Skip to main content

On Microfluidics Devices for Clinical Biosensor

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Continuum Mechanics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali MA, Solanki PR, Patel MK, Dhayani H, Agrawal VV, John R, Malhotra BD (2013) A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale 5:2883–2891

    Article  Google Scholar 

  • Azahar Ali M, Srivastava S, Solanki PR, Varun Agrawal V, John R, Malhotra BD (2012) Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Appl Phys Lett 101:084105

    Article  Google Scholar 

  • Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  Google Scholar 

  • Davis L III, Deutsch M (2010) Surface plasmon based thermo-optic and temperature sensor for microfluidic thermometry. Rev Sci Instrum 81:114905

    Article  Google Scholar 

  • Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E (2010) A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:3459–3464

    Article  Google Scholar 

  • Franke TA, Wixforth A (2008) Microfluidics for miniaturized laboratories on a chip. ChemPhysChem 9:2140–2156

    Article  Google Scholar 

  • Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:026502

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Justino CI, Duarte AC, Rocha-Santos TA (2017) Recent progress in biosensors for environmental monitoring: A review. Sensors 17:2918

    Article  Google Scholar 

  • Kaushik A, Arya SK, Vasudev A, Bhansali S (2013) Recent advances in detection of ochratoxin-A. Open J Appl Biosensor 2:1

    Article  Google Scholar 

  • Kim J, Cho H, Han S-I, Han K-H (2016) Single-cell isolation of circulating tumor cells from whole blood by lateral magnetophoretic microseparation and microfluidic dispensing. Anal Chem 88:4857–4863

    Article  Google Scholar 

  • Lee D et al (2007) Integrated ZnO surface acoustic wave microfluidic and biosensor system. In: Electron devices meeting, 2007. IEDM 2007. IEEE international, 2007. IEEE, pp 851–854

    Google Scholar 

  • Lin C-H, Lee G-B, Lin Y-H, Chang G-L (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726

    Article  Google Scholar 

  • Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sensors J 8:628–635

    Article  Google Scholar 

  • Matellan C, Armando E (2018) Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8:6971

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  Google Scholar 

  • Milanova Sertova N (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:0–0

    Google Scholar 

  • Nikoleli G-P, Karapetis S, Bratakou S, Nikolelis DP, Tzamtzis N, Psychoyios VN, Psaroudakis N (2016) Biosensors for security and bioterrorism: definitions, history, types of agents, new trends and applications. In: Biosensors for security and bioterrorism applications. Cham, Springer, pp 1–13

    Google Scholar 

  • Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12:1–15

    Article  Google Scholar 

  • Pinto IF, Santos DR, Caneira C, Soares RR, Azevedo A, Chu V, Conde JP (2018) Optical biosensing in microfluidics using nanoporous microbeads and amorphous silicon thin-film photodiodes: quantitative analysis of molecular recognition and signal transduction. J Micromech Microeng 28:094004

    Article  Google Scholar 

  • Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423

    Article  Google Scholar 

  • Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172

    Article  Google Scholar 

  • SalmanOgli A (2011) Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol 2:1–19

    Article  Google Scholar 

  • Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–375

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  • Srivastava S, Solanki PR, Kaushik A, Ali MA, Srivastava A, Malhotra B (2011) A self assembled monolayer based microfluidic sensor for urea detection. Nanoscale 3:2971–2977

    Article  Google Scholar 

  • Tang SK, Whitesides GM (2009) Basic microfluidic and soft lithographic techniques. In: Fainman Y, Lee L, Psaltis D, Yang C (eds) Optofluidics: fundamentals, devices and applications. McGraw-Hill, New York, 2010

    Google Scholar 

  • Tiwari S, Gupta PK, Bagbi Y, Sarkar T, Solanki PR (2017) L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosens Bioelectron 89:1042–1052

    Article  Google Scholar 

  • Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175:3093–3119

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  Google Scholar 

  • Yoon Y-J, Li KHH, Low YZ, Yoon J, Ng SH (2014) Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent. Sensors Actuators B Chem 198:233–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima R. Solanki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dhiman, T.K., Lakshmi, G., Solanki, P.R. (2019). On Microfluidics Devices for Clinical Biosensor. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_165-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_165-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics