)
. Since the left-hand side is bounded by 1, this is true also when n > cδ−2

for some absolute constant c and the result follows.

Proof (of Claim 5). We have

Dχ2

(
1
2
PX1,...,Xn

+
1
2
PY1,...,Yn

‖ PU1 · . . . · PUn

)

= 2n ·
∑

z1,...,zn

(
1
2
PX1(z1) · . . . · PXn

(zn) +
1
2
PY1(z1) · . . . · PYn

(zn)
)2

− 1

=
1
4

· 2n
∏

i

(
∑

z

PXi
(z)2

)

+
1
4

· 2 · 2n
∏

i

(
∑

z

PXi
(z)PYi

(z)

)
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+
1
4

· 2n
∏

i

(
∑

z

PYi
(z)2

)

− 1

=
1
4

(
(1 + 4δ2)n + 2(1 − 4δ2)n + (1 + 4δ2)n − 4

)

(36)

and the result follows by the Taylor expansion (1 + u)n = 1 + nu + O(n2u2)
where nu = O(1) applied to u = 4δ2. The bound is valid as long as n = O

(
δ−2

)
.

Proof (of Claim 6). This inequality follows immediately from the Cauchy-
Schwarz inequality and the definition of Dχ2 .
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