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Abstract. An AMD circuit over a finite field F is a randomized arith-
metic circuit that offers the “best possible protection” against additive
attacks. That is, the effect of every additive attack that may blindly add
a (possibly different) element of F to every internal wire of the circuit
can be simulated by an ideal attack that applies only to the inputs and
outputs.

Genkin et al. (STOC 2014, Crypto 2015) introduced AMD circuits
as a means for protecting MPC protocols against active attacks, and
showed that every arithmetic circuit C over F can be transformed into
an equivalent AMD circuit of size O(|C|) with O(1/|F|) simulation error.
However, for the case of the binary field F = F2, their constructions
relied on a tamper-proof output decoder and could only realize a weaker
notion of security.

We obtain the first constructions of fully secure binary AMD circuits.
Given a boolean circuit C and a statistical security parameter σ, we con-
struct an equivalent binary AMD circuit C′ of size |C| · polylog(|C|, σ)
(ignoring lower order additive terms) with 2−σ simulation error. That is,
the effect of toggling an arbitrary subset of wires can be simulated by
toggling only input and output wires.

Our construction combines in a general way two types of “sim-
ple” honest-majority MPC protocols: protocols that only offer security
against passive adversaries, and protocols that only offer correctness
against active adversaries. As a corollary, we get a conceptually new
technique for constructing active-secure two-party protocols in the OT-
hybrid model, and reduce the open question of obtaining such protocols
with constant computational overhead to a similar question in these sim-
pler MPC models.

Keywords: Algebraic Manipulation Detection · AMD circuits · Secure
multiparty computation

1 Introduction

In this paper we give the first construction of boolean circuits which are secure
against attacks that can toggle an arbitrary subset of the wires, in the sense that
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every such attack is equivalent to attacking only the inputs and outputs of the
circuit. We begin with a short overview of the problem and related background.

An Algebraic Manipulation Detection (AMD) code [3] over a finite field F is a
randomized coding scheme that offers the best possible protection against addi-
tive attacks, namely attacks that can blindly add a fixed (but possibly different)
element from F to every entry of the codeword. Since an attacker can destroy
all information by adding a random field element to every symbol, the best one
can hope for is to detect errors with high probability, rather than correct them.

An analogous goal of protecting computations against additive attacks was
recently considered by Genkin et al. [11]. This goal is captured by the notion
of an AMD circuit, a randomized arithmetic circuit which offers the best possi-
ble protection against additive attacks that may add a (possibly different) field
element to every wire. Since the adversary can legitimately attack input and out-
put wires, the best one can hope for is to limit the adversary to these inevitable
attacks. That is, in an AMD circuit the effect of every additive attack that may
apply to all internal wires in the circuit can be simulated by an ideal attack that
applies only to the inputs and outputs. Combining such AMD circuits with a
standard AMD code, one can also protect the inputs and outputs by employing
small tamper-proof input encoder and output decoder.

The study of AMD circuits in [11] was motivated by the observation that in
the simplest information-theoretic MPC protocols from the literature, that were
only designed to offer protection against passive (i.e., semi-honest) adversaries,
the effect of every active (malicious) adversary corresponds precisely to an addi-
tive attack on the circuit being evaluated. Thus, a useful paradigm for tackling
the difficult goal of protecting against active attacks is to apply such a simple
passive-secure protocol to an AMD-encoded computation. This paradigm seems
quite promising even from a concrete efficiency perspective [10,13].

The main result of [11] is that every arithmetic circuit C over F can be trans-
formed into an equivalent AMD circuit of size O(|C|) with O(1/|F|) simulation
error. This provides poor security guarantees over small fields, and in fact the
construction used to achieve this can be completely broken when applied over the
binary field F = F2. (The natural approach of using an arithmetic circuit over
a large extension field does not apply here, because the computation of field
multiplications is also subject to attacks.) For the binary case, an alternative
construction from [11] relies on the use of a tamper-proof output decoder and
can only realize a weaker notion of security that allows for arbitrary correlations
between the input and the event an attack is detected.

The goal of this work is to remedy this state of affairs and provide fully
secure AMD circuits over small fields, with a primary focus on the binary case.
Binary AMD circuits can be viewed as standard (randomized) boolean circuits
(over the full basis) that are subject to arbitrary toggling attacks: the adversary
may choose to toggle the values of an arbitrary subset of the wires. This seems
quite natural even from a pure fault tolerance perspective and can be viewed
as a strict generalization of the classical “random noise” fault model considered
by von Neumann [20], Dobrushin and Ortyukov [7], and Pippenger [18]. Such a
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toggling attack model may not be too far from some real-life scenarios like faults
introduced by faulty hardware or cosmic radiation.

In the context of applications to MPC, the binary case is important because
it enables us to apply the AMD circuits methodology also to natural protocols
that are cast in the OT-hybrid model. These include the simple passive-secure
version of the GMW protocol [12]. In contrast, the MPC applications in [11] for
the case of dishonest majority could only apply to arithmetic extensions of the
GMW protocol that employ an arithmetic extension of OT denoted by OLE.1

Replacing OLE by OT is particularly attractive in light of efficient OT extension
techniques [14,17] that do not apply to OLE.

We obtain the first constructions of fully secure binary AMD circuits. Given
a boolean circuit C and a statistical security parameter σ, we construct an
equivalent binary AMD circuit ̂C of size |C| · polylog(|C|, σ) (ignoring lower
order additive terms) with 2−σ simulation error. That is, the effect of toggling
an arbitrary subset of wires can be simulated by toggling only input and output
wires.

Our construction combines in a general way two types of “simple” honest-
majority MPC protocols: protocols that only offer security against passive adver-
saries, and protocols that only offer correctness against active adversaries. It
proceeds according to the following steps. First, we use the correct-only MPC
protocol to convert a relatively simple AMD circuit that provides only constant
correctness (i.e., any “potentially harmful” attack is detected with some positive
probability) into one that offers full correctness (i.e., attacks are detected except
with 2−σ probability). However, this notion of correctness is not enough, mainly
because it does not rule out correlations between the input and the event an
attack is detected. We eliminate such correlations generically by distributing the
computation using a passive-secure MPC protocol. The analysis of this step cru-
cially relies on a recent lemma due to Bogdanov et al. [1] that uses the degree of
approximating the OR function by real-valued polynomials to upper bound its
best-case advantage in distinguishing between two distributions that are t-wise
indistinguishable.

As a byproduct, we get a conceptually different technique for constructing
active-secure two-party protocols in the OT-hybrid model from these simpler
building blocks. This technique is appealing because in a sense it counters the
common wisdom that “security” is more than a combination of “correctness”
and “secrecy.” Indeed, our construction shows a general way to obtain full secu-
rity (for MPC protocols in the OT-hybrid model) by only combining one MPC
protocol that guarantees correctness and another that only guarantees secrecy,
namely security in the presence of passive attacks. Moreover, the “correct-
only MPC” component can be instantiated by a trivial protocol in which each
party performs the entire computation locally. (To get the asymptotic efficiency

1 An Oblivious Linear-function Evaluation (OLE) over a field F takes a field element
x ∈ F from Receiver and a pair (a, b) ∈ F

2 from Sender and delivers ax+b to Receiver.
In the case of binary fields, OLE can be realized via a single call to standard (bit-)
OT.
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mentioned above, we need to apply more sophisticated correct-only MPC proto-
cols that offer better efficiency.) This can be compared with the IPS compiler [16],
which also provides a general way of obtaining active-secure protocols in the
OT-hybrid model, but requires an honest-majority MPC protocol that provides
active security (which is strictly stronger than relying on active correctness and
passive security).

In addition to its conceptual appeal, our new methodology also sheds new
light on an intriguing open question about the complexity of secure computa-
tion [15]: Are there active-secure two-party protocols that achieve constant com-
putational overhead? In other words, does the asymptotic multiplicative cost of
protecting against active adversaries have to grow with the level of security?
This question is open even when allowing a trusted source of correlated ran-
domness, and in particular it is open in the OT-hybrid model. The best known
protocols [6] have a polylogarithmic overhead in the security parameter (a result
that we can match using binary AMD circuits). Our work reduces this question
to the same open question in arguably simpler models. Indeed, while our con-
struction involves some additional ad-hoc components (on top of the two types
of MPC protocols discussed above) the additional cost they incur depends only
on the input and output sizes, and not on the size of the computation. Further-
more, our construction also employs AMD codes to encode the entire protocol
transcript, but these can be implemented with constant computational overhead
(see Claim 18 and Corollary 1 in Sect. 6).

1.1 Our Results and Techniques

We now provide more details about our results, and the underlying techniques
(summarized in Fig. 1 below). We begin by defining the notion of additive cor-
rectness, which allows the evaluation of a function f : F

n → F
k in the presence

of an additive attack2 on the circuit computing f .

Definition 1 (Additive correctness; cf. full version of [11], Defini-
tion 4.1). Let ε > 0. We say that a randomized circuit ̂C : F

n → F
t × F

k is an
ε-additively-correct implementation of a function f : F

n → F
k if the following

holds:

– Completeness. For all x ∈ F
n it holds that Pr[̂C(x) = (0t, f(x))] = 1.

– Additive correctness. For any additive attack A there exists ain ∈ F
n,

and aout ∈ F
k, such that for every input x it holds that Pr[̂CA(x) /∈ ERR ∪

{(0t, f(x+ain)+aout)}] ≤ ε, where CA is the circuit obtained by subjecting C
to the additive attack A, and ERR = (Ft\{0t}) × F

k.

We say that ̂C is an ε-additively-correct implementation of a circuit C if ̂C is an
ε-additively-correct implementation of the function fC computed by C.

Previous works [10,11] constructed additively correct implementations for
arithmetic circuits over any finite field F, with constant overhead, and ε =
O (1/|F|). In particular, for F = F2 the error is constant.
2 For a formal definition of additive attacks, see Definition 3.
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1.1.1 Correctness Amplification via Correct-Only MPC
For any function f , and security parameter σ, we show the first 2−σ-additively-
correct implementation of f , with polylogarithmic blowup:

Theorem 1 (Cf. Theorem11). For any depth-d arithmetic circuit C : F
n →

F
k, and any security parameter σ, there exists a 2−σ-additively-correct imple-

mentation ̂C of C, where |̂C| = |C| · polylog(|C|, σ) + poly(n, k, d, σ).

To prove Theorem 1, we present a general method of amplifying additive
correctness based on “correct-only” MPC protocols. Such protocols enable a
single client, aided by m servers, to evaluate an arithmetic circuit C on its
input, while guaranteeing correctness of the computation in the presence of an
active adversary that corrupts a constant fraction of the servers. Moreover, the
only interaction between the client and servers is in the first and last rounds.

More specifically, for m servers, and some constant c, let π be a d-round
cm-correct MPC protocol, namely correctness holds even if cm servers are cor-
rupted. Let InpEnc,OutDec denote the functions used by the client in the first
and last rounds (respectively) to compute its messages to the servers, and its
output (respectively). Let NextMSG denote the function used by the servers
to compute their messages in each round of the protocol. The naive approach
towards implementing the circuit ̂C using π is to implement every sub-circuit
(namely, each of NextMSG, InpEnc, and OutDec) using an ε-additively-correct
implementation. This naive approach fails because an additive attack may influ-
ence the computation of all NextMSG functions, which corresponds to actively
corrupting all servers in π, whereas the correctness of the protocol only holds
when at most cm servers are corrupted. Consequently, additive attacks on ̂C can
be divided into two categories:

1. “Small” Attacks. The sub-circuits of ̂C that these attacks influence corre-
spond to at most cm servers of π, so by the cm-correctness of π, such attacks
cannot affect the output.

2. “Large” Attacks. The sub-circuits of ̂C that these attacks affect correspond
to more than cm servers of π. Since each sub-circuit (computing NextMSG) is
implemented using an ε-additively-correct implementation, then except with
probability εcm at least one of these attacks is detected, or their effect on
the computations in the sub-circuits is equivalent to additive attacks on the
inputs and outputs of the sub-circuits.

Additionally, we notice that any additive attack on π consists of sub-attacks of
one of three types:

1. Attacks on communication channels. These attacks only affect the mes-
sages that parties receive in π, but do not modify the NextMSG functions. By
encoding all messages sent in the protocol using an AMD encoding scheme
(and altering InpEnc,NextMSG,OutDec to operate on AMD codewords) we
can guarantee that such attacks are detected with high probability.

2. Attacks on NextMSG functions. These attacks arbitrary modify the
NextMSG function of the corresponding server, but (as noted above) can be
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protected against by replacing all NextMSG functions with their ε-additively-
correct implementations.

3. Attacks on client functions. Since π is correct only as long as the client is
honest, such attacks may arbitrarily affect the outputs. Therefore, to guaran-
tee that such attacks are detected except with negligible probability, InpEnc
and OutDec should be replaced with their 2−σ-additively-correct implementa-
tion. The crucial point here is that since |InpEnc| + |OutDec| is polynomial in
the inputs and outputs, but otherwise independent of |C|, then any efficient
2−σ-additively-correct implementation will do, and the resultant overhead
would still be polylog (m |C|). (We show an example of a 2−σ-additively-
correct implementation in AppendixA.)

Consequently, we implement the circuit ̂C using π as follows. We first replace
the NextMSG functions of π with the functions NextMSG′ that operate on
AMD codewords, and replace NextMSG′ with its ε-additively correct imple-

mentation, ̂NextMSG′, such that
∣

∣

∣

̂NextMSG′
∣

∣

∣ = O
(∣

∣NextMSG′∣
∣

)

, and ε is
constant. Additionally, we replace InpEnc (resp., OutDec) with the function
InpEnc′ (resp., OutDec′) which outputs (resp., takes as input) AMD codewords,
and replace InpEnc′,OutDec′ with their 2−σ-additively correct implementations
̂InpEnc, ÔutDec. Thus, |̂C| = | ̂InpEnc| + |ÔutDec| +

∑m
i=1

∑d
j=1 | ̂NextMSGj

i |. We
use an efficient correct-only MPC protocol π (e.g., a slightly simplified ver-
sion of [6]) to guarantee that when m = σ, the multiplicative computational
overhead is only polylog (σ, |C|). (Since we would like the overhead to be sub-
linear in σ, we cannot use a trivial correct-only MPC protocol for evaluat-
ing C on input x.) For this choice of π, |InpEnc| + |OutDec| = poly(n, k),
so | ̂InpEnc| + |ÔutDec| = poly(n, k). Similarly,

∑σ
i=1

∑d
j=1 |NextMSGj

i | =

|C| · polylog(|C|, σ) + poly(n, k, d, σ), so
∑σ

i=1

∑d
j=1 | ̂NextMSGj

i | = |C| ·
polylog(|C|, σ) + poly(n, k, d, σ). (See Sect. 4 for a more complete discussion.)

1.1.2 From Correctness to Security via Passive-Secure MPC
Additive correctness (as guaranteed by Theorem1) does not rule out the possi-
bility that the probability of ERR (due to set flags) is correlated with the inputs
of ̂C. Thus, additive attacks on additively-correct circuits may leak information
about the inputs to ̂C, making additive correctness insufficient for applications
to secure multiparty computation (as described in, e.g., [11]) that require that
no such correlations exist. This stronger property is achieved by the following
additive security property which, intuitively, guarantees that any additive attack
on ̂C is equivalent (up to a small statistical distance) to an additive attack on
the inputs and outputs of the function that ̂C computes. Formally,

Definition 2 (Additively-secure implementation). Let ε > 0. We say that
a randomized circuit C : F

n → F
k is an ε-additively-secure implementation of a

function f : F
n → F

k if the following holds.

– Completeness. For every x ∈ F
n, Pr [C (x) = f (x)] = 1.
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– Additive-attack security. For any additive attack A there exist ain ∈
F

n, and a distribution AOut over F
k, such that for every x ∈ F

n,
SD(CA (x) , f

(

x + ain
)

+ Aout) ≤ ε.

As in the case of additive correctness, previous works [10,11] constructed
additively-secure implementations for arithmetic circuits over any finite field
F, with constant overhead, and ε = O (1/ |F|). Unfortunately, their results and
techniques are of little use in the binary case, since the error is too large. We
present the first additively-secure circuits with negligible error probability over
the binary field. Formally:

Theorem 2 (Cf. Theorem14). For any depth-d arithmetic circuit C : F
n →

F
k, and security parameter σ, there exists a 2−σ-additively-secure implementa-

tion ̂C of C, where |̂C| = |C| · polylog(|C|, σ) + poly(n, k, d, σ).

As in Sect. 1.1.1, the high-level idea is to implement C using an m-party pro-
tocol (in the standard model, namely not in the server-client model), where the
functions computed by the parties are replaced with additively-correct imple-
mentations that operate over AMD encodings. However, since our main concern
now is privacy, and not correctness, we use passive-secure protocols which only
guarantee privacy against a constant fraction c of passively-corrupted parties.
This privacy guarantee allows us to decouple the probability of ERR of the addi-
tively correct circuits from their inputs, resulting in additively secure circuits.

More specifically, the input of the circuit C is shared between the parties
using an additive secret-sharing, and the d-round passive-secure protocol π com-
putes the functionality that reconstructs the input from the shares, evaluates C,
and outputs an additive secret-sharing of the output. The privacy property of π,
together with the secrecy property of the secret-sharing scheme, guarantee that
the joint view of a constant fraction of passively-corrupted parties reveals no
information about the inputs, or outputs, of the computation. As in Sect. 1.1.1,
̂C is obtained from π by first replacing all NextMSG functions with the func-
tions NextMSG′ that operate on AMD encodings, and then implementing each

NextMSG′ using a 2−σ-additively-correct implementation ̂NextMSG′ with con-
stant overhead (such as the one from Theorem 1). As ̂C should emulate C (rather
than output a secret sharing of the output of C), the output is reconstructed
from the outputs of the parties in π by summing their shares, and is then com-
bined with the flags generated by all the additively-correct implementations,
such that if any of the flags were set then the output of ̂C is random.

Using a union-bound over the additive-correctness property of the additively-
correct implementations, except with probability at most |C| · 2−σ any additive

attack on the ̂NextMSG′ functions either sets a flag, or is equivalent to an attack
on the inputs and outputs of NextMSG′. Except for the inputs, and output, of
̂C, the inputs and outputs of the NextMSG′ functions are protected by the AMD
encoding scheme, so by the additive soundness of the AMD encoding scheme,
any attack (except for an attack on the inputs, and output, of ̂C) will set a flag
with overwhelming probability. Thus, the only additive attacks that do not set
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a flag (with overwhelming probability) are attacks on the inputs and outputs of
̂C, which are equivalent to attacks on the inputs and outputs of C. Thus, with
overwhelming probability the execution of π is correct even in the presence of
additive attacks.

It remains to show that the probability of setting a flag in ̂C, thus causing the
output to be random, is input independent. We use the fact that the probability
that a subset of ̂NextMSG′ implementations set their flags depends only on their
joint inputs and outputs, and distinguish between two types of attacks.

1. “Small” attacks. These attacks attempt to corrupt less than cm parties.
Therefore, the probability that a flag is set depends only on the inputs and
outputs of these parties which, by the privacy of π, and the secrecy of the
secret-sharing scheme, is independent of the inputs of ̂C.

2. “Large” attacks. These attacks attempt to corrupt more than cm parties,
and so we can no longer use the privacy of π. However, notice that in this
case the output of ̂C is random if and only if at least one additively-correct
implementation set a flag (regardless of the identity or number of flags that
were set). That is, the output is random if and only if the OR of the flags is
1. Using a recent lemma of [1] (stated as Lemma 1 below), the correlation of
the OR with the input is negligible, because the OR is computed over a large
fraction of the flags.

As for the size of ̂C, notice that |̂C| =
∑m

i=1

∑d
j=1 | ̂NextMSGj

i |. To obtain the
small overhead guaranteed by Theorem 2, we use a cm private (for some constant
c > 0), m-party protocol of [6] in which the total circuit size of all the NextMSG
functions is |C| · polylog(|C|,m) + poly(m,n, k, d, log |C|). Setting m = poly (σ),
∑σ

i=1

∑d
j=1 |NextMSGj

i | = |C| · polylog(|C|, σ) + poly(n, k, d, σ), and so if all

the ̂NextMSGj
i are generated using Theorem1, |̂C| = |C| · polylog(|C|, σ) +

poly(n, k, d, σ). (See Sect. 5 for a more detailed analysis.)

1.2 On the Difference Between Additive Correctness and Additive
Security

As noted in Sect. 1.1.2, Definition 1 is weaker than Definition 2. In particular,
the correctness guarantee of Definition 1 is insufficient for many MPC applica-
tions, since the probability of ERR (due to set flags) might be correlated with
the inputs, and consequently reveal information regarding the inputs of ̂C. As
we now show, such correlations exist in many natural constructions of additively
correct implementations (and, in particular, in all additivity correct construc-
tions discussed in this paper as well as the constructions in [10,11]).

As a typical example of correlations between inputs and the probability
of ERR created by additive attacks, consider the simpler case of an AMD
code. Specifically, consider the code which encodes a field element x ∈ F as
(x, v1, · · · , vσ, r1, · · · , rσ), where v1, · · · , vσ ∈R F are uniformly random, and
ri = vi · x for all 1 ≤ i ≤ σ. To decode (x, v1, · · · , vσ, r1, · · · , rσ), the decoder
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Fig. 1. Additive security from weak additive correctness (both steps use AMD codes)

verifies that x · vi = ri for all 1 ≤ i ≤ σ. Consider the additive attack that adds
the same arbitrary constant δ �= 0 to all the vi’s. If x = 0 then ri = 0 for every
1 ≤ i ≤ σ, thus the test 0 · (vi + δ) = 0 passes for all i, and decoding succeeds.
However, if x �= 0 then every x · vi = ri test fails except with probability 1/|F|.
Since decoding succeeds only if all tests succeed, decoding fails in this case with
probability at least 1 − 1/|F|σ.

Overall, this attack leaks information regarding the value of x because if
x = 0 then the decoder aborts with probability zero, whereas if x �= 0 then the
decoder aborts with probability almost 1. Similar attacks apply to all additively-
correct constructions presented in this paper, thus requiring the transformation
of Sect. 5.

2 Preliminaries

In the following, F will denote a finite field, n usually denotes the input length, k
usually denotes the output length, d, s denote depth and size, respectively (e.g.,
of circuits, as defined below), and m is used to denote the number of parties.
Vectors will be denoted by boldface letters (e.g., a). If D is a distribution then
X ← D, or X ∈R D, denotes sampling X according to the distribution D. Given
two distributions X,Y , SD (X,Y ) denotes the statistical distance between X,Y .

The following lemma regarding k-wise indistinguishable distributions over
{0, 1}n will be used to construct additively-secure circuits.

Lemma 1 (Cf. Claim 3.9 in [1]). Let n, k be positive integers, and X , Y be
k-wise indistinguishable distributions over {0, 1}n. Then

|Pr[(x1, · · · , xn) ← X : ∨n
i=1xi = 1] − Pr[(y1, · · · , yn) ← Y : ∨n

i=1yi = 1]| ≤ 2−Ω(k/
√

n).

Additive Attacks. We follow the terminology of [10].
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Definition 3 (Additive attack). An additive attack A on a circuit C is a
fixed vector of field elements which is independent from the inputs and internal
values of C. A contains an entry for every wire, and every output gate, of C,
and has the following effect on the evaluation of the circuit. For every wire ω
connecting gates a and b in C, the entry of A that corresponds to ω is added
to the output of a, and the computation of the gate b uses the derived value.
Similarly, for every output gate o, the entry of A that corresponds to the wire
in the output of o is added to the value of this output.

Notation 3. For a (possibly randomized) circuit C and for a gate g of C, we
denote by gx the distribution of the output value of g (defined in a natural way)
when C is evaluated on an input x.

Notation 4. Let C be a (possibly randomized) circuit, and A be an additive
attack on C. We denote by Ac,c′ the attack A restricted to the wire connecting
the gates c, c′ of C. Similarly we denote by Aout the restriction of A to all the
outputs of C.3

Encoding Schemes. An encoding scheme E over a set Σ of symbols (called “the
alphabet”) is a pair (Enc,Dec) of algorithms, where the encoding algorithm Enc
is a PPT algorithm that given a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂

for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm,
that given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn. Moreover,
Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. We will assume that when n > 1,
Enc encodes every symbol of x separately, and in particular n̂ (n) = n · n̂ (1).

Parameterized Encoding Schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1t, which
is used as a security parameter. Concretely, the encoding length depends also
on t (and not only on n), i.e., n̂ = n̂ (n, t), and for every t the resultant
scheme is an encoding scheme (in particular, for every x ∈ Σn and every
t ∈ N, Pr [Dec (Enc (x, 1t) , 1t) = x] = 1). We call such schemes parameterized.
We will only consider parameterized encoding schemes, and therefore when we
say “encoding scheme” we mean a parameterized encoding scheme.

Algebraic Manipulation Detection (AMD) Encoding Schemes. Infor-
mally, AMD encoding schemes over a finite field F guarantee that additive
attacks on codewords are detected by the decoder with some non-zero prob-
ability:

Definition 4 (AMD encoding scheme, [3,11]). Let F be a finite field, n ∈ N

be an input length parameter, t ∈ N be a security parameter, and ε (n, t) : N×N →
R

+. An (n, t, ε (n, t))-algebraic manipulation detection (AMD) encoding scheme
(Enc,Dec) over F is an encoding scheme with the following guarantees.

– Perfect completeness. For every x ∈ F
n, Pr [Dec (Enc (x, 1t) , 1t) =

(0,x)] = 1.

3 Note that Ac,c′ is a single field element whereas Aout is a vector of field elements.
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– Additive soundness. For every 0n̂(n,t) �= a ∈ F
n̂(n,t), and every x ∈ F

n,
Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR] ≤ ε (n, t) where ERR = (F\{0}) × F

n, and
the probability is over the randomness of Enc.

Remark 1. It will sometime be useful to represent (Enc,Dec) as families of
arithmetic circuits (instead of polynomial-time algorithms) that are parameter-
ized by the security parameter t. That is, (Enc = {Encn} ,Dec = {Decn}) are
families of arithmetic circuits over F, where Encn : F

n → F
n̂ is randomized,

and Decn : F
n̂ → F × F

n is deterministic. (Here, the security parameter t is
“hard-wired” into the circuits.) Somewhat abusing notation, we use Enc,Dec to
denote both the families of circuits, and the circuits Encn,Decn for a specific n,
omitting the subscript (when n is clear from the context).

We will sometimes need AMD codes with a stronger robustness guarantee
which, roughly speaking, guarantees additive correctness even in the presence of
additive attacks on the internal wires of the encoding procedure, where the ideal
additive attack on the output is independent of the additive attack:

Definition 5 (Robust AMD encoding schemes). Let F be a finite field,
n ∈ N be an input length parameter, n̂ ∈ N be an output length parameter,
t ∈ N be a security parameter, and ε (n, t) : N × N → R

+. We say that an
encoding scheme (Enc,Dec) over F is an (n, n̂, t, ε (n, t))-robust AMD encoding
scheme, if it is an (n, t, ε (n, t))-AMD encoding scheme in which the additive
soundness property is replaced with the following additive robustness property.
Let Enc : F

n → F
n̂, Dec : F

n̂ → F × F
n, then for any additive attack A on Enc

there exists an ideal attack ain ∈ F
n such that for any b ∈ F

n̂, and any x ∈ F
n,

it holds that Pr
[

Dec
(

EncA (x, 1t) + b, 1t
)

/∈ ERR ∪
{(

0,x + ain
)}

]

≤ ε, where
ERR = (F\{0}) × F

n, and the probability is over the randomness of Enc.

Secure Multiparty Computation. We recall a few standard definitions that
will be used in subsequent sections.

We view an MPC protocol π as a collection of NextMSG functions. The
protocol proceeds in rounds, where in round j, the description of π contains a
next message function NextMSGj

i of round j for party Pi, defined as follows.
NextMSGj

i takes as input all the messages mj−1
i that Pi received before round j,

its input xi, and its randomness ri; and outputs the messages that Pi sends in
round j. If j is the last round of π, then for every party Pi, NextMSGj

i outputs
the output of Pi in π.

The Client-Server Model. The client-server model (see [2,4,5] for a more
detailed discussion) is a refinement of the standard MPC model in which each
party has one of two possible roles: clients hold inputs and receive outputs; and
servers have no inputs and receive no outputs, but may participate in the com-
putation. Notice that every protocol in the client-server model can be converted
to a protocol in the standard MPC model by asking every party to emulate a
single server and a single client (assuming the protocol has the same number of
clients and servers). See Fig. 2.
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Fig. 2. MPC protocol with a single client and m servers

In the following, we assume that the protocol consists of a single input client,
a single output client, and mS servers. We call such protocols mS-server proto-
cols. We use the simulation-based paradigm, and say that a protocol π in the
client-server model is (s, ε)-secure ((s, ε)-private) if it is secure (up to distance
ε) against all active (passive) adversaries corrupting at most s servers, and no
clients. We assume that the description of a protocol in the client-server model
consists of the following:

1. Input Encoding. A description of a function InpEnc whose input is the input
of the input client, and whose output is the messages that the input client
sends to the servers.

2. Circuit Evaluation. For every server Si, and every round j, a description
of a function NextMSGj

i which specifies the messages that Si sends to all the
servers (to the output client) in round j (in the last round).

3. Output Decoding. A description of a function OutDec whose input is the
messages sent to the output client (from the servers) in the last round, and
whose output is the output of π.

We will use a relaxed notion of security, which we call correct-only MPC.
Intuitively, it guarantees output correctness even in the presence of an active
adversary that corrupts a “small” subset of the servers. This notion relaxes
the standard security notion because it does not guarantee input privacy. We
formalize correct-only MPC as follows, where for a protocol π, and an adversary
Adv, πAdv(x) denotes the outputs (of the clients) in an execution of π on inputs
x in the presence of Adv.

Definition 6. Let f : X → Y be a function, and π be a single client, mS-server
protocol. We say that π (t, ε)-correctly computes f if for every active adversary
Adv corrupting a set T, |T | ≤ t of servers, and every client input x ∈ X, it holds
that Pr

[

f(x) �= πAdv(x)
]

≤ ε.
We say that π t-correctly computes f if it (t, ε)-correctly computes f for

ε = 0.

Remark 2. Notice that any protocol π for t-correctly computing f in the client-
server model can be assumed to be deterministic without loss of generality. This
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is because the adversary Adv has no effect on the randomness used by the input
clients. Therefore, any π can be de-randomized by fixing its randomness to some
arbitrary value.

Next, we describe a simple replication-based m-server protocol for
(�m/2	 − 1)-correctly computing a function f .

Theorem 5. Let F be a finite field. Then for every arithmetic circuit C : F
n →

F
k, and m ∈ N, there exists an m-server protocol for (�m/2	 − 1)-correctly com-

puting f . Moreover, the computational complexity (in field operations) of π is
|C| · m.

Proof. The input client replicates the input x among all the servers, who
locally compute zi ← C(x) and send zi to the output client, who outputs
maj{z1, · · · , zm}. 
�

We will use the following theorem regarding the existence of correct-only
MPC protocols.

Theorem 6 (Implicit in [6]). Let σ be a security parameter, m ∈ N, F be a
finite field, and C : F

n → F
k be a depth-d arithmetic circuit. Then there exists

a d-round, m-server protocol π that m/10-correctly computes C, where:

– The total circuit size of the input encoding function InpEnc, and the output
decoding function OutDec, is poly(n, k,m).

– The total circuit size of all the NextMSG functions is |C| · polylog(|C|, σ) +
poly(m, d, n, k, log |C|).

– In each round of π, the messages sent by each party contain in total at most
poly(n, k, log |C|) field elements.

3 Circuit Transformations

In this section we describe a few circuit transformations which will be used in
Sects. 4 and 5 to construct additively-correct and additively-secure circuits. At
a high level, these transformations replace a given circuit C over field F with a
new circuit that operates on AMD encodings. We first describe a randomized
gadget that combines and amplifies error flags. This gadget will be used in the
following constructions to combine error flags obtained from AMD decoding of
several codewords.

Construction 1. Let nf ∈ N be an input length parameter, and σ ∈ N be a
security parameter. The flag combining gadget Fcomb : F

nf → F
σ, on input

f1, · · · , fnf
∈ F, operates as follows.

1. Generates nf random vectors r1, · · · , rnf
∈R F

σ.
2. Outputs f ←

∑nf

i=1 ri · fi.

Observation 7. If
(

f1, · · · , fnf

)

�= 0 then Fcomb

(

f1, · · · , fnf

)

�= 0 except with
probability at most 2−σ.
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Next, we describe a circuit transformation Tinter that will be used to replace
intermediate rounds in secure protocols. Intuitively, given a circuit C, the trans-
formed circuit Tinter (C) takes AMD encodings of the inputs of C, decodes them,
uses the flag combining gadget Fcomb of Construction 1 to combine the error flags
generated during decoding, evaluates the circuit C, and outputs AMD encodings
of the output, concatenated with the combined error flag.

Construction 2. Given a circuit C : F
n → F

k, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), the circuit Tinter (C) : F

n̂(n) →
F

σ × F
n̂(k), on input (x1, · · · ,xn), operates as follows.

1. For every 1 ≤ i ≤ n, computes (fi,x′
i) ← Dec(xi).

2. Computes (y1, · · · , yk) ← C(x′
1, · · · ,x′

n).
3. Computes f ← Fcomb (f1, · · · , fn).
4. Outputs (f ,Enc(y1), · · · ,Enc(yk)).

Finally, we describe a circuit transformation Tfin that will be used to replace
the output generation rounds. This transformation differs from the transforma-
tion Tinter of Construction 2 only in the fact that it does not encode the outputs.

Construction 3. Given a circuit C : F
n → F

k, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), the circuit Tfin (C) : F

n̂(n) →
F

σ × F
k, on input (x1, · · · ,xn), operates as follows.

1. Performs Steps 1–3 of Construction 2, and let (y1, · · · , yk), f denote the out-
puts of Steps 2 and 3, respectively.

2. Outputs (f , y1, · · · , yk).

Finally, we will use the following notation.

Notation 8. Given a circuit C : F
n → F

k, and an AMD encoding scheme
(Enc,Dec) that outputs encodings of length n̂ (n), we use (Enc ◦ C) : F

n → F
n̂(k)

to denote the circuit that on input x ∈ F
n, computes (y1, · · · , yk) ← C (x), and

outputs (Enc (y1) , · · · ,Enc (yk)).

4 Efficient Additive Correctness Using Correct-Only
MPC

In this section we construct a 2−σ-additively-correct circuit with polylog(|C|, σ)
overhead. Specifically, for every depth-d arithmetic circuit C : F

n → F
k

we construct a 2−σ-additively correct implementation ̂C, where
∣

∣

∣

̂C
∣

∣

∣ = |C| ·
polylog(|C|, σ) + poly(n, k, d, σ), thus proving Theorem1.

Recall that when ̂C is constructed from a correct-only MPC protocol π then
each attack on ̂C can be divided into three “parts”. The first “part” attacks
connecting wires between sub-circuits of ̂C (these sub-circuits are InpEnc,OutDec
and NextMSG), and we protect against such attacks by having these sub-circuits
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operate on AMD codewords. The second “part” attacks the NextMSG functions,
and we protect against such attacks by replacing NextMSG with its ε-additively
correct implementation. Thus, every such attack either affects only few NextMSG
functions, in which case the correctness of π guarantees that it does not affect
the outputs; or it affects many NextMSG functions, in which case ε-additive
correctness guarantees that (except with negligible probability) the attack is
either detected, or corresponds to an additive attack on the inputs and outputs
of NextMSG. (Additive attacks on the inputs and outputs correspond to the
first type of attacks, namely attacks on the connecting wires, which are detected
by the AMD encoding scheme.) The third and final “part” attacks the clients,
and we protect against such attacks by replacing InpEnc,OutDec with their 2−σ-
additively-correct implementations (e.g., Construction 9 and AppendixA). This
is formalized in the following construction, and described in Fig. 3.

Construction 4. Let F be a finite field, C : F
n → F

k be an arithmetic circuit
over F, σ be a security parameter, and π be a d-round, σ-correct m-server protocol
for computing C using only point-to-point channels. We assume (without loss of
generality) that every message sent in π consists of exactly s field elements, for
some s ∈ N. Let (Enc,Dec) be an (s, σ, 2−σ)-AMD encoding scheme that outputs
encodings of length n̂ (s). The circuit ̂C will use the following ingredients.

1. Input Encoding. Let h denote the number of messages sent by the input
client in the first round, namely InpEnc : F

n → (Fs)h. Let ̂InpEnc : F
n →

F
t′ ×

(

F
n̂(s)

)h
denote the 2−σ-additively correct implementation, with t′ flags,

of the circuit (Enc ◦ InpEnc) : F
n →

(

F
n̂(s)

)h
(as defined in Notation 8).

2. Message Generation. For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1, let g (h)
denote the number of messages received (sent) by the i’th server in round j−1

(j).4 That is, NextMSGj
i : (Fs)g → (Fs)h. Let ̂NextMSGj

i :
(

F
n̂(s)

)g → F
t ×

F
σ ×

(

F
n̂(s)

)h
denote the ε-additively correct implementation, with t flags, of

the circuit Tinter

(

NextMSGj
i

)

:
(

F
n̂(s)

)g → F
σ×

(

F
n̂(s)

)h
(see Construction 2).

3. Output Generation. Let g denote the number of messages received by
the output client in the final round, namely OutDec : (Fs)g → F

k. Let
ÔutDec :

(

F
n̂(s)

)g → F
t′′ × F

σ × F
k denote the 2−σ-additively correct imple-

mentation, with t′′ flags, of the circuit Tfin (OutDec) :
(

F
n̂(s)

)g → F
σ ×F

k (see
Construction 3).

4. Circuit Construction. The circuit ̂C, on input x ∈ F
n:

(a) Emulates π, with x as the input of the client, and where ̂InpEnc, ̂NextMSGj
i

and ÔutDec of Steps 1–3 above (connected in the natural way) replace
InpEnc, NextMSGj

i and OutDec. That is, for every round 1 ≤ j ≤ d, if
server Si sends a message to server Si′ , then the corresponding output

of ̂NextMSGj
i is wired to the corresponding input of ̂NextMSGj+1

i′ . Denote
the output of the client in the above execution by z.

4 We assume each server transfers its internal state from one round to the next by
sending a message to itself.
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Fig. 3. Components of Construction 4

(b) For every 1 ≤ i ≤ m, and every 1 ≤ j ≤ d, let f ′j
i,1, · · · , f ′j

i,t be the

first t outputs of ̂NextMSGj
i , and let f j

i,1, · · · , f j
i,σ be the next σ outputs of

̂NextMSGj
i . (The f ′j

i,w’s are the flags of the ε-correct implementation, and
the f j

i,w’s are the flags generated during the AMD decoding.)

(c) Let f ′1
1 , · · · , f ′1

t′ be the first t′ outputs of ̂InpEnc. (These are the flags of
the 2−σ-correct implementation.)

(d) Let f ′d
1 , · · · , f ′d

t′′ be the first t′′ outputs of ÔutDec and let fd
1 , · · · , fd

σ be
the next σ outputs of ÔutDec. (The f ′d

i ’s are the flags of the 2−σ-correct
implementation, and the fd

i ’s are the flags generated during the AMD
decoding.)

(e) For every 1 ≤ w′ ≤ σ, compute f ′′
w′ ←

∑m
i=1

∑d−1
j=2

(

∑t
w=1 f ′j

i,w·

ri,j,w,w′ +
∑σ

w=1 f j
i,w · ri,j,t+w,w′

)

+
∑t′′

w=1 f ′d
w · r1,d,w,w′ +

∑σ
w=1 fd

w ·

r1,d,t+w,w′ +
∑t′′

w=1 f ′1
w · r1,1,w,w′ where ri,j,w,w′ ∈R F.

(f) Output z +
∑σ

w=1 f ′′
w · r′

w where r′
w ∈R F

k.

We now analyze the properties of Construction 4. The following notation will
be useful.

Notation 9. We denote the ingredients of Construction 4 as follows.

– We use InpEnc′ to denote the circuit (Enc ◦ InpEnc) obtained in Step 1.
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– For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1, we use NextMSG′j
i to denote the

circuit Tinter

(

NextMSGj
i

)

obtained in Step 2.

– We use OutDec′ to denote the circuit Tfin (OutDec) obtained in Step 3.

The next theorem shows that Construction 4 produces a 2−Ω(σ)-additively-
correct implementation.

Theorem 10. Let σ be a security parameter, C : F
n → F

k be an arithmetic
circuit, and π be an m-party, d-round protocol for (σ, 2−σ)-correctly computing
C. Then the circuit ̂C obtained by applying Construction 4 to C is a 2−Ω(σ)-
additively-correct implementation of C.

Proof. The completeness property of ̂C immediately follows from Construction 4,
the correctness of π, and the perfect completeness of the underlying AMD code.
We now proceed to proving additive correctness. Let A be an additive attack
on ̂C, and let Aout denote the attacks on the outputs of ̂C as specified by A. Let
AInpEnc, AOutDec denote the restrictions of A to the wires of ̂InpEnc and ÔutDec
respectively. Additionally, for every 1 ≤ i ≤ m and every 2 ≤ j ≤ d − 1 let

Aj
i denote the restriction of A to ̂NextMSGj

i . Let (ain,1,aout,1) and (ain,d,aout,d)
be the ideal additive attacks on the inputs and outputs of ̂InpEnc and ÔutDec
corresponding to AInpEnc, AOutDec. Similarly, for every 1 ≤ i ≤ m and every
2 ≤ j ≤ d − 1, let ain,j

i , and aout,j
i be the ideal additive attacks on the inputs

and outputs of ̂NextMSGj
i corresponding to Aj

i . Define ain = ain,1 and aout =
aout,d + Aout. We claim that for every input x it holds that

Pr[̂CA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] ≤ 2−Ω(σ)

where ERR = (Fσ\{0σ}) × F
k.

Indeed, let x ∈ F
n be an input to ̂C, and define Pbad as the event that

̂CA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}, namely

Pr[̂CA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] = Pr [Pbad] .

Next, denote by Pf the event that

m
∧

i=1

d−1
∧

j=2

t
∧

w=1

(f ′jA
i,w,x = f jA

i,w,x = 0)
∧

t′
∧

w=1

f ′1
w = 0

∧

t′′
∧

w=1

f ′d
w = 0.

Notice that by construction of ̂C we obtain that

Pr[̂CA(x) /∈ ERR ∪ {(0σ, C(x + ain) + aout)}] ≤ 2−Ω(σ) + Pr [Pbad ∧ Pf ] .

We proceed by defining the event P 1,1
OK as ̂InpEnc

A
(x) ∈ ERR ∪ {InpEnc(x +

ain,1)+aout,1} and P d,d
OK as ÔutDec

A
(yA

x ) ∈ ERR∪{OutDec(yA
x +ain,d)+aout,d},
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where yA
x is the random variable corresponding to the messages received by the

client from the servers during the last round of π inside ̂CA(x). We notice that
by the 2−σ-correctness of ̂InpEnc and ÔutDec it holds that

Pr [Pbad ∧ Pf ] ≤ 2−Ω(σ) + Pr
[

Pbad ∧ Pf ∧ P 1,1
OK ∧ P d,d

OK

]

.

Next, for every round 2 ≤ j ≤ d − 1 and party 1 ≤ i ≤ m, denote by Inj
i

the set of servers which send messages to the ith server during the jth round,

and denote by ain,j
i,i′ the ideal additive attacks on the inputs of ̂NextMSGj

i which
correspond to the message received by server i from server i′ during the jth
round. Similarly, denote by Outji the set of servers to which the ith server sends
messages during the jth round, and denote by aout,j

i,i′ the ideal additive attacks

on the outputs of ̂NextMSGj
i which correspond to the message sent by server i to

server i′ during the jth round. In addition, we assume without loss of generality
that the client sends a message to all the servers during the first round, and
receives a message from all the servers during the last round. Finally, for every
server 1 ≤ i ≤ m, we denote by aout,1

i the restriction of aout,1 to the messages
that the client sends to the ith server during the first round and by ain,d

i the
restriction of ain,d to the messages that the client receives from the ith server
during the dth round. Finally, we denote by ain,2

i the messages received by the
ith server from the client, and we denote by aout,d−1

i′ the messages sent by the
i′th server to the client.

For any 1 ≤ i, i′ ≤ m and 2 ≤ j ≤ d − 1, we say that a tuple (i′, i, j) is
problematic if one of the following three conditions hold.

1. Input Corruption. It holds that ain,2
i + aout,1

i �= 0 and i′ = j = 1.
2. Intermediate Corruption. It holds that ain,j

i,i′ + aout,j−1
i′,i �= 0.

3. Output Corruption. It holds that aout,d−1
i′ + ain,d

i′ �= 0 and i = j = d.

Next, we define the set A = {(i′, i, j) : the tuple (i′, i, j) is problematic} and we
split the proof into two cases.

– Case 1: |A| > σ. Intuitively, in this case a large portion of ̂C was corrupted.
We show that in this case ̂C will almost always abort the computation by
setting at least one of the flags to a non zero value, namely the probability of
an incorrect output (i.e., not in ERR ∪ {(0σ, C(x + ain) + aout)}) is low.
We denote the random variables describing the messages exchanged during the
evaluation of ̂CA on input x as follows: for every 1 ≤ i ≤ m and 2 ≤ j ≤ d−2,
ŷA,j

i,i′,x corresponds to the message sent by the ith server to the i′th server in
round j; ŷA,1

i,x corresponds to the messages sent by the client to the ith server
in the first round; and ŷA,d−1

i,x corresponds to the message sent by the ith
server to the client in round d − 1.
Next, for any 1 ≤ i ≤ m and 2 ≤ j ≤ d − 1 denote

by P i,j
OK the event that ̂NextMSGA,j

i

(

(

ŷA,j−1
i′,i,x

)

i′∈Inj
i

)

is in ERR ∪
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{(

0t,NextMSG′j
i

(

(

ŷA,j−1
i′,i,x

)

i′∈Inj
i

+ ain,j
i

)

+ aout,j
i

)}

, where ERR =

({F
t}\{0t}) × F

oj
i , and oj

i is the output length of NextMSG′j
i .

Next, notice that for every tuple (i′, i, j) the randomness of ̂NextMSGA,j
i

is independent from the randomness of ̂NextMSGA,j−1
i′ . Thus, it holds

that Pr
[

P i′,j−1
OK ∧ P i,j

OK

]

≥ (1 − ε)2, yielding Pr
[

P i′,j−1
OK ∧ P i,j

OK

]

≤ 1 −
(1 − ε)2. Next, across all the problematic tuples in A we obtain that
Pr

[

Pbad ∧ Pf ∧ P 1,1
OK ∧ P d,d

OK

]

is at most

(

1 − (1 − ε)2
)σ

+ Pr

[

Pbad ∧ Pf ∧ P 1,1
OK ∧ P d,d

OK ∧
(

∃(i′, i, j) ∈ A : (P i′,j−1
OK ∧ P i,j

OK)
)

]

.

Finally, the fact that P i′,j−1
OK ∧ P i,j

OK for some problematic tuple (i′, i, j) ∈ A
implies that there is a non-zero additive attack on the wires between server i′

(or the client in case j = 1) and server i (again, or the client in case j = d)
during the jth round. Thus, by the additive soundness of (Enc,Dec) we obtain
that except with probability 2−σ, (f j

i,1, · · · , f j
i,σ) �= 0, namely Pf does not

hold. Consequently,

Pr

[

Pbad ∧ Pf ∧ P 1,1
OK ∧ P d,d

OK ∧
(

∃(i′, i, j) ∈ A : (P i′,j−1
OK ∧ P i,j

OK)
)

]

≤ 2−Ω(σ).

– Case 2: |A| ≤ σ. Notice that having less than σ problematic tuples implies
that for the protocol π inside ̂C, the additive attack A only corrupted less than
σ parties. In this case we get that except with probability 2−σ, the protocol
π manages to correctly compute C. Thus, in this case

Pr
[

Pbad ∧ Pf ∧ P 1,1
OK ∧ P d,d

OK

]

≤ 2−Ω(σ). 
�

We show that for an appropriate choice of parameters, Construction 4 is a
2−σ-additively correct implementation. This is formalized in the next Theorem.

Theorem 11. For any depth-d arithmetic circuit C : F
n → F

k, and any secu-
rity parameter σ, there exists a 2−Ω(σ)-additively-correct implementation ̂C of C
where |̂C| = |C| · polylog(|C|, σ) + poly(n, k, d, σ).

We first state several results regarding AMD encoding schemes, which will be
used in the proof.

Asymptotically optimal constructions of AMD encoding schemes have been
presented by [3,8]. In fact, [3] consider a slightly weaker definition of AMD
codes which guarantees that Pr[Dec(Enc(x) + a) /∈ ERR∪ {(0,x)}] ≤ ε, allowing
for ERR on some inputs and correct output on others (see Definition 7 below).
However, their construction actually possesses the stronger security property of
Definition 4.
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Theorem 12 (Implicit in [3], Corollary 1). For any n, σ ∈ N, and field F,
there exists a pair of families of circuits (Enc,Dec) over F that is an (n, σ, 1

|F|σ )-
AMD encoding scheme with encodings of length n+σ. Moreover, the size of Enc
and Dec is ˜O(n + σ).

Theorem 13 (Implicit in [10]). There exists a constant ε ∈ (0, 1) such that
for any field F and arithmetic circuit C : F

n → F
k there exist a circuit ̂C :

F
n → F × F

k which is an ε-additively-correct implementation of C. Moreover,
∣

∣

∣

̂C
∣

∣

∣ = O (|C|).

Proof (of Theorem11). Apply Construction 4 to C using an AMD code of The-
orem 12, the ε-additively-correct construction from Theorem13 and the σ-server
protocol π from Theorem 6. To obtain the 2−σ-additively-correct implementa-
tion of ̂InpEnc and ÔutDec used in Steps 1 and 3 of Construction 4, we use an
additively-correct circuit compiler CompIn that on input a circuit C outputs a
circuit ̂C such that

∣

∣

∣

̂C
∣

∣

∣ = σ · |C| (e.g., Construction 9 of AppendixA). Since

π (σ/10)-correctly computes C we obtain that ̂C is a 2−Ω(σ)-additively-correct
implementation of C.

Next, we proceed to analyze the size of ̂C. By the construction of ̂C we have

that |̂C| = | ̂InpEnc| + |ÔutDec| +
∑σ

i=1

∑d
j=1 | ̂NextMSGj

i |. From Theorem 6 we
obtain that |InpEnc| + |OutDec| is poly(n, k, σ). Thus, when InpEnc and OutDec

are implemented using Construction 9 (AppendixA, | ̂InpEnc| + |ÔutDec| is also

poly(n, k, σ). We now proceed to analyze
∑σ

i=1

∑d
j=1 | ̂NextMSGj

i |.
We begin by noticing that in each round of π, each server sends messages

containing a total of poly(n, k, log |C|) field elements. Thus, by having NextMSG′

encode every message sent during the execution of π with the AMD codes from
Theorem 12 we obtain that the circuit size of every NextMSG′ function increases
by an additive term which is poly(n, k, log |C|, σ) compared to NextMSG. Next,
since the overall circuit size of all the NextMSG functions is |C| ·polylog(|C|, σ)+
poly(σ, d, n, k, log |C|) and since | ̂NextMSG| = O(NextMSG′) we obtain that the
total circuit size of all the ̂NextMSG circuits inside ̂C is also |C| ·polylog(|C|, σ)+
poly(σ, d, n, k, log |C|). 
�

Remark 3. The proof of Theorem11 uses an ad-hoc “feasibility” construction
to achieve polylog (σ) overhead. However, it is possible to improve the sim-
plicity, and concrete efficiency, of the construction by replacing the feasibility
construction with simpler gadgets implementing the input encoder and output
decoder. We now outline a more direct construction (which matches the com-
plexity of Theorem11). We begin by observing that for the protocol of Theo-
rem6, we can assume (without loss of generality) that InpEnc(x) = (x, · · · ,x),
and OutDec(y1, · · · ,ym) outputs (0σ,y1) if y1 = · · · = ym, otherwise it out-
puts a random value in (Fσ\{0σ})×F

k. Next, we implement ̂InpEnc and ÔutDec
directly using the following simple gadgets.
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– Implementing ̂InpEnc. We define ̂InpEnc(x) = (Enc(x), · · · ,Enc(x)), where
Enc is the encoding procedure of a 2−σ-robust AMD code (as in Definition 5).
The stronger robustness property guarantees the existence of a single consis-
tent value such that (with high probability) every server either decodes to it,
or aborts.

– Implementing ÔutDec. We modify each server to compute a MAC value of
its outputs. In addition, C is evaluated in the clear: z ← C(x), and the output
z is MACed to obtain z̃. Finally, ÔutDec contains a gadget that compares all
MACed outputs of the servers to z̃, and outputs z if the test passes, otherwise
it outputs ERR.5

5 From Additive Correctness to Additive Security via
Passive-Secure MPC

In this section we combine additively-correct circuits with passive-secure MPC
protocols to construct binary additively-secure circuits with a negligible error,
thus proving Theorem2.

Recall that (as described in Sect. 1.1.2) we construct the additively-secure
implementation ̂C of C from a passive-secure MPC protocol π. More specifically,
the inputs of parties in π are additive secret-shares of the input of C, and π
evaluates the function that: (1) reconstructs the input from the secret shares;
(2) evaluates C; and (3) outputs an additive secret-sharing of the output.

Consequently, every additive attack on ̂C can be divided into two “parts”.
The first “part” targets the wires connecting different sub-circuits NextMSG of
̂C, and we protect against such attacks by having these sub-circuits operate
on AMD codewords. The second “part” modifies the internal computations of
the NextMSG functions, and we protect against such attacks by replacing each
NextMSG with its 2−σ-additively-correct implementation. Thus, the resultant ̂C
is a 2−Ω(σ)-additively correct implementation of C, where every attack is with
overwhelming probability either “harmless” (namely, corresponds to an additive
attack on the inputs and output of C), or causes the output to be random.
Moreover, as we argued in Sect. 1.1.2, the probability that the output is random
is independent of the inputs.

We start by defining the circuit CAUG, which implements the functionality
computed by π (namely, emulates C on secret shares).

Construction 5. Let C : F
n → F

k be an arithmetic circuit, and m ∈ N. The
circuit CAUG, on inputs (x1, · · · ,xm) ∈ (Fn)m, performs the following.

1. Computes x ←
∑m

i=1 xi, and y ← C(x). (This step reconstructs the input to
C from the secret shares, and evaluates C.)

5 To implement ÔutDec without leaking information regarding the outputs of C, we
compare only the MAC tags generated by the servers (and not the actual outputs).
This necessitates an additional evaluation of C (in the clear) to generate the output.
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2. Generates y1, · · · ,ym−1 ∈ F
n uniformly at random, and compute ym ←

y −
∑m−1

i=1 yi. (y1, · · · ,ym is an additive secret sharing of the output y.)
3. Outputs (y1, · · · ,ym).

Next, we use CAUG to construct the circuit ̂C, see also Fig. 4.

Construction 6. Let C : F
n → F

k be an arithmetic circuit over a finite field
F, σ be a security parameter, and π be a d-round, t-private, m-party protocol for
computing the circuit CAUG of Construction 5, using only point-to-point channels.
We assume (without loss of generality) that every message sent in π consists of
exactly s field elements, for some s ∈ N. Let (Enc,Dec) be an (s, σ, 2−σ)-AMD
encoding scheme that outputs encodings of length n̂ (s), and Dec outputs σ flags
during decoding. The circuit ̂C will use the following ingredients.

1. Protecting the first round. For every 1 ≤ i ≤ m, assume that party Pi

sends h messages in the first round, namely NextMSG1
i : F

n → (Fs)h. Let
̂NextMSG1

i : F
n → F

t ×
(

F
n̂(s)

)h
be the 2−σ-additively correct implemen-

tation, with t flags, of the circuit
(

Enc ◦ NextMSG1
i

)

: F
n →

(

F
n̂(s)

)h
(see

Construction 3).
2. Protecting middle rounds. For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d − 1,

assume that in round j − 1 (j) Pi receives (sends) g (h) messages, namely

NextMSGj
i : (Fs)g → (Fs)h. Let ̂NextMSGj

i :
(

F
n̂(s)

)g → F
t × F

σ ×
(

F
n̂(s)

)h

be the 2−σ-additively correct implementation, with t flags, of the circuit
Tinter

(

NextMSGj
i

)

:
(

F
n̂(s)

)g → F
σ ×

(

F
n̂(s)

)h
(see Construction 2).

3. Protecting the last round. For every 1 ≤ i ≤ m assume that Pi receives g

messages in the final round, namely NextMSGd
i : (Fs)g → F

k. Let ̂NextMSGd
i :

(

F
n̂(s)

)g → F
t × F

σ × F
k be the 2−σ-additively correct implementation, with

t flags, of the circuit Tfin

(

NextMSGd
i

)

:
(

F
n̂(s)

)g → F
t × F

k (see Construc-
tion 3).

4. Circuit construction. The circuit ̂C on input x performs the following.
(a) Generate x1, · · · ,xm−1 ∈ F

n uniformly at random and compute xm ←
x −

∑m−1
i=1 xi.

(b) Emulates π with xi as the input of party Pi, where the ̂NextMSGj
i described

in Steps Steps 1–3 (connected in the natural way) replace the NextMSGj
i .

That it, for every round 1 ≤ j ≤ d−1, if party Pi sends a message to party

Pi′ , we wire the corresponding output of ̂NextMSGj
i to the corresponding

input of ̂NextMSGj+1
i′ .

(c) Let zi denote Pi’s output in the above execution. Compute z ←
∑m

i=1 zi.
(d) For every 1 ≤ i ≤ m, and 2 ≤ j ≤ d, let f ′j

i,1, · · · , f ′j
i,t denote the first t

outputs of ̂NextMSGj
i , and f j

i,1, · · · , f j
i,σ denote the t+1 to t+σ outputs of

̂NextMSGj
i . (The f ′j

i,w’s are the flags of the 2−σ-correct implementation,
and the f j

i,w’s are the flags generated during the AMD decoding.)
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Fig. 4. Components of Construction 6

(e) For every 1 ≤ i ≤ m let f ′d
i,1, · · · , f ′d

i,t denote the first t outputs of
̂NextMSG1

i . (These are the flags of the 2−σ-correct implementation.)
(f) For every 1 ≤ w′ ≤ σ, compute f ′′

w′ ←
∑m

i=1

∑d
j=2

(

∑t
w=1 f ′j

i,w · ri,j,w +
∑σ

w=1 f j
i,w · rt+i,j,w

)

+
∑m

i=1

∑t
w=1 f ′1

i,w·ri,d,w, where
ri,j,w ∈R F.

(g) Output z +
∑m

w=1 f ′′
w · r′

w, where r′
w ∈R F

k.

We show that any additive attack on ̂C is either equivalent to an additive
attack on the inputs and output of C, or will sets flags inside ̂C to non-zero
values. Moreover, the probability that a flag is set depends only on the additive
attack, and is almost independent of the input. This is captured by the next
theorem.

Theorem 14. For any depth-d arithmetic circuit C : F
n → F

k, and security
parameter σ, there exists a 2−Ω(σ)-additively-secure implementation ̂C of C,
where |̂C| = |C| · polylog(|C|, σ)+ poly(n, k, d, σ). Moreover, ̂C can be constructed
from C in poly (|C|, σ,m) time.

The proof of Theorem14, which follows the outline presented in Sect. 1.1.2,
is deferred to the full version. Here, we only outline the main points and subtle
issues in the proof. We first show that with overwhelming probability any addi-
tive attack on ̂C either sets error flags in ̂C, or is equivalent to an additive attack
on its inputs and output. This is proved in two steps: first, using the additive

correctness property of the ̂NextMSGj
i sub-circuits, except with negligible proba-

bility additive attacks on the internal wires of every ̂NextMSGj
i can be “pushed”
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to an additive attack on its inputs and outputs. Second, we examine the additive

attacks obtained in this manner between every pair of adjacent ̂NextMSGj−1
i′ and

̂NextMSGj
i sub-circuits. If all these attacks cancel out, then the output of ̂C is

correct. Otherwise, the additive-security property of the AMD code protecting
the communication channels between the ̂NextMSG sub-circuits guarantees that
with overwhelming probability an error flag will be set, causing ̂C to abort.

Next, we prove that the probability of abort is almost independent of the

inputs of ̂C. As before, we first “push” additive attacks on the ̂NextMSGj
i sub-

circuits to additive attacks on their inputs and outputs. We then traverse the
layers of ̂C from the inputs to the output. In each layer j, a flag can be raised

either by a ̂NextMSGj
i sub-circuit (which corresponds to the computation per-

formed by a single party Pi), or by the AMD decoding performed in ̂NextMSGj
i .

In either case, the event that a flag is set depends only on the view of Pi which,
by the t-privacy of π (and of the additive secret sharing of the input), guarantees
that the distributions of the flags when evaluating ̂C on two different inputs x,x′

are t-wise indistinguishable. Since a single set flag suffices to cause an abort, the
“OR lemma” (Lemma 1) guarantees that the probability of abort is independent
of the inputs to ̂C.

6 Constant-Overhead AMD Codes and Their
Applications to Constant-Overhead MPC

In this section we use AMD codes to relate the open question of construct-
ing actively-secure two-party protocols with constant computational overhead
to the simpler questions of constructing passively-secure honest-majority MPC
protocols, and correct-only honest-majority MPC protocols, with constant com-
putational overhead. This is done by combining our constructions from Sects. 4
and 5 with a (relaxed) AMD encoding scheme that has constant overhead.

More formally, we say that a secure implementation of a circuit C (e.g.,
an additively-secure implementation of C, or a secure protocol for evaluat-
ing C) has constant computational overhead if its circuit size is O(|C|) +
poly(log |C|, σ, d, n, k) where σ is the security parameter, d is the circuit depth,
and n, k are the input and output lengths, respectively. (The circuit size of a
protocol π is the total circuit size of all the NextMSG functions of π.)

We first construct relaxed AMD encoding schemes with constant overhead,
namely the size of the encoding and decoding circuits is linear in the mes-
sage length. At a high level, relaxed AMD encoding schemes, first considered
by [3], have a weaker soundness guarantee: as long as the output is correct with
high probability, (non-zero) additive attacks are allowed to pass unnoticed. This
should be contrasted with (standard) AMD codes, in which every additive attack
is guaranteed to be detected (with high probability).
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Definition 7 (Relaxed AMD encoding scheme [3]). Let F be a finite field,
n ∈ N be an input length parameter, t ∈ N be a security parameter, and ε (n, t) :
N × N → R

+. An (n, t, ε (n, t))-relaxed AMD encoding scheme (Enc,Dec) over F

is an encoding scheme with the following properties.

– Perfect completeness. For every x ∈ F
n,

Pr [Dec (Enc (x, 1t) , 1t) = (0,x)] = 1.
– Relaxed additive soundness. For every 0n̂(n,t) �= a ∈ F

n̂(n,t), and every
x ∈ F

n, Pr [Dec (Enc (x, 1t) + a, 1t) /∈ ERR ∪ {(0,x)}] ≤ ε (n, t) where ERR =
(F\{0}) × F

n, and the probability is over the randomness of Enc.

Roughly speaking, we construct a constant-overhead AMD encoding scheme
by composing a linearly encodable and decodable AMD encoding scheme with
constant additive soundness, with a linearly encodable error-correcting code with
constant rate and relative distance. We will need the following notion of an
[n, k, d]-error-correcting code.

Definition 8. We say that a pair (Enc : F
k → F

n,Dec : F
n → F

k) of determin-
istic circuits is an [n, k, d]-error-correcting code (ECC) over F if any x,y ∈ F

k it
holds that Pr [Dec(Enc(x)) = x] = 1 and that |{i : (Enc(x))i �= (Enc(y))i}| ≥ d.

The following theorem is due to Spielman [19] (see also [9]):

Theorem 15. There exist constants d1 > 1, and d2 > 0, such that for any
field F, and any k ∈ N, there exists a pair of circuits (Enck,Deck) which is a
[�d1k�, k, �d2k	]-ECC over F. Moreover, the size of Enck is O(k).

We can now construct an AMD encoding scheme with constant overhead.

Construction 7. Let n be a positive integer, F be a finite field, and (Encn,Decn)
be an [n′, n, d]-ECC over F. In addition, let (Encamd : F → F

k,Decamd : F
k →

F × F be a (1, t, ε(t))-AMD encoding scheme. Consider the circuits Enc : F
n →

F
n+k·n′

and Dec : F
n+k·n′ → F × F

n which are defined as follows.

– The circuit Enc on input x ∈ F
n performs the following:

1. Computes x′ ← Encn(x) and for all 1 ≤ i ≤ n′ computes x̂i ←
Encamd(x′

i).
2. Outputs (x, x̂).

– The circuit Dec on input (x, x̂) performs the following:
1. Computes x′ ← Encn(x).
2. For all 1 ≤ i ≤ n′ computes (fi, y

′
i) ← Decamd(x̂i) and f ′

i ← x′
i − y′

i.
3. In case there exists an 1 ≤ i ≤ n′ such that fi �= 0 or f ′

i �= 0, outputs
(1, 0n). Otherwise, outputs (0,x).

Theorem 16. For any positive integer n, the pair of circuits Enc,Dec of Con-
struction 7 is an (n, t, ε(t)d)-relaxed AMD encoding scheme.

Proof. The correctness property follows directly from the construction. We now
prove the relaxed additive soundness property. Let x ∈ F

n be an input to Enc,
and A = (a,b) ∈ F

n × F
kn′

be an additive attack on the outputs of Enc. We
consider two possible cases.
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1. a = 0. In this case, the additive attack does not attempt to alter the
value x passed from Enc to Dec, so
Pr [Dec (Enc (x, 1t) + (a,b), 1t) /∈ ERR ∪ {(0,x)}] = 0.

2. ai �= 0 for some 1 ≤ i ≤ n. In this case, let I =
{i : (Encn(x + a))i �= (Encn(x))i}. For an additive attack to successfully
cause Dec to output some x̃ �= x, it must be the case that x′A

i =
y′A

i for every i ∈ I, where x′A
i = (Encn(x + a))i, and y′A

i =
Decamd(x̂i + bi) = Decamd ((Encamd((Encn(x))i)) + bi) (the right equality
follows from the definition of x̂). For every i ∈ I, if bi = 0 then by
the correctness of (Encamd,Decamd), Decamd (Encamd((Encn(x)i)) + bi) =
Decamd (Encamd((Encn(x))i)) = (Encn(x))i �= (Encn(x + a))i (the right-
most equality holds since i ∈ I), so Dec outputs ERR (with prob-
ability 1); otherwise the additive soundness of (Encamd,Decamd) guar-
antees that fi �= 0 only with probability ε(t). Moreover, the relative
distance property of the ECC guarantees that |I| ≥ d. Consequently,
Pr [Dec (Enc (x, 1t) + (a,b), 1t) /∈ ERR ∪ {(0,x)}] ≤ ε(t)d. 
�

Instantiating Construction 7 with the ECC of Theorem 15, we obtain the
following result.

Theorem 17. For any positive integer n there exists an (n, t, 2−Ω(n))-relaxed
AMD encoding scheme with encoding and decoding circuits of size Θ(n).

Theorem 17 can be used to relate the open question of constructing actively-
secure two-party protocols with constant computational overhead to the sim-
pler questions of constructing passively-secure honest-majority MPC protocols,
and correct-only honest-majority MPC protocols, with constant computational
overhead. We first show that actively secure 2-party MPC protocols in the OT-
hybrid model, with constant computational overhead, can be constructed from
additively-secure circuits with constant computational overhead. Formally,

Claim 18. Assume that any boolean circuit C admits an additively-secure
implementation ̂C with constant computational overhead. Then there exists an
actively secure 2-party protocol π for evaluating cC in the OT-hybrid model with
constant computational overhead.

Proof (sketch). The work of [11] observed that the effect of an active attack on an
arithmetic version of the passively-secure GMW protocol [12] πGMW (in the OLE-
hybrid model) corresponds to an additive attack on the underlaying circuit being
evaluated. This observation holds in the binary case as well (where π′ is executed
in the OT-hybrid model). Thus, given an additively-secure implementation ̂C of
C with constant computational overhead, one can construct an actively secure
2-party protocol π for evaluating C in the OT-hybrid model, with constant
computational overhead, simply by running πGMW on ̂C. 
�

The following corollary reduces the task of constructing actively-secure 2-
party protocols in the OT-hybrid model, with constant computational overhead,
to the following simpler tasks:
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1. Constructing passively-secure 2-party protocols in the OT-hybrid model with
constant computational overhead.

2. Constructing correct-only (as per Definition 6) 2-party protocols in the OT-
hybrid model with constant computational overhead.

Corollary 1. If there exist both correct-only MPC protocols, and passively
secure MPC protocols, with constant computational overhead, then there is a
secure 2-party protocol in the OT-hybrid model with constant computational over-
head.

Proof (sketch). Let π1, π2 be correct-only, and passively secure, protocols (resp.)
with constant computational overhead. The protocol π for evaluating a circuit
C is obtained by applying Claim18 to the circuit ̂Csec constructed below.
1. Construct an additively-correct implementation ̂Ccorr of C (as per Defini-

tion 1) with constant computational overhead using π1, Construction 4, and
the relaxed AMD codes of Theorem 17.

2. Construct an additively-secure implementation ̂Csec of C (as per Definition 2)
with constant computational overhead using π2, Construction 6, and the
relaxed AMD codes of Theorem 17.

By repeating the analysis of Constructions 4 and 6 while replacing the protocol
from [6] with π1, π2, we obtain that π has constant computational overhead.
Regarding the security of π, the only difference from the analysis in Sects. 4 and 5
is that π employs a relaxed AMD encoding scheme (whereas Constructions 4 and
6 used (standard) AMD encoding schemes). However, since AMD codes are used
in these constructions only to protect the communication channels of π1, π2, then
relaxed additive soundness suffices for the analysis since it guarantees that no
attack can alter the values of these messages. 
�
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A Additive Correctness Without a Decoder: Feasibility

In this section we construct a 2−Ω(σ) additively-correct circuit compiler CompIn

which on input a circuit C outputs a circuit ̂C such that
∣

∣

∣

̂C
∣

∣

∣ = σ · |C|.
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We present a method of amplifying security of additively-correct construc-
tions through repetition. The natural approach is for the compiled circuit ̂C
to contain σ copies of an ε-additively-correct implementation ̂Cε that are all
evaluated on the input x. This approach raises two issues. First, an additive
attack A on ̂C consists of σ additive attacks A1, · · · ,Aσ on the σ copies of ̂Cε.
For each copy ̂Cε,i, the additive-security of ̂Cε guarantees that there exists an
“ideal” additive attack on the inputs and outputs of ̂Cε,i such that except with
probability ε, the output of ̂Cε,i under the additive attack Ai equals its output
under the corresponding ideal additive attack. However, if different copies are
evaluated under different additive attacks then the corresponding ideal additive
attacks may also be different. This in effect causes different copies to be evalu-
ated on different inputs. To overcome this, before compiling C we first modify it
to take inputs encoded using a robust AMD encoding scheme. Since such codes
guarantee additive correctness with an ideal additive attack that is independent
of the additive attack on the outputs of the encoder, this guarantees the exis-
tence of a single additive attack that simultaneously corresponds to the additive
attacks on all copies.

The second issue is that ̂C should verify that all copies have the same output,
and this should be performed in the presence of additive attacks. Therefore,
before compiling C we first transform it into a circuit that MACs its output.
Thus, the test comparing the MACs of two inconsistent outputs will fail, even if
it is performed under an additive attack. These alterations of C are summarized
in the following construction of CAUG.

Construction 8 (CAUG, CMAC). Let C : F
n → F

k be an arithmetic circuit over
a finite field F, σ ∈ N be a length parameter, and (Enc,Dec) be an (n+σ, l, σ, ε)-
robust AMD encoding scheme (as in Definition 5). The circuit CAUG : F

l →
F

σ × F
k × (Fσ)k, on input x′ ∈ F

l, performs the following.

1. Compute (f, (u,x)) ← Dec(x′), where f ∈ F, u = (u1, · · · , uσ) ∈ F
σ, and

x ∈ F
n. (Intuitively, x is the input to the original circuit, and u will be used

to MAC the outputs.)
2. Computes z ← C(x), where z ∈ F

k.
3. For all 1 ≤ i ≤ k, computes (z′

i,1, · · · , z′
i,σ) ← (u1 · zi, · · · , uσ · zi). (This step

MACs each output coordinate zi.)
4. Outputs

(

f · s, z, (z′
1,1, · · · , z′

1,σ), · · · , (z′
k,1, · · · , z′

k,σ)
)

where s ∈R F
σ.

The circuit CMAC : F
n × F

σ → F
k × (Fσ)k is obtained from C in a similar

manner, except that its input is (u,x) (“in the clear”), and so it does not perform
the input decoding of Step 1 above, and does not output a list of flags.

Construction 9. Let F be a finite field, σ ∈ N be a security parameter, n ∈ N

be an input length parameter, and k, k′ ∈ N be output length parameters. Let C :
F

n → F
k be an arithmetic circuit over F, and (Enc,Dec)‘ be an (n + σ, l, σ, 2−σ)-

additively robust AMD encoding scheme. Let CMAC and CAUG denote the circuits
obtained by applying Construction 8 to C. Notice that the inputs to CMAC are
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x ∈ F
n and a MAC key u ∈ F

σ, and its output is in F
k+σk, whereas the inputs to

CAUG are robust-AMD encodings of u,x, and its output is in F
σ+k+σk. Let ̂CAUG

be an ε-additively-correct implementation of CAUG with t flags. The randomized
circuit ̂C : F

n → F
σ × F

k, on input x ∈ F
n, operates as follows.

1. Generates a random MAC key u ∈ F
σ. (u will be used to MAC the outputs

of C in CAUG.)
2. Computes zMAC ← CMAC (x,u), and we denote zMAC =

(z, (z̃1,1, · · · , z̃1,σ) , · · · , (z̃k,1, · · · , z̃k,σ)). (This step evaluates C once directly,
and MACs the outputs.)

3. Computes (x′,u′) ← Enc ((x,u)). (This step encodes the inputs to CAUG.)
4. For all 1 ≤ i ≤ σ, computes (fi,yi) ← ̂CAUG,i (x′,u′), where

̂CAUG,1, · · · , ̂CAUG,σ denote σ separate copies of ̂CAUG.
5. For all 1 ≤ i ≤ σ, interprets yi as

(

(f ′
i,1, · · · , f ′

i,σ), z′
i, (z

′
i,1,1, · · · , z′

i,1,σ), · · · , (z′
i,k,1, · · · , z′

i,k,σ)
)

. (The output of

each copy ̂CAUG,i is interpreted as σ flags f ′
i,1, · · · , f ′

i,t indicating whether the
decoding of x′,u′ succeeded, a k-length output, and σ MACs for every output
coordinate.)

6. For all 1 ≤ i, j ≤ σ, computes f ′′
i,j ←

∑k
l=1(z̃l,i − z′

j,l,i)ri,j,l where all the
ri,j,l are generated uniformly from F. (This step compares the MACed out-
puts computed by the ε-additively-correct implementations in Step 3, with the
MACed output computed directly in Step 2. Specifically, f ′′

i,j compares the i’th
MAC of the j’th copy, to the i’th MAC of Step 2.)

7. For all 1 ≤ i ≤ σ, computes f ′′
i ←

∑σ
j=1 f ′′

i,jri,j +
∑σ

j=1 r′
i,jf

′
j,i, where all the

ri,j and r′
i,j are generated uniformly from F. (This step checks that all copies

agree on the i’th MAC, and in addition, that the decoding of the inputs in all
copies succeeded.)

8. For all 1 ≤ i ≤ σ compute gi ←
∑σ

j=1(
∑t

u=1 fj,ur̃i,j,u + f ′′
j r̃′

i,j,u) where all
the r̃i,j and r̃′

i,j are generated uniformly from F. (This step checks that the
computation in the i’th ε-additively-correct implementation succeeded, and in
addition, that the input decoding in all copies succeeded, and they all agree on
all MACs.)

9. Output ((g1, · · · , gσ), z).

In the full version of the paper we prove the following:

Theorem 19. For any field F, arithmetic circuit C : F
n → F

k and security
parameter σ, the circuit ̂C obtained by applying Construction 9 to C is a 2−Ω(σ)-
additively-correct implementation of C. Moreover, |̂C| = poly(σ, |C|).
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