A High Throughput/Gate AES Hardware
Architecture by Compressing Encryption
and Decryption Datapaths
— Toward Efficient CBC-Mode Implementation

Rei Ueno*®) | Sumio Morioka?, Naofumi Hommal!, and Takafumi Aoki'

! Tohoku University, Aramaki Aza Aoba 6-6-05, Aoba-ku,
Sendai-shi 980-8579, Japan
ueno@aoki.ecei.tohoku.ac. jp
2 Central Research Laboratories, NEC Corporation, Athene, Odyssey Business Park,
West End Road, South Ruislip, Middlesex HA4 6QE, UK

Abstract. This paper proposes a highly efficient AES hardware archi-
tecture that supports both encryption and decryption for the CBC mode.
Some conventional AES architectures employ pipelining techniques to
enhance the throughput and efficiency. However, such pipelined architec-
tures are frequently unfit because many practical cryptographic applica-
tions work in the CBC mode, where block-wise parallelism is not avail-
able for encryption. In this paper, we present an efficient AES encryp-
tion/decryption hardware design suitable for such block-chaining modes.
In particular, new operation-reordering and register-retiming techniques
allow us to unify the inversion circuits for encryption and decryption
(i.e., SubBytes and InvSubBytes) without any delay overhead. A new
unification technique for linear mappings further reduces both the area
and critical delay in total. Our design employs a common loop architec-
ture and can therefore efficiently perform even in the CBC mode. We
also present a shared key scheduling datapath that can work on-the-fly
in the proposed architecture. To the best of our knowledge, the proposed
architecture has the shortest critical path delay and is the most effi-
cient in terms of throughput per area among conventional AES encryp-
tion/decryption architectures with tower-field S-boxes. We evaluate the
performance of the proposed and some conventional datapaths by logic
synthesis results with the TSMC 65-nm standard-cell library and Nan-
Gate 45- and 15-nm open-cell libraries. As a result, we confirm that our
proposed architecture achieves approximately 53-72 % higher efficiency
(i.e., a higher bps/GE) than any other conventional counterpart.

Keywords: AES - Hardware architectures - Unified encryption/
decryption architecture - CBC mode

© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 538-558, 2016.
DOI: 10.1007/978-3-662-53140-2_26

A High Throughput/Gate AES Hardware Architecture 539

1 Introduction

Cryptographic applications have been essential for many systems with secure
communications, authentication, and digital signatures. In accordance with the
rapid increase in Internet of Things (IoT) applications, many cryptographic
algorithms are required to be implemented in resource-constrained devices and
embedded systems with a high throughput and efficiency. Since 2001, many hard-
ware implementations for AES have been proposed and evaluated for CMOS logic
technologies. Studies of AES design are important from both practical and aca-
demic perspectives since AES employs an SPN structure and the major compo-
nents (i.e., an 8-bit S-box and permutation used in ShiftRows and MixColumns)
followed by many other security primitives.

AES encryption and decryption are commonly used in block-chaining modes
such as CBC, CMAC, and CCM (e.g., for SSL/TLS, IEEE802.11 wireless
LAN, and IEEE802.15.4 wireless sensor networks). Therefore, AES architectures
that efficiently perform both encryption and decryption in the above block-
chaining modes are highly demanded. However, many conventional architec-
tures employ pipelining techniques to enhance the throughput and efficiency
[13,15,17], although such block-wise parallelism is not available in the above
block-chaining modes. For example, the highest throughput of 53 Gbps was
achieved in the previous best encryption/decryption architecture [17], but it
only worked in the ECB mode. In addition, these previous studies assumed
offline key scheduling owing to the difficulty of on-the-fly scheduling. On-the-
fly key scheduling should be implemented in most resource-constrained devices
because an offline key scheduling implementation requires additional memory to
store expanded round keys. Thus, it is valuable to investigate an efficient AES
architecture with on-the-fly key scheduling without any pipelining technique.

In this paper, we present a new round-based AES architecture for both
encryption and decryption with on-the-fly key scheduling, which achieves the
lowest critical path delay (the least number of serially connected gates in the
critical path) with less area overhead compared to conventional architectures
with tower-field S-boxes. Our architecture employs new operation-reordering
and register-retiming techniques to unify the inversion circuits for encryption
and decryption without any selectors. In addition, these techniques make it pos-
sible to unify the affine transformation and linear mappings (i.e., the isomor-
phism and constant multiplications) to reduce the total number of logic gates.
The proposed and conventional AES encryption/decryption datapaths are syn-
thesized and evaluated with the TSMC standard-cell and NanGate open-cell
libraries. The evaluation results show that our architecture can perform both
(CBC-) encryption and decryption more efficiently. For example, the through-
put per gate of the proposed architecture in the NanGate 15-nm process is 72 %
larger than that of the best conventional architecture.

The rest of this paper is organized as follows: Sect. 2 introduces related works
on AES hardware architectures, especially those with round-based encryption
and decryption. Section 3 presents a new AES hardware architecture based on
our operation-reordering, register-retiming, and affine-transformation unification

540 R. Ueno et al.

techniques. Section 4 evaluates the proposed datapath by the logic synthesis com-
pared with conventional round-based datapaths. Section 5 discusses variations of
the proposed architecture. Finally, Sect. 6 contains our conclusion.

2 Related Works

2.1 Unified AES Datapath for Encryption and Decryption

Architectures that perform one round of encryption or decryption per clock cycle
without pipelining are the most typical for AES design and are called round-
based architectures in this paper. Round-based architectures can be implemented
more efficiently in terms of throughput per area than other architectures by
utilizing the inherent parallelism of symmetric key ciphers. For example, the
byte-serial architecture [16,18] is intended for the most compact and low-power
implementations such as in RFID but is not intended for the high throughput
and efficiency. In contrast, round-based architectures are suitable for a high
throughput per gate, which leads to a low-energy implementation [29].

To design such round-based encryption/decryption architectures in an effi-
cient manner, we consider how to unify the resource-consuming components such
as the inversion circuits in SubBytes/InvSubBytes for the encryption and decryp-
tion datapaths. There are two conventional approaches for designing such unified
datapaths. The first approach is to place two distinct datapaths for encryption
and decryption and select one of the datapaths with multiplexers as in [15].
Figurel shows an overview of the datapath flow in [15], where the inversion
circuit is shared by both paths, and additional multiplexers are used at the
input and output of the encryption and decryption paths. In [15], a reordered
decryption operation was introduced as shown in Fig. 2. The intermediate value
is stored in a register after InvMixColumns instead of AddRoundKey. Such reg-
ister retiming was suitable for pipelined architectures. The main drawbacks of
such approaches are the false critical path delay and the required area and delay
overheads caused by three multiplexers. The critical path of the datapath in
Fig.1 is denoted in bold, which would never be active because it passes from
the decryption path to the encryption path. This false critical path reduces the
maximum operation frequency owing to logic synthesis due to the false longest
logic chain. The overhead caused by the multiplexers is also nonnegligible for
common standard-cell-based designs.

The second approach is to unify the circuits of the functions SubBytes,
ShiftRows, and MixColumns with their inverse functions, respectively. Figure 3
shows the datapath in [29] where encryption and decryption paths are com-
bined using the second approach, where the reordering technique is given in
Fig.4. The order of the decryption operations is changed to be the same as
that of the encryption operations. Note that the order of (Inv)SubBytes and
(Inv)ShiftRows can be changed without any overhead, and the datapath in [29]
changes the order of SubBytes and ShiftRows in the encryption. The reordering
of AddRoundKey and InvMixColumns utilizes the linearity of InvMixColumns
as follows: MC~*(M, + K,) = MC~YM,) + MC~}(K,), where MC~! is

A High Throughput/Gate AES Hardware Architecture

Plaintext/Ciphertext

AddInitialKey

(Round input)

Encryption
path

Decryption
path

InvShiftRows

Ciphertext

Round 10

Ciphertext

541

Round 10

SubBytes

Kio—] AddRoundKey |

[AddRoundKey }— &y

Inversion

> Data reg. [> Data reg.
InvSubBytes
Round 9 Round 9-1
InvShiftRows InvShiftRows
[shitRows | [AddRoundKey | InvSubBytes InvSubBytes
I Ky —» AddRoundKey AddRoundKey [+— K,
" - l InvMixColumns
I MixColumns I | InvMixColumns |
|Z Data reg. I
Round 8-0 7<

Round 0

2:1 MUX
InvMixColumns
AddRoundKey InvShiftRows InvShiftRows
InvSubBytes InvSubBytes
W K, —» AddRoundKey AddRoundKey [+— K,
Plaintext Plaintext
(Round output) Ciphertext/Plaintext (a) (b)

Fig. 1. Conventional parallel datapath
in [15].

Fig. 2. Register-retiming techniques in
[15]: (a) original and (b) resulting decryp-
tion flows.

the function InvMixColumns, and M, and K, are the intermediate value after
InvShiftRows and the round key at the r-th round, respectively. Here, InvMix-
Columns requires the round keys, whereas MixColumns and InvMixColumns
can be unified to reduce the area. Therefore, this type of architecture requires
an additional InvMixColumns to compute MC~1(K,) for decryption. In addi-
tion, the false path and multiplexer overhead exist because each function and
its inverse function are implemented in a partially serial manner with multiplex-
ers like SubBytes and InvSubBytes in Fig. 1, where the critical path consists of
Affine, Inversion, InvAffine, and an additional multiplexer.

The architecture in [17] employs a reordering technique similar to [29]. The
major difference is the intermediate value stored in the register. The architecture
in [14] also employs the same approach that combines the encryption and decryp-
tion datapaths, but does not change the order of AddRoundKey and InvMix-
Columns to remove InvMixColumns to compute MC~1(K,). As a result, an
additional selector is required to unify MixColumns and InvMixColumns.

542 R. Ueno et al.

Ciphertext Ciphertext
Round 10 l l Round 10
Kio—{ AddRoundKey | [AddRoundKey |+— Ko
(Round input)
|> Data reg. | |> Data reg. |
ShiftRows/InvShiftRows
Round 9-1 Round 9-1
InvShiftRows InvShiftRows
SubBytes/InvSubBytes K, InvSubBytes InvSubBytes
K, — AddRoundKey InvMixColumns
s ! . > .
InvMixColumns AddRoundKey [—MC'(K,)
| MixColumns/InvMixColumns | InvMixColumns
l | E— mc') [> Datareg. | [> Datareg. |
Plaintext/Ciphertext 3:1 MUX 2:1 MUX
l T Round 0 l l Round 0
| Addinitialk | |AddR ax InvShiftRows InvShiftBytes
niti; n
atey oundtiey InvSubBytes InvSubBytes
Ko —»| AddRoundKey AddRoundKey [+— Ko
Plaintext Plaintext
Ciphertext/Plaintext (Round output) (a) (b)
Fig. 3. Conventional datapath in [29], Fig.4. Reordering technique in [29]:
where encryption and decryption paths decryption flows (a) before and (b) after
are combined. reordering.

As described above, sharing inversion circuits is essential for designing effi-
cient AES hardware. Although a hardware T-box architecture such as that in
[20] is also useful for a high-throughput implementation, it is not applicable to
the above shared datapath owing to the lack of sharable components between
the encryption and decryption paths.

2.2 Inversion Circuit Design and Tower-Field Arithmetic

The design of the inversion circuit used in (Inv)SubBytes has a significant impact
on the performance of AES implementations. Many inversion circuit designs have
been proposed. There are two major approaches using direct mapping and tower-
field arithmetic. Inversion circuits based on direct mapping such as table-lookup,
Binary Decision Diagram (BDD), and Positive-Polarity Reed-Muller (PPRM)
[15,19,20] are faster but larger than those based on a tower field. On the other
hand, tower-field arithmetic enable us to design more compact and more area-
time efficient inversion circuits in comparison with direct mapping. Therefore,
we focus on inversion circuits based on tower-field arithmetic in this paper.
The performance of tower-field-based inversion circuits varies with the field
towering and Galois field (GF) representation. After the introduction of tower-
field inversion over GF(((22)?)?) based on a polynomial basis (PB) by Satoh
et al. [29], Canright reduced the gate count using a normal basis-(NB-)based
GF(((2?)?)?), which has been known as the smallest for a long time [7], Nogami
et al. showed that a mixture of a PB and an NB was useful for a more efficient
design [23]. On the other hand, Rudra et al., Joen et al., and Mathew et al.

A High Throughput/Gate AES Hardware Architecture 543

designed inversion circuits using PB-based GF((2%)?), which have a smaller criti-
cal path delay than those based on GF(((2%)%)?) [12,17,27]. Nekado et al. showed
that a redundantly represented basis (RRB) was useful for an efficient design
[21]. Recently, Ueno et al. designed an inversion circuit based on the combination
of an NB, an RRB, and a polynomial ring representation (PRR), which is known
as the most area-time efficient inversion [31]. In addition, a logic minimization
technique was applied to Canright’s S-box, which resulted in a more compact
S-box [6].

To embed such a tower-field-based inversion circuit in AES hardware, an iso-
morphic mapping between the AES field and the tower field is required because
the inversion and MixColumns are performed over the AES field (i.e., PB-based
GF(2%) with an irreducible polynomial 2 + 2% + 23+ +1). Typically, the input
into the inversion circuit (in the AES field) is initially mapped to the tower field
by the isomorphic mapping. After the inversion operation over the tower field, an
inverse isomorphic mapping (and affine transformation) are applied [29]. On the
other hand, some architectures perform all of the AES subfunctions (i.e., Sub-
Bytes as well as ShiftRows, MixColumns, and AddRoundKey) over the tower
field, where isomorphic mapping and its inverse mappings are performed at the
timings of the data (i.e., plaintext and ciphertext) input and output, respectively
[10,16-18,27]. In other words, the cost of field conversion is suppressed when the
conversion is performed only once during encryption or decryption. However, the
cost of constant multiplications in MixColumns over a tower field is worse than
that over the AES field while inversion is efficiently performed over the tower
field. More precisely, in tower-field architectures, such linear mappings including
constant multiplications usually require 3T'xor delay, where T'xop indicates the
delay of an XOR gate [21]. The XOR gate count used in (Inv)MixColumns over
a tower field is also worse than that over AES field.

3 Proposed Architecture

This section presents a new round-based AES architecture that unifies the
encryption and decryption paths in an efficient manner. The key ideas for reduc-
ing the critical path delay are summarized as follows: (1) to merge linear map-
pings such as MixColumns and isomorphic mappings as much as possible by
reordering subfunctions, (2) to minimize the number of selectors to unify the
encryption and decryption paths by the above merging and a register retiming,
and (3) to perform isomorphic mapping and its inverse mappings only once in
the pre- and post-round datapaths. We can reduce the number of linear map-
pings to at most one for each round operation as the effect of (1). Moreover,
we can reduce the number of selectors to only one (4-to-1 multiplexer) in the
unified datapath as the effect of (2) while the inversion circuit is shared by the
encryption and decryption paths. From the idea of (3), we can remove the iso-
morphic mapping and its inverse mappings from the critical path. Figure 5 shows
the overall architecture that consists of the round function and key scheduling
parts. Our architecture performs all of the subfunctions over a tower field for

544 R. Ueno et al.

Plaintext/Ciphertext Initial Key
Round function part l Key scheduling part
L GF(2% to GF((2%?%)
Post-round |«— Round Pre-round
datapath [*—] datapath datapath

\/

Initial key
register

Round key

Data
register

>

Ciphertext/Plaintext generator

Round key
register

Fig. 5. Overall architecture of proposed AES hardware.

both the round function and key scheduling parts and therefore applies iso-
morphic mappings between the AES and tower fields in the datapaths of the
pre- and post-round operations, which are represented as the blocks “Pre-round
datapath” and “Post-round datapath” in Fig.5. “Round datapath” performs
one round operation for either encryption or decryption.

3.1 Round Function Part

The proposed architecture employs a unified datapath for encryption and decryp-
tion as in [15] and applies new operation-reordering and register-retiming tech-
niques to address the conventional issues of a false critical path and additional
multiplexers. Using our operation-reordering technique and then merging linear
mappings, we can reduce the number of linear mappings on the critical path
of the round datapath to at most one. Our reordering technique also allows to
unify the linear mappings and affine transformation in a round. The unifica-
tion of these mappings can drastically reduce the critical path delay and the
XOR-gate count of linear mappings, even in a tower-field architecture.

The new operation reordering is derived as follows. First, the original round
operation of AES encryption is represented by the following equation:

m ;Y = w8) i S(my))+ uaiS(myT))+ us-iS(mg) + R
3

= (weiS(m),)) + K, (1)

e=0

where m(! and k(j) are the i-th row and j-th column intermediate value and
round key at the r-th round, except for the final round. Note that the sub-
scripts of each variable are a member of Z/4Z. The function S indicates the 8-bit
S-box, and wg, u1,us, and ug are the coefficients of the matrix of MixColumns

A High Throughput/Gate AES Hardware Architecture 545

and respectively given by 3,0 4+ 1,1, and 1, where [is the indeterminate of
GF(28) satisfying 58 + 3* + 3% + 8+ 1 = 0. We can rewrite Eq. (1) by decom-
posing S into inversion and affine transformation as follows:

3
-1
r+1 r r
mi = Y e (A(m),))+ o) R, (2)
e=0
where A is the linear mapping of the affine transformation, and ¢ (= 3% +3°+ 3+
1) is a constant. In the case of tower-field architectures, Eq. (2) is represented by

3 -1
mi = 3w (A (A,))+) + R, 3)
e=0
where A is the isomorphic mapping from the AES field to a tower field, and A’
is the inverse isomorphic mapping.

The linear mappings, which include an isomorphism and constant multipli-
cations over the GF, are performed by the constant multiplication of the corre-
sponding matrix over GF'(2). Therefore, we can merge such mappings to reduce
the critical path delay and the number of XOR gates. In addition, we consider

the variable d.”) of the tower field derived from m{'). Substituting ") with

A’ (dgrj)) (= myj)), we can merge the linear mappings as follows:

3 -1
a0 = 3 Uil (475) 7)) + Ale) + AGS)),)

e=0

where U, (z) = A(ue(A(A'(z)))). Note that an arbitrary linear mapping L satis-
fies L(a+b) = L(a) + L(b). Thus, the linear mappings of a round in Eq. (4) can
be merged into at most one, even with a tower-field S-box, whereas the linear
mappings in Eq. (3) cannot be.

On the other hand, the corresponding equation for AES decryption with
tower-field arithmetic is given by

3 -1
diY = YA (A (AX@QE D)+ AE)) + AR D)), 6)

e=0

where A’ indicates the linear mapping of the inverse affine transformation. The
coefficients vy, v1, Vo, and vs are respectively given by 83+ 5%2+3, 83 +5+1, 33+
B%+1, and 3+1, and ¢/ (= 3%+1) is a constant. Here, the linear mappings cannot
be merged into one because they are performed both before and after the inver-
sion operation. In addition, if we construct an encryption/decryption datapath
based on Egs. (4) and (5), the inversion circuit cannot be shared by encryption
and decryption without a selector because the timings of the inversion operations

are different from each other. Therefore, we consider a register retiming to store
(r)

the intermediate value s; ; given after the inverse affine transformation over the

546 R. Ueno et al.

Plaintext Plaintext Ciphertext Ciphertext
Round 0

Round 0

AddRoundK AddRoundK: Round 10 Round 10
& " K] AddRoumdKey AddRoundKey J—Kin

[> Data reg. [> Data reg.

> Data reg.
S-box

Round 1-9 Inversion Round 1-9
SubBytes [Affine | Inversion Round 9-1 Round 9-1
ShiftRows % ShiftRows InvShiftRows Inversion

MixColumns Affine InvSubBytes InvShiftRows
K, — AddRoundKey MixColumns K, —+ AddRoundKey - AddRoundKey «— K,
AddRoundKey L g InvMixColumns InvMixColumns
Data reg. merged InvS-box InvAffine
S-box Data reg. merged

Round 10 Inversion Round 10
SubBytes | Affine | Inversion Round 0 Round 0
ShiftRows % ShiftRows InvShiftRows Inversion

Kiy— AddRoundKey Affine InvSubBytes InvShiftRows
AddRoundKey «—Kiy Ko —¥ AddRoundKey AddRoundKey [+— Ko
Ciphertext Ciphertext Plaintext InvS-box Plaintext
(@) (b) (a) (b)
(i) (i)

Fig. 6. Proposed (i) encryption and (ii) decryption flows (a) before and (b) after
reordering and register-retiming.

tower-field. Here, sg? is given by 51(7]) = A(A’(A’(dgj)))) + A(c’). In the decryp-
tion, we store SET) in the data register instead of dgr]) Using sETJ) and sgj}_l)

7 , we
rewrite Eq. (5) as follows:

3 —1
S =3 el (sU)) + AGD)_) + A, (6)
e=0

where V,(z) = A(A' (ve(A'(x)))).

Our round datapath is constructed with a minimal critical path delay accord-
ing to Egs. (4) and (6). Here, we further reorder the sequence of operations
(i.e., subfunctions) to share inversion circuits without additional selectors and
to unify the linear mappings. Figure 6 shows the proposed reordering technique.
We first decompose SubBytes into the inversion and (Inv)Affine. In the encryp-
tion, Affine, MixColumns, and AddRoundKey can be merged by exchanging
Affine and ShiftRows. In the decryption, the inversion circuit is located at the
beginning of the round by exchanging the inversion and InvShiftRows. Thus,
additional selectors for sharing the inversion circuit are not required thanks to
the operation-reordering and register-retiming techniques. This is because both
inversion operations are performed at the beginning of the round, which means
that the data register output can be directly connected to the inversion circuit.

Figure 7 illustrates the proposed round function datapath with the unification
of linear mappings. Our architecture employs only one 128-bit 4-in-1 multiplexer,
whereas conventional ones employ several 128-bit multiplexers. For example, the

A High Throughput/Gate AES Hardware Architecture 547

(Round input) Round
128 datapath

Encryption m Decryption

path path Plaintext/Ciphertext
| shiftRows |} i InvShiftRows | 128 Pre-round
datapath
| Unified affine |} {{ AddRoundKey | [GF(2") to GF(2*))
Post-round 128 256
datapath
i R : , ,
Bit-parallel XOR Adder array Unified affine’ AddInitialKey
AddRoundKey

128

GF(2')) to GF(@)

4:1 MUX

Ciphertext/Plaintext (Round output)

Fig. 7. Proposed round function part.

datapath in [14] employs seven 128-bit multiplexers!. Fewer selectors can reduce
the critical path delay and circuit area and solve the false critical path problem.
Unified affine and Unified affine™! in Fig. 7 perform the unified linear mappings
(i.e., Uo,y...,Us and Vp,...,V3) and constant addition. The number of linear
mappings on the critical path is at most one in our architecture, whereas that
of the conventional architectures is not. We can also suppress the overhead of
constant multiplication over the tower field by the unification. Adder arrays in
Fig. 7 consist of four 4-input 8-bit adders in MixColumns or InvMixColumns.
In the encryption, the factoring technique for MixColumns and AddRoundKey
[21] is available for Unified affine, which makes the circuit area smaller without
a delay overhead. As a result, the data width between Unified affine and Adder
array in Encryption path is reduced from 512 to 256 bits because the calculations
of Uy and Us are not performed in Encryption path. In addition, Adder array
and AddRoundKey are unified in Encryption path because both of them are
composed of 8-bit adders?. On the other hand, since there is no factoring tech-
nique for InvMixColumns without delay overheads, the data width from Unified
affine™! to Adder array in Decryption path is 512 bits. Finally, an inactive path
can be disabled using a demultiplexer since our datapath is fully parallel after
the inversion circuit. Thanks to the disabling, a multiplexer and AddRoundKey

! The selectors in SubBytes/InvSubBytes are included in the seven multiplexers.
2 Some architectures such as [14,29] unify AddInitialKey and AddRoundKeys. We
did not unify them to avoid increasing the number of selectors.

548 R. Ueno et al.

are unified as Bit-parallel XOR. (The addition of A(c) in Unified affine should
be active only when encryption.) In addition, the demultiplexer would suppress
power consumption due to a dynamic hazard. Although tower-field inversion cir-
cuits are known to be power-consuming owing to dynamic hazards [19], these
hazards can be terminated at the input of the inactive path.

Our datapath employs the inversion circuit presented in [31] because it has
the highest area-time efficiency among inversion circuits including one using a
logic minimization technique [6]. We can merge the isomorphic mappings in
order to reduce the linear function on the round datapath to only one, even if
the inversion circuit has different GF representations at the input and output.
Since the output is given by an RRB, the data width from Inversion to Uni-
fied affine (or Unified affine™!) is given by 160 bits. However, AddRoundKey
in the decryption path and Bit-parallel XOR in the post-round datapath are
implemented respectively by only 128 XOR gates because the NB used as the
input is equal to the reduced version of the RRB. In addition, a 1:2 DeMUX is
implemented with NOR gates thanks to the redundancy, whereas nonredundant
representations require AND gates.

3.2 Key Scheduling Part

The on-the-fly key scheduling part is shared by the encryption and decryption
processes. For the encryption, the key scheduling part first stores the initial key
in the initial key register (in Fig.5) and then generates the round keys during
the following clock cycles. For the decryption, the final round key should be
calculated from the initial key and stored in the initial key register in advance.
The key scheduling part then generates the round keys in the reverse order
by the round key generator (in Fig.5). However, conventional key scheduling
datapaths such those as in [14,29] are not applicable to our round datapath
because they have a loop with a false path and/or a longer true critical path
than our datapath.

To address the above issue, we introduce a new architecture for the key
scheduling datapath. For on-the-fly implementation, the subkeys are calculated
for each of the four subkeys (i.e., 128 bits) in a clock cycle. Therefore, the on-
the-fly key scheduling for the encryption is expressed as

= (()T) + KeyE:r(k:(f))

)
kg"“; =k + k" + KeyBa(k{") @
)

where k(()r), kY), kér), and k:g') are a 32-bit subkey at the 7-th round and KeyEx is
the key expansion function that consists of a round constant addition, RotWord,
and SubWord. The inverse key scheduling for the decryption is represented by

A High Throughput/Gate AES Hardware Architecture 549
Initial key
128
GF(2*) to GF((2*?)
>Initia| key
register
(AddInitialKey) {
\ 21MUx / ENC/DEC
Round key generator
Round constant
8 "y 32 "y 32 K'Y 32 5"y 32
GF(%) to GF((2*Y) W) W
Add | |)
constants |
KD ;f‘\
IV
(‘) Y Y Y
& o &P
ko(r'—])/ko(#]) k (r+1) k (r+1) l k (r+1)]
—l \21MUX/ \21MUX/ \21MUX/
{128
>Round key
register
Ji
v
(AddRoundKey)
Fig. 8. Proposed key scheduling part.
k((;" Y= k7 4 KeyEa (kY + k)
R = k:g” + k" @®
kérfl) _ k‘ (r) + kér)
kér 1) _ k(r) k:(;)

Figure 8 shows the proposed key scheduling datapath architecture, where the
KeyEx components are unified for encryption and decryption. Note here that most

of adders (i.e., XOR gates) for computing kYH), kér+1)7

and k{" Y should be non-

integrated to make the critical path shorter than that of the round function part.
The input key is initially mapped to the tower field, and all of the computations
(including AddRoundKey) are performed over the tower field. The ENC/DEC sig-
nal controls the input to RotWord and SubWord using a 32-bit AND gate. The
upper 2-in-1 multiplexer selects an initial key or a final round key as the input to

550 R. Ueno et al.

Initial key register, the middle 2-in-1 multiplexer selects a key stored in Initial key
register or a round key as the input to Round key generator, and the lower 2-in-1
multiplexers select encryption or decryption path. The round constant addition
is performed separately from RotWord and SubWord to reduce the critical path
delay. As aresult, the critical path delay of the key scheduling part becomes shorter
than that of the round function part.

4 Performance Evaluation

Tables 1 and 2 summarize the synthesis results of the proposed AES encryp-
tion/decryption architecture by Synopsys Design Compiler (Version D2010-3)
with the TSMC 65-nm and NanGate 45- and 15-nm standard-cell libraries [2, 3]
under the worst-case conditions, where Area indicates the circuit area estimated
on the basis of a two-way NAND equivalent gate size (i.e., gate equivalents
(GEs)); Latency indicates the latency for encryption, which is estimated by the
circuit path delay of the datapath under the worst low condition; Max. freq. indi-
cates the maximum operation frequency obtained from the critical path delay;
Throughput indicates the throughput at the maximum operation frequency; and
Efficiency indicates the throughput per area, which corresponds to the product
of the area and latency in this nonpipelined design®. To perform a practical
performance comparison, an area optimization (which maximizes the effort of
minimizing the number of gates without flattening the description) was applied
in Table 1, and an area-speed optimization (where an asymptotical search with a
set of timing constraints was performed after the area optimization) was applied
in Table 2.

In these tables, the conventional representative datapaths [14,15,17,29] were
also synthesized using the same optimization conditions. The source codes for
these syntheses were described by the authors referring to [14,15,17,29], except
for the source codes of Satoh’s and Canright’s S-boxes in [7,29] that can be
obtained from their websites [1,8]. For a fair comparison, the datapaths of [15,17]
were adjusted to the round-based nonpipelined architecture corresponding to
the proposed datapath. Note that only the inversion circuit over a PB-based
GF((2%)?) in [17] was not described faithfully according to the paper?. Latency
and Throughput were calculated assuming that the datapath of [15] requires 10
clock cycles to perform each encryption or decryption and the others require 11

3 Design Compiler generated a static power consumption report for each architecture.
However, the report dose not consider the effect of glitches while tower-field inversion
circuits are known to include non-trivial glitches [19]. Therefore, we did not mention
the power consumption report to avoid misleading.

* According to [17], the GF(2*) inversion in the circuit can be implemented with a
Txor + 3Tnanp delay, where Txor and Tnanp are the delays of the XOR and
NAND gates, respectively. However, there is no detailed description to realize such
a circuit. Therefore, using the best of our knowledge, we described the circuit by a
direct mapping based on the PPRM expansion, which is an algebraic normal form
frequently used for designing GF arithmetic circuits [19,28].

A High Throughput/Gate AES Hardware Architecture 551

Table 1. Synthesis results for proposed and conventional AES hardware architectures
with area optimization

Area (GE) | Latency (ns) | Max. freq. (MHz) | Throughput (Gbps) | Efficiency
(Kbps/GE)

TSMC 65-nm
Satoh et al. [29] 13,671.75 | 78.10 140.85 1.64 119.88
Lutz et al. [15] 20, 380.50 | 68.50 145.99 1.87 91.69
Liu et al. [14] 12,538.75 | 85.25 129.03 1.50 119.75
Mathew et al. [17] | 20, 639.50 | 97.68 112.61 1.31 63.49
This work 15,242.75 | 46.97 234.19 2.73 178.78
NanGate 45-nm
Satoh et al. [29] 12,560.99 | 31.57 348.43 4.05 322.78
Lutz et al. [15] 20, 000.66 | 20.30 492.61 6.31 315.26
Liu et al. [14] 11,829.34 | 34.43 319.49 3.72 314.28
Mathew et al. [17] | 17,573.33 | 41.80 263.16 3.06 174.25
This work 13,814.69 | 16.94 649.35 7.56 546.96
NanGate 15-nm
Satoh et al. [29] 14,526.01 | 4.36 2,524.17 29.37 2,022.04
Lutz et al. [15] 23,391.49 4.57 2,185.84 25.44 1,087.37
Liu et al. [14] 13,847.25 4.74 2,321.05 27.01 1,950.46
Mathew et al. [17] | 21, 361.00 5.32 2,066.93 24.05 1,125.95
This work 15,468.97 2.65 4,144.22 48.22 3,117.44

clock cycles. This is because the initial key addition and first-round computation
are performed with one clock cycle for [15]. Area was calculated without the
initial key, round key, and data registers to compare the datapaths more clearly.
Note also that the key scheduling parts of [15,17] were implemented with the
one presented in this paper because there is no description for the key scheduling
parts. (For [15], the isomorphic mapping from GF(2%) to GF((2*)?) was removed
for applying to the round function part.)

The results in Table 1 show that our datapath achieves the lowest latency
(i.e., highest throughput) compared with the conventional ones with tower-field
inversion circuits owing to the lower critical path delay. Moreover, the circuit
area is not the largest owing to fewer selectors. Note that the latency is con-
sistent with the throughput because these circuits are not pipelined. Although
all operations are translated to the tower field in our architecture, the area and
delay overheads of MixColumns and InvMixColumns are suppressed by the uni-
fication technique. In addition, even with a tower-field S-box, our architecture
has an advantage with regard to the latency over Lutz’s one with table-lookup-
based inversion, as indicated in Table2. As a result, our architecture is more
efficient in terms of the throughput per area than any conventional architecture.
More precisely, the proposed datapath is approximately 53-72 % more efficient
than any conventional architecture under the conditions of the three CMOS
processes. The results also suggest that the proposed architecture would per-
form an AES encryption or decryption with the smallest energy. Moreover, the
cutoff of an inactive path by a demultiplexer would further reduce the power

552 R. Ueno et al.

Table 2. Synthesis results for proposed and conventional AES hardware architectures
with area-speed optimization

Area (GE) | Latency (ns) | Max. freq. (MHz) | Throughput (Gbps) | Efficiency
(Kbps/GE)

TSMC 65-nm
Satoh et al. [29] 14,516.50 | 56.87 193.42 2.25 155.05
Lutz et al. [15] 22,883.25 | 33.90 294.99 3.78 165.00
Liu et al. [14] 13,970.50 | 60.17 182.82 2.13 152.27
Mathew et al. [17] | 23,298.49 | 65.45 168.07 1.96 83.94
This work 15,807.00 | 34.10 322.58 3.75 237.47
NanGate 45-nm
Satoh et al. [29] 13,386.67 | 24.42 450.45 5.24 391.55
Lutz et al. [15] 22,417.01 | 14.40 694.44 8.89 396.52
Liu et al. [14] 12,443.66 | 28.27 389.11 4.53 363.86
Mathew et al. [17] | 19,243.67 | 31.90 344.83 4.01 208.51
This work 14,582.99 | 13.53 813.01 9.46 648.73
NanGate 15-nm
Satoh et al. [29] 16,924.74 3.31 3,322.26 38.66 2,284.17
Lutz et al. [15] 25,692.49 2.08 4,799.85 61.44 2,391.28
Liu et al. [14] 15,768.43 3.65 3,014.14 35.07 2,224.29
Mathew et al. [17] | 23, 789.48 4.03 2,729.18 31.76 1,334.95
This work 17,232.00 1.80 6,117.70 71.19 4,131.14

consumption caused by a dynamic hazard, but this could not be evaluated by
the logic synthesis and still remains for the future study.

The performance of the architecture in [17] was relatively lower for our exper-
imental conditions because its critical path includes InvMixColumns to compute
MC~(K,) and therefore becomes longer than those of other designs. In addi-
tion, InvMixColumns over a tower-field is more area-consuming than that over
an AES field. This suggests that the architecture in [17] is not suitable for an on-
the-fly key scheduling implementation. The architectures in [14,29] have smaller
areas than the proposed architecture; however, our architecture has a higher
throughput. The increasing ratio of the throughput is larger than that of the
circuit area because the architectures in [14,29] use InvMixColumns to compute
MC~Y(K,) and require several additional selectors, respectively.

The above comparative evaluation was done with the proposed and some
conventional but representative datapaths. There are other previous works focus-
ing on efficiency (i.e., throughput per gate) by round-based architectures. How-
ever, such previous works do not provide a concrete implementation and/or
exhibit better performance than the abovementioned conventional datapaths.
For example, a hardware AES implementation with a short critical path was
presented in [21], which employed an RRB to reduce the critical path delay of
SubBytes/InvSubBytes and MixColumns/InvMixColumns. However, we could
not evaluate the efficiency by ourselves because of the lack of a detailed descrip-
tion. Another AES encryption/decryption architecture with a high throughput
was presented in [14]. However, the architecture had a lower throughput/area

A High Throughput/Gate AES Hardware Architecture 553

efficiency compared to the architecture in [29] according to that paper. More-
over, AES architectures that support either encryption or decryption such as in
[20,32] are not evaluated in this paper.

5 Discussion

The proposed design employs a round-based architecture without block-wise
parallelism such as pipelining. The modes of operations with block-wise paral-
lelism (e.g., the ECB and CTR modes) are also available owing to the trade-off
between the area and the throughput by pipelining [11]. A simple way to obtain
a pipelined version of the proposed architecture is to unroll the rounds and
insert pipeline registers between them. The datapath can be further pipelined
by inserting registers into the round datapath. The proposed datapath can be
efficiently pipelined by placing the pipeline register at the output of the inversion
with a good delay balance between the inversion and the following circuit. For
example, the synthesis results for the proposed datapath using the area-speed
optimization with the NanGate 45-nm standard-cell library indicated that the
inversion circuit had a delay of 0.63 ns, and the remainder had a delay of 0.67 ns.
As a result, pipelining would achieve a throughput of 17.37 Gbps, which is nearly
twice that without pipelining. Thus, the proposed datapath is also suitable for
such a pipelined implementation.

Another discussion point is how the proposed architecture can be resistant
to side-channel attacks. A masking countermeasure would be based on a masked
tower-field inversion circuit [9,25] such as that in [24]. The major features of
the countermeasure are to replace the inversion with a masked inversion and
to duplicate other linear operations. Such a countermeasure can also be applied
to the proposed datapath. In addition, hiding countermeasures, such as WDDL
[30], which replaces the logic gates with a complementary logic style, would also
be applicable, and the hardware efficiency would be proportionally lower with
respect to the results in Tables1 and 2.

More sophisticated countermeasures such as threshold implementation (TI)
and generalized masking schemes (GMSs) [4,5,18,22,26] would also be applicable
to the proposed datapath in principle in the same manner as other conventional
ones. On the other hand, such countermeasures, especially against higher-order
DPAs, require a considerable area overhead and more random bits compared with
the aforementioned countermeasures. When applying such countermeasures, the
area overhead would be critical for some applications. In addition, TT- and GMS-
based inversion circuits should be pipelined to reduce the resulting circuit area
(i.e., the number of shares). To divide the circuit delay equally, it would be better
to insert pipeline register at the middle of Encryption and Decryption path in
Fig. 7.

554 R. Ueno et al.

6 Conclusion

This paper presented a new efficient round-based AES architecture that supports
both encryption and decryption. An efficient AES datapath with a lower latency
(or higher throughput per gate) is suitable for some practical modes of opera-
tion, such as CBC and CCM, because pipelined parallelism cannot be applied
to such modes. The proposed datapath utilizes new operation-reordering and
register-retiming techniques to unify critical components (i.e., inversion and lin-
ear matrix operations) with fewer additional selectors. As a result, our datapath
has the lowest critical path delay compared to conventional ones with tower-
field S-boxes. The proposed and conventional AES hardware were designed on
the basis of compatible round-based architectures and evaluated using logic syn-
thesis with TSMC 65-nm and NanGate 45- and 15-nm CMOS standard-cell
libraries under the worst-case conditions. The synthesis results suggested that
the proposed architecture was approximately 53—-72 % more efficient than the
best conventional architecture in terms of the throughput per area, which would
also indicate that the proposed architecture can perform encryption/decryption
with the lowest energy.

The performance evaluation was performed at the design stage of the logic
synthesis; therefore, the power consumption and latency considering place and
route were not evaluated. A detailed evaluation after the place and route is
planned as future work. However, the post-synthesis results would be propor-
tional to the presented synthesis results because the proposed and conventional
architectures employ the same or similar hardware algorithms (e.g., tower-field
inversion) and do not have any extra global wires that have an impact on the
critical path. The design of efficient and side-channel-resistant AES hardware
based on the proposed datapath is also planned for future work.

Acknowledgment. This work has been supported by JSPS KAKENHI Grant No.
25240006.

Appendix: An Example Set of Linear Mappings
and a Unified Affine

This appendix provides an example set of matrices for linear operations, i.e.,
an isomorphic mapping, an inverse isomorphic mapping, an affine transforma-
tion over the tower field, inverse affine transformation over the tower field,
Up,Ur,Us,Us, Vy, V1, Vo, and V3. In this study, we employ the tower-field inver-
sion circuit in [31]. In the following formulae, the least-significant bits are in the
upper-left corner.

A High Throughput/Gate AES Hardware Architecture

555

The conversion matrices of the isomorphic mapping and its inverse mapping
(denoted by § and ¢’, respectively) are given by

01011100 1101100110
10100011 0101001010
10010001 0100110111
5= 00000100 5 — 1000101111)
01101100]" 1001000101
10101000 1000100000
11100001 1111011000
00110001 1100001001

The isomorphic mapping using ¢ performs conversion from the AES field to the
tower field used in [31] (i.e., an NB-based GF((2%)?)). The inverse isomorphic
mapping using &’ performs conversion from the RRB-based GF((2%)?) to the
AES field. The affine and inverse affine matrices over the tower field (denoted

by ¢ and ¢’, respectively) are given by

1110100110 00010110
1000100110 11010110
1101110100 01011000
1000110111 ’ 00111011
¢ = 1001010001 » 9= 00100001 (10)
1101101001 01010101
1001011110 00101110
1101101100 01010000

The input and output of the linear mapping represented by ¢ are given by the
RRB- and NB-based GF((2%)?), respectively. The input and output of the linear
mapping represented by ¢’ are given by the NB-based GF((2%)2). The constants
A(c) and A(c') are given by 3° + 33+ 32 and 37 + B* + 52, respectively. Let 1.
and v/ be the matrices representing U, and V., respectively (0 < e < 3). The

matrices g, P1, 2, and 3 are given by

1111001111
0011010100
1101101111
1101110001

0001101001
1011110010
0000011011
0101000110

Y0=11001000011]" "= |0000010010]/" (11)
1011100000 0110001001
1110101010 0111110100
0100101001 1001000101

o =13 = @. (12)

556

R. Ueno et al.

respectively. The matrices ¢, 1], ¥}, and ¢4 are given by

0000001100

0000011011

0010100101 0001100011
0100111011 1100001001
, |1o000111011| , |o111101001
Y0=11100000101) "= 1011100011 (13)
0010100011 0001111110
1101100011 0100111110
1101111110 0100101010
1011111110 0011001111
0101011110 1000111110
1000111011 0010110001
, lot11110100| , |1o001011101
Y2=11100010111]" ¥*=|0010100000 (14)
1000110001 1001001001
1100000101 1100000110
1000100000 0011010100
References

Cryptographic hardware project. http://www.aoki.ecei.tohoku.ac.jp/crypto/

2. NanGate FreePDK15 open cell library, January 2016. http://www.nangate.com/?

®

10.

11.

12.

page_id=2328

NanGate FreePDK45 open cell library, January 2016. http://www.nangate.com/?
page_id=2325

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326-343. Springer, Heidelberg (2014)

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr.
Syst. 34(7), 1188-1200 (2015)

Boyer, J., Matthews, P.; Peralta, P.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptology 47, 280-312 (2013)

Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441-455. Springer, Heidelberg (2005)

Canright, D.: http://faculty.nps.edu/drcanrig/

Canright, D., Batina, L.: A very compact “Perfectly Masked” S-Box for AES. In:
Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446-459. Springer, Heidelberg (2008)

Hammad, I., El-Sankary, K., El-Masry, E.: High-speed AES encryptor with efficient
merging techniques. IEEE Embed. Syst. Lett. 2, 67-71 (2010)

Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to
70 Gbits/s AES processors. IEEE Trans. Comput. 50(4), 366-372 (2006)

Jeon, Y., Kim, Y., Lee, D.: A compact memory-free architecture for the AES
algorithm using resource sharing methods. J. Circ. Syst. Comput. 19(5), 1109—
1130 (2010)

http://www.aoki.ecei.tohoku.ac.jp/crypto/
http://www.nangate.com/?page_id=2328
http://www.nangate.com/?page_id=2328
http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325
http://faculty.nps.edu/drcanrig/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A High Throughput/Gate AES Hardware Architecture 557

Lin, S.Y., Huang, C.T.: A high-throughput low-power AES cipher for network
applications. In: The 12th Asia and South Pacific Design Automation Conference
(ASP-DAC 2007), pp. 595-600. IEEE (2007)

Liu, P.C., Chang, H.C., Lee, C.Y.: A 1.69 Gb/s area-efficient AES crypto core
with compact on-the-fly key expansion unit. In: 41st European Solid-State Circuits
Conference (ESSCIRC 2009), pp. 404-407. IEEE (2009)

Lutz, A., Treichler, J., Giirkaynak, F., Kaeslin, H., Basler, G., Erni, A., Reichmuth,
S., Rommens, P., Oetiker, P., Fichtner, W.: 2Gbit/s hardware realizations of RIJN-
DAEL and SERPENT: a comparative analysis. In: Kaliski, B.S., Ko¢, C.K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 144-158. Springer, Heidelberg (2002)
Mathew, S., Satpathy, S., Suresh, V., Anders, M., Himanshu, K., Amit, A., Hsu, S.,
Chen, G., Krishnamurthy, R.K.: 340 mV-1.1V, 289 Gbps/W, 2090-gate nanoAES
hardware accelerator with area-optimized encrypt/decrypt GF(2*)? polynomials
in 22 nm tri-gate CMOS. IEEE J. Solid-State Circ. 50, 1048-1058 (2015)
Mathew, S.K., Sheikh, F., Kounavis, M.E., Gueron, S., Agarwal, A., Hsu, S.K.,
Himanshu, K., Anders, M.A., Krishnamurthy, R.K.: 53 Gbps native GF(2*)?
composite-field AES-encrypt/decrypt accelerator for content-protection in 45 nm
high-performance microprocessors. IEEE J. Solid-State Circ. 46, 767776 (2011)
Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69-88. Springer, Heidelberg (2011)
Morioka, S., Satoh, A.: An optimized S-Box circuit architecture for low power AES
design. In: Kaliski, B.S., Kog, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 172-186. Springer, Heidelberg (2002)

Morioka, S., Satoh, A.: A 10 Gbps full-AES crypto design with a twisted-BDD S-
box architecture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12, 686-691
(2004)

Nekado, K., Nogami, Y., Iokibe, K.: Very short critical path implementation of
AES with direct logic gates. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012.
LNCS, vol. 7631, pp. 51-68. Springer, Heidelberg (2012)

Nikova, S., Rijmen, V., Schléffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glithces. J. Cryptology 24, 292-321 (2011)

Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for
efficient inversion in F((;2y2)2 and conversion matrices of SubBytes of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234-247.
Springer, Heidelberg (2010)

Okamoto, K., Homma, N., Aoki, T., Morioka, S.: A hierarchical formal approach
to verifying side-channel resistant cryptographic processors. In: Hardware-Oriented
Security and Trust (HOST), pp. 76-79. IEEE (2014)

Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413-423. Springer, Heidelberg (2005)

Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764-783. Springer, Heidelberg (2015)

Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Kog, C.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171-184. Springer,
Heidelberg (2001)

558

28.

29.

30.

31.

32.

R. Ueno et al.

Sasao, T.: AND-EXOR expressions and their optimization. In: Sasao, T. (ed.) Logic
Synthesis and Optimization. The Kluwer International Series in Engineering and
Computer Science, vol. 212, pp. 287-312. Kluwer Academic Publishers (1993)
Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASTACRYPT 2001. LNCS,
vol. 2248, pp. 239-254. Springer, Heidelberg (2001)

Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE), vol. 1, pp. 246-251 (2004)

Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF(2®)
inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Giineysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63-80. Springer, Heidelberg (2015)

Verbauwhede, 1., Schaumont, P., Kuo, H.: Design and performance testing of a
2.29-GB/s Rijndael processor. IEEE J. Solid-State Circ. 38, 569-572 (2003)

	A High Throughput/Gate AES Hardware Architecture by Compressing Encryption and Decryption Datapaths
	1 Introduction
	2 Related Works
	2.1 Unified AES Datapath for Encryption and Decryption
	2.2 Inversion Circuit Design and Tower-Field Arithmetic

	3 Proposed Architecture
	3.1 Round Function Part
	3.2 Key Scheduling Part

	4 Performance Evaluation
	5 Discussion
	6 Conclusion
	References

