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Abstract. It has been proved in Eurocrypt 2016 by Sun et al. that if
the details of the S-boxes are not exploited, an impossible differential and
a zero-correlation linear hull can extend over at most 4 rounds of the
AES. This paper concentrates on distinguishing properties of AES-like
SPN ciphers by investigating the details of both the underlying S-boxes
and the MDS matrices, and illustrates some new insights on the secu-
rity of these schemes. Firstly, we construct several types of 5-round zero-
correlation linear hulls for AES-like ciphers that adopt identical S-boxes
to construct the round function and that have two identical elements in a
column of the inverse of their MDS matrices. We then use these linear hulls
to construct 5-round integrals provided that the difference of two sub-key
bytes is known. Furthermore, we prove that we can always distinguish 5
rounds of such ciphers from random permutations even when the differ-
ence of the sub-keys is unknown. Secondly, the constraints for the S-boxes
and special property of the MDS matrices can be removed if the cipher is
used as a building block of the Miyaguchi-Preneel hash function. As an
example, we construct two types of 5-round distinguishers for the hash
function Whirlpool. Finally, we show that, in the chosen-ciphertext mode,
there exist some nontrivial distinguishers for 5-round AES. To the best
of our knowledge, this is the longest distinguisher for the round-reduced
AES in the secret-key setting. Since the 5-round distinguisher for the
AES can only be constructed in the chosen-ciphertext mode, the security
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margin for the round-reduced AES under the chosen-plaintext attack may
be different from that under the chosen-ciphertext attack.

Keywords: Distinguishinger · AES · Whirlpool · Zero correlation
linear · Integral

1 Introduction

Block ciphers are among the most important primitives in constructing sym-
metric cryptographic schemes such as encryption algorithms, hash functions,
authentication schemes and pseudo-random number generators. The Advanced
Encryption Standard (AES) [12] is currently the most interesting candidate to
build different schemes. For example, in the on-going Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness (CAESAR) [10],
among many others, the permutation of PRIMATEs [1] is designed based on
an AES-like SPN structure, AEGIS [40] uses 4 AES round-functions in the
state update functions, ELmD [13] recommends to use some round-reduced AES
including the 5-round AES to partially encrypt the data, and 4-round AES is
adopted by Marble [21], and used to build the AESQ permutation in PAEQ [5].
Although the security of these candidates does not completely depend on the
underlying primitives, we believe that security of the round-reduced AES could
give some new insights to both the design and cryptanalysis of the authenticated
encryption algorithms.

1.1 Distinguishers

The distinguishing properties refer to those properties of a cipher that random
permutations do not have thus we can distinguish a cipher from random permu-
tations. For example, in differential cryptanalysis [4], one always finds an r-round
differential characteristic with high probability while for random permutations
such a differential characteristic does not exist.

In [11], Daemen et al. proposed a new method that can break more
rounds of SQUARE than differential and linear cryptanalysis, which is named
the SQUARE attack consequently. Some similar ideas such as the satura-
tion attack [30], the multi-set attack [6], and the higher-order differential
attack [23,27] have also been proposed. In [26], Knudsen and Wagner proposed
the integral cryptanalysis as a generalized case of these attacks. In an integral
attack, with some special inputs, one checks whether the sum of the correspond-
ing ciphertexts is zero or not. Integral attacks on the round-reduced AES are
based on the following distinguisher:

Property 1 [12,17]. Let 15 bytes of the input be constants and the remaining
byte take all possible values from F28 . Such a set is called a Λ-set. Then, the
sum of each byte of the output of the third round is 0. Furthermore, let the
4 bytes in the diagonal of the state take all possible values from F

4
28 and the
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other 12 bytes be constants, then the output of 1-round AES can be divided
into 224 Λ-sets. Therefore, the sum of each byte of the output of the fourth
round is 0.

Gilbert and Minier showed that the set of functions mapping one active byte
to one byte after 3 rounds depends on 9-byte parameters [20]. Therefore, the
whole set can be described by using a table of 272 entries of 256-byte sequences.
This idea was later generalized by Demirci and Selçuk in [14] using meet-in-the-
middle techniques. They showed that on 4 rounds, the value of each byte of the
ciphertext can be described by a function of the active byte parameterized by
25 in [14] and 24 8-bit parameters in [15].

Property 2 [15]. The set of functions mapping one active byte to one byte after
4 rounds AES depends on 24 one-byte parameters.

Knudsen [24] and Biham et al. [3] independently proposed impossible-differential
cryptanalysis. The main idea of impossible-differential cryptanalysis is to use
differentials that hold with probability zero to discard the wrong keys that lead
to the impossible differential. Now, it is one of the most effective methods towards
many different ciphers. One of the 4-round impossible differentials is shown as
follows:

Property 3 [31,32,34]. The differential, where there is only one nonzero (active)
byte of the input difference and output difference, respectively, is a 4-round
impossible differential of the AES.

Zero-correlation linear cryptanalysis was proposed by Bogdanov and Rijmen
in [9]. They try to construct some linear hulls with correlation exactly zero. The
4-round zero correlation linear hull of the AES is shown as follows:

Property 4 [9]. If there is only one nonzero (active) byte of the input mask and
output mask, respectively, then the correlation of 4-round AES is 0.

In summary, although there exist some 5-round distinguishers for AES-192 and
AES-256 [16], the known distinguishers for all version of the AES only cover at
most 4 rounds.

All the above distinguishers are in the secret-key setting, which were used
in key recovery attacks. At Asiacrypt 2007, Knudsen and Rijmen proposed the
known-key distinguisher for block ciphers [25]. In the setting that the key is
public to the attacker, one can construct 7-round known-key distinguisher for the
AES, which was improved to 8-round and 10-round in [19]. Allowing even more
degrees of freedom to attackers so that they can even choose keys, distinguishers
of 9-round AES were proposed [18] in the chosen-key setting. In this paper, we
restrict ourselves to the secret-key setting, and the distinguishers to be presented
are natural extensions of those used in key recovery attacks.

1.2 Key-Recovery Attacks

The aim of a key-recovery attack is to recover some round keys of a cipher. Usu-
ally, the attack is applied once some distinguishing property of the reduced-round
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block cipher has been found. Up to date, the biclique attack can recover some
subkeys of the full round AES with slightly less than exhaustive complexity [7].
We briefly list some results of the key-recovery attacks against round-reduced
AES as in Table 1, together with the number of rounds of the underlying distin-
guishers used.

Table 1. Some key-recovery attacks against AES-128

Rounds Technique Data Memory Time Reference Rounds of
distinguisher

6 Integral 6 × 232 28 272 [17] 4

7 Integral 2127.997 264 2120 [17] 4

7 Impossible differential 2112.2 2112.2 2117.2 [31] 4

7 Impossible differential 2106.2 290.2 2110.2 [32] 4

7 Meet-in-the-middle 2105 290 299 [16] 4

7 Meet-in-the-middle 297 298 299 [16] 4

1.3 Details of the Components of a Cipher

If we choose the parameters carefully, the dedicated cipher based on the AES-like
structure can be resilient to both differential [4] and linear cryptanalysis [33].
For example, based on the fact that the branch number of the MixColumns is 5,
it is proved in [12] that the number of active S-boxes of 4-round AES is at least
25. Since the maximal differential probability of the S-box is 2−6, there does not
exist any differential characteristic of 4-round AES with probability larger than
2−6×25 = 2−150.

In most cases, especially in the cryptanalysis of AES, one does not have
the necessity to investigate the details of the S-boxes. Thus, the corresponding
results are independent of the non-linear components. In other words, if some
other S-boxes with similar differential/linear properties are chosen in a cipher,
the corresponding cryptanalytic results remain almost the same. To characterize
what “being independent of the choice of the S-boxes” means, in [37], Sun et al.
proposed the concept of Structure of a block cipher. By structural evaluation,
we mean the domain of cryptography that analyzes a cryptosystem in terms
of generic constructions which keep the linear parts of the cipher and omit the
details of the non-linear components.

The influence of the choices of S-boxes in constructing integral distinguishers
has been studied in [22,29,35]. For example, if ARIA adopts only one S-box,
more balanced bytes could be determined and if the order of different S-boxes is
changed (There are 4 different S-boxes in ARIA), one will get different integral
distinguishers from the one constructed in [29]. In [35], the authors pointed out
that in some cases, the key-recovery attacks based on the integral distinguisher
may fail. Very recently, Todo proposed the division property [38] by which one
could build longer integral distinguishers provided the algebraic degree of the
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S-boxes is known. For example, a 6-round integral for MISTY1 was built in [39]
based on which the first cryptanalysis result against the full MISTY1 was found.

Although there are already 4-round impossible differentials and zero-
correlation linear hulls for the AES, the effort to find new impossible differ-
entials and zero-correlation linear hulls that could cover more rounds has never
been stopped. In Eurocrypt 2016, Sun et al. proved that, unless the details of
the S-boxes are exploited, one cannot find any impossible differential or zero-
correlation linear hull of the AES that covers 5 or more rounds:

Property 5 [36]. There does not exist any impossible differential or zero-
correlation linear hull of EAES which covers r ≥ 5 rounds. Or equivalently, there
does not exist any 5-round impossible differential or zero-correlation linear hull
of the AES unless the details of the S-boxes are considered.

To increase the performance of a block cipher, one usually uses an MDS
(Maximal Distance Seperatable) matrix whose elements are restricted to low
hamming weights in order to reduce the workload of the multiplications over
finite fields. Furthermore, it is noticed that not only the MDS matrices are
always circulant, but also there are identical elements in each row. For example,
in AES, the first row of the MDS matrix is (02, 03, 01, 01). However, most known
techniques have not made use of these observations and there is little literature
concentrating on the choices of these matrices in constructing distinguishers of
round-reduced AES. Since known impossible differentials and zero-correlation
linear hulls of round-reduced AES are constructed based on the fact that the
branch number of the MixColumns is 5, these two types of distinguishers still
hold even if a different 4 × 4 MDS matrix over F28 is used. Furthermore, since
the inverse of an MDS matrix also has the MDS property, these distinguishers
hold not only in the chosen-plaintext setting, but also in the chosen-ciphertext
setting.

1.4 Our Contributions

This paper concentrates on the details of both the S-boxes and MDS matrices
that are used in AES-like SPN structures. Denote by MMC the MDS matrix used
in a cipher. If there are two identical elements in a row of (M−1

MC)T and if the
cipher adopts identical S-boxes, then we can construct a 5-round distinguisher.
This implies that applied to AES, our distinguisher covers the most number of
rounds up till now.

(1) If the difference of two sub-key bytes is known, we can construct several types
of 5-round zero-correlation linear hulls for such ciphers without MixColumns
operation in the last round which could be turned into 5-round integrals both
with and without MixColumns operations in the last round. Furthermore,
we not only prove that 5 rounds of such ciphers with MixColumns operation
in the last round can be distinguished from a random permutation, but also
that some sub-keys can be recovered from the distinguisher directly.



610 B. Sun et al.

(2) In a hash function setting, where an AES-like SPN structure is used as a
building block and the chaining value acts as the key, there always exist
5-round distinguishers. As a proof of concept, we give two types of 5-round
distinguishers for the hash function Whirlpool.

For the AES, every row of (M−1
MC)T contains 4 different elements. Thus we cannot

apply the results to the AES directly. However, for the decryption of the AES,
every row of (M−1

MC)T contains twice the same element 01, therefore we can
construct a 5-round distinguisher for the AES in a chosen-ciphertext mode:

(3) For 5-round AES, divide the whole space of plaintext-ciphertext pairs into
the following 28 subsets:

AΔ = {(p, c)|c0,0 ⊕ c1,3 = Δ}.

Then, there always exists a Δ such that
∑

(p,c)∈AΔ
p = 0, while for random

permutations, this happens with probability 1 − (1 − 2−128)2
8 ≈ 2−120.

Furthermore, we can deduce k0,0 ⊕ k1,3 = Δ from the distinguisher.

Since this property only applies in the chosen-ciphertext setting, we conclude
that the security margin of the AES under the chosen-plaintext setting may be
different from the one under the chosen-ciphertext setting. Furthermore, since we
have proved that 5-round AES can be distinguished from a random permutation,
more attention should be paid when round-reduced AES is used as a building
block in some new cryptographic schemes.

Though we have already found some 5-round distinguisher, we leave as an
open problem whether we could mount more efficient key-recovery attack against
round-reduced AES or other AES-based schemes.

2 Preliminaries

Before proceeding to our results, we first introduce some notations here on both
boolean functions and the ciphers we are analyzing.

2.1 Boolean Functions

Given a boolean function G : Fn
2 → F2, the correlation of G is defined by

c(G(x)) �
1
2n

∑

x∈F
n
2

(−1)G(x).

Given a vectorial function H : Fn
2 → F

k
2 , the correlation of the linear approxi-

mation for a k-bit output mask b and an n-bit input mask a is defined by

c(a · x ⊕ b · H(x)) �
1
2n

∑

x∈F
n
2

(−1)a·x⊕b·H(x),
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where “·” is the inner product of two elements. If c(a · x ⊕ b · H(x)) = 0, then
a → b is called a zero-correlation linear hull of H, following the same definition
in [9]. Let A ⊆ F

n
2 , B ⊆ F

k
2 , if for all a ∈ A, b ∈ B, c(a · x ⊕ b · H(x)) = 0, then

A → B is called a zero-correlation linear hull of H.
In this paper, we denote by circ(a0, a1, . . . , an−1) a circulant matrix defined

as follows:

circ(a0, a1, . . . , an−1) =

⎛

⎜
⎜
⎜
⎝

a0 a1 . . . an−1

an−1 a0 . . . an−2

...
...

...
...

a1 a2 · · · a0

⎞

⎟
⎟
⎟
⎠

.

For any vector v = (v0, v1, . . . , vn−1) ∈ F
n
2b , the Hamming Weight of v is defined

as the number of non-zero components of v:

wt(v) = #{i|vi �= 0, i = 0, 1, . . . , n − 1}.

Let P ∈ F
n×n
2b , then the branch number of P is defined as

B(P ) = min
0 �=x∈F

n

2b

{wt(x) + wt(Px)}.

Obviously, for any x ∈ F
n
2b , we always have wt(Px) ≤ n. Therefore, we can

choose x such that wt(x) = 1 which indicates that B(P ) ≤ n + 1. A matrix
P ∈ F

n×n
2b is called Maximum Distance Separable (MDS) matrix if and only

if B(P ) = n + 1. In the proof of the security of a cipher against differential
and linear cryptanalysis, one can make use of the branch number to bound the
number of active S-boxes. Since a larger branch number usually gives more active
S-boxes, MDS matrices are widely used in modern block ciphers including AES.

2.2 SPN and AES-Like SPN Ciphers

To keep our results as general as possible, we are going to give a generic
description of the Substitution-Permutation Network (SPN) ciphers and AES-
like ciphers, respectively. We assume that the input can be viewed as an n × n
square matrix over F2b , which implies that both the input (plaintext) and output
(ciphertext) of the block ciphers count n2b bits. The cipher successively applies
R round functions, and we denote respectively by s(r) and k(r) the input and
sub-key states of the r-th round. The state s(0) is initialized with the input plain-
text. One round function is composed of the following layers: a key addition layer
(KA) where an n2b-bit roundkey k(r−1) is xored to s(r−1), a block cipher permu-
tation layer BC that updates the n2b-bit current state of the block cipher after
addition of the subkey, i.e. s(r) = BC(s(r−1) ⊕ k(r−1)). For an SPN cipher, the
permutation BC is composed of SubBytes (SB) which applies non-linear trans-
formations to the n2 b-bit bytes in parallel, and then a layer P which is linear
over F

n2b
2 , i.e. BC = P ◦ SB. The final ciphertext is then defined as s(r) ⊕ k(r).
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In the following, we will simply use E(n, b, r) to denote an r-round AES-like SPN
cipher which operates on n × n b-bit bytes.

In the case of AES-like ciphers, the internal state of BC can be viewed as a
square matrix of b-bit cells with n rows and n columns. A cell of s(r) is denoted
by s

(r)
i,j , where i is its row position and j its column position in the square

matrix, starting counting from 0. Then, the linear layer itself is composed of the
ShiftRows transformation (SR), which can be defined as a permutation πSR =
(l0, l1, . . . , ln−1) on Zn = {0, 1, . . . , n − 1} that moves cell s

(r)
i,j by li positions

to the left in its own row, and the MixColumns transformation (MC), which
linearly mixes all the columns of the matrix. Overall, for AES-like ciphers, we
always have BC = P ◦ S = MC ◦ SR ◦ SB.

The AES Block Cipher. AES only uses a single S-box which is based on the
inverse function over F28 to construct the round function. The SR and the MC
of AES are defined as follows:

πSR = (0, 1, 2, 3),

MMC =

⎛

⎜
⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎠ = circ(02, 03, 01, 01).

Since we do not investigate the key-recovery attacks, please refer to [12] for the
details of the key schedule.

3 Zero-Correlation Linear Cryptanalysis of AES-Like
SPN Ciphers

3.1 Zero-Correlation Linear Hull of 4-round AES-Like Ciphers

In zero-correlation linear cryptanalysis, we construct some linear hulls with cor-
relation exactly zero. One of the most efficient methods to construct zero cor-
relation linear hulls is based on the miss-in-the-middle technique, i.e., we start
from the beginning and the end of the cipher, partially encrypt the plaintext and
decrypt the ciphertext, respectively. Then some contradiction could be found in
the middle round of the cipher with probability 1. For example, the 4-round
zero-correlation linear hull of the AES is built as follows [9] (see Fig. 1): if only
the first byte of the input mask is active, then after 1 round, all the 4 bytes in
the first column of the output mask are active. Thus in each column of the input
mask to the second MixColumns, the number of active bytes is 1. Using the
same technique, we find that if there is only 1 active byte in the output mask of
the forth round, in each column of the output mask to the second MixColumns
round, the number of active bytes is 1. Since the branch number of MixColumns
is 5, we find a contradiction which indicates that the correlation of such a linear
hull is 0.
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Fig. 1. 4-round zero-correlation linear hull of the AES

To enhance the performance of a cipher, designers usually use identical S-
boxes and a diffusion layer whose elements often have relatively low hamming
weights, which not necessarily but often cause some weakness as shown in the
following.

3.2 New Cryptanalysis of 5-round AES-Like Ciphers

Though it has been proven that the longest zero-correlation linear hull of the
AES only covers 4 rounds if we do not investigate the details of the S-box, we
can improve this result exactly by exploiting these details.

In this section, we are going to use the miss-in-the-middle technique to con-
struct some novel distinguishers of AES-like SPN ciphers, provided that the
difference of two sub-keys bytes is known. Firstly, we recall the following proposi-
tions for the propagation of input-output masks/differentials of linear functions:

Proposition 1. Let L be a linear transformation defined on F
T
2 , and L ∈ F

t×t
2

be the matrix representation of L. Then,

(1) For any input-output mask ΓI → ΓO, if the correlation is nonzero, we always
have ΓO = (L−1)TΓI .

(2) For any input-output difference ΔI → ΔO, if the differential probability is
nonzero, we always have ΔO = LΔI .

Since ShiftRows in the first round does not influence the results, in this
section, we omit SR in the first round. Denote by (M−1

MC)T = (m∗
i,j) the transpose



614 B. Sun et al.

of the inverse of MMC. We assume that an AES-like SPN cipher E(n, b, r) satisfies
the following conditions:

(1) There exists a triplet (i, j0, j1) such that m∗
i,j0

= m∗
i,j1

where j0 �= j1;
(2) Without loss of generality, the S-boxes used at positions (j0, 0) and (j1, 0)

are identical.

Lemma 1. Let E(n, b, r) be an AES-like SPN cipher satisfying conditions (1)
and (2). Define

V = {(si,j) ∈ F
n×n
2b |sj0,0 ⊕ sj1,0 = kj0,0 ⊕ kj1,0}.

For any 0 �= a ∈ F2b , let the input mask be

ΓI = (αi,j)0≤i,j≤n−1, αi,j =

{
a (i, j) = (j0, 0), (j1, 0),
0 otherwise,

and the output mask be ΓO = (βi,j) ∈ F
n×n
2b . Then, if the correlation ΓI → ΓO

of E(n, b, 1) on V is non-zero, we have

wt(β0,0,, β1,0, . . . , βn−1,0) = n − 1,

βi,j = 0 for j ≥ 1, and the absolute value of the correlation is 1.

Proof. Let the output mask of the SB layer be

ΓSB = (γi,j) ∈ F
n×n
2b .

To make the correlation non-zero, γi,j = 0 should hold if αi,j = 0. Next, we will
show γj0,0 = γj1,0. Since sj0,0 ⊕ sj1,0 = kj0,0 ⊕ kj1,0, denote by

x = sj0,0 ⊕ kj0,0 = sj1,0 ⊕ kj1,0,

then

ΓI · X ⊕ ΓSB · S(X) = a · x ⊕ a · x ⊕ γj0,0 · S(x) ⊕ γj1,0 · S(x)
= (γj0,0 ⊕ γj1,0) · S(x),

Since S(x) is a permutation on F2b , if γj0,0 ⊕γj1,0 �= 0, the correlation of (γj0,0 ⊕
γj1,0) · S(x) is always 0. On the other hand, if γj0,0 ⊕ γj1,0 = 0, the correlation
is always 1.

Therefore, to make the correlation non-zero, according to Proposition 1, the
output mask of E(n, b, 1) should be

ΓO = (M−1
MC)TΓSB.

Taking this into consideration, the absolute value of the correlation is always 1
which ends our proof. ��
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Lemma 2. Let E(n, b, r) be an AES-like SPN cipher satisfying conditions (1)
and (2). Let Δ = k

(0)
j0,0 ⊕ k

(0)
j1,0, and define

VΔ = {(s(0)i,j ) ∈ F
n×n
2b |s(0)j0,0 ⊕ s

(0)
j1,0 = Δ}.

For any 0 �= a ∈ F2b , let the input mask be

ΓI = (αi,j)0≤i,j≤n−1, αi,j =

{
a (i, j) = (j0, 0), (j1, 0),
0 otherwise,

and for any 0 �= d ∈ F2b , (u, v) ∈ Zn × Zn, let the output mask be

Γ
(u,v)
O = (βi,j)0≤i,j≤n−1, βi,j =

{
d (i, j) = (u, v),
0 otherwise.

Then for E(n, b, 5) without MixColumns in the last round, the correlation for
ΓI → Γ

(u,v)
O on VΔ is always 0.

Proof. The proof is divided into 2 halves (Fig. 2 gives the procedure of the proof
for the case n = 4 and πSR = (0, 3, 2, 1)):

Firstly, from the encryption direction, let the input mask be ΓI as defined
above. According to Lemma 1, the output mask of the first round has the fol-
lowing properties: there are n − 1 non-zero elements in the first column and all
of the elements in other columns are zero.

Then, in the second round, the output mask of the SB layer keeps the pattern
of the input mask and SR shifts the n − 1 non-zero elements to n − 1 different
columns. Since MC has the MDS property, we can conclude that the output mask
of the second round has the following properties: there exists 1 column such that
all elements in this columns are 0’s, and all elements in the other columns are
non-zero.

In the third round, the output mask of the SB layer keeps the pattern of the
input mask and SR shifts the n zero elements to n different columns, i.e., there
are n−1 non-zero elements in each column of the input mask of MC in the third
round.

Using the same technique, we can find that from the decryption direction,
there is only 1 non-zero element in each column of the output mask of MC in
the third round.

Since the MC has the MDS property, i.e., the sum of number of non-zero
elements from both the input and output mask of MC is at least n + 1, the
correlation of ΓI → Γ

(u,v)
O is 0. ��

4 Integrals for the AES-Like SPN Ciphers

Links between integrals and zero correlation linear hulls were first studied by
Bogdanov et al. at Asiacrypt 2012 [8], and then refined at CRYPTO 2015 [37].
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Fig. 2. Proof for the zero correlation linear hull of E(n, b, 5)

In [37], Sun et al. proved that a zero correlation linear hull of a block cipher
always implies the existence of an integral distinguisher which gives a novel
way to construct integrals of a cipher. For example, the 4-round zero-correlation
linear hull of the AES implies the following distinguisher: Let 15 bytes of the
input take all possible values from F

15
28 and the other 1 byte be constant, then

each byte of the output before the MixColumns operation in the forth round
takes each value from F28 exactly 2112 times.

This section mainly discusses the integral properties of the AES-like ciphers
based on the links between zero correlation linear hulls and integrals. It was
pointed out at CRYPTO 2015 [37] that a zero-correlation linear hull always
implies the existence of an integral, based on which we can get the following
results.

Corollary 1. Let E(n, b, r) be an AES-like SPN cipher satisfying conditions (1)
and (2). Let Δ = k

(0)
j0,0 ⊕ k

(0)
j1,0 and the input set be

VΔ = {(s(0)i,j )0≤i,j≤n−1 ∈ F
n×n
2b |s(0)j0,0 ⊕ s

(0)
j1,0 = Δ}.
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Then for each output byte of E(n, b, 5) without MixColumns, every value of F2b

appears exactly 2(n
2−2)b times, and the sum of every output byte of E(n, b, 5) with

MixColumns is 0.

Since there exists exactly one value in {0, 1, · · · , 2b − 1} which is equal to
δ = k

(0)
j0,0 ⊕ k

(0)
j1,0, we have:

Theorem 1. Denote by E(n, b, r) an r-round AES-like SPN cipher with Mix-
Columns in the last round, where b and n are the sizes of the S-boxes and
the MDS matrix, respectively. Let (M−1

MC)T = (m∗
i,j) ∈ F

n×n
2b be the transpose

of the inverse of MMC. Assume that there exists a triplet (i, j0, j1) such that
m∗

i,j0
= m∗

i,j1
. Then E(n, b, 5) can be distinguished from a random permutation

R as follows: for F ∈ {E(n, b, 5),R} and Δ = 0, 1, . . . , 2b − 1, divide the whole
input-output space into the following 2b subsets:

AF
Δ = {(p, c)|c = F (p), pj0,a0 ⊕ pj1,a1 = Δ},

where SR moves pj0,a0 and pj1,a1 to the same column, and let

TF
Δ =

∑

(p,c)∈AF
Δ

c.

If the S-boxes applied to pj0,a0 and pj1,a1 are identical, there always exists a
Δ such that T

E(n,b,5)
Δ = 0, while for random permutations, this happens with

probability 1 − (1 − 2−n2b)2
b ≈ 2−(n2−1)b. Furthermore, we can deduce that the

value of kj0,a0 ⊕ kj1,a1 is Δ.

This theorem can be clearly deduced from Corollary 1 above. We can further
give a direct proof as follows.

Proof. Without loss of generality, let (M−1
MC)T = (m∗

i,j) and m∗
0,0 = m∗

0,1 = 01.
Let the input and output of the MixColumns operation be (x0, x0, x1, . . . , xn−2)T

and (y0, y1, . . . , yn−1)T, respectively. Then we have
⎛

⎜
⎜
⎜
⎜
⎜
⎝

x0

x0

x1

...
xn−2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

01 ∗ · · · ∗ ∗
01 ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

· · ·
∗ ∗ · · · ∗ ∗

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y0
y1
y2
...

yn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

which implies

x0 = y0 ⊕ l1(y1, . . . , yn−1) = y0 ⊕ l2(y1, . . . , yn−1),

where l1 and l2 are different linear functions on (y1, . . . , yn−1). Accordingly, we
always have

(l1 ⊕ l2)(y1, . . . , yn−1) = 0.
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Since the dimension of the input is n − 1, we conclude that y0 is independent
of y1, . . . , yn−1, i.e., the number of possible values for (y1, . . . , yn−1) is 2(n−2)b.
Thus the output of the first round can be divided into the following 2(n−2)b

subsets: the last n − 1 bytes of the first columns are fixed to (y1, . . . , yn−1) and
the other n2 − n + 1 bytes take all possible value from F

n2−n+1
2b . Taking the

4-round integral distinguisher into consideration, we conclude that the sum of
the output of the fifth round with MixColumns is 0. ��

Since a lot of AES-based ciphers adopt circulant MDS matrices, now we will
list a result when a cipher uses a circulant MDS matrix:

Corollary 2. Let E(n, b, r) be an AES-like SPN cipher which uses a circulant
MDS matrix MMC = circ(m0,m1, . . . ,mn−1) ∈ F

n×n
2b . Denote by (M−1

MC)T =
circ(m∗

0,m
∗
1, . . . ,m

∗
n−1) the transpose of the inverse of MMC. If there exists a

(j0, j1) where j0 �= j1 such that m∗
j0

= m∗
j1

, then the plaintext-ciphertext space
of E(n, b, 5) can be divided into 2nb subsets AΔ and |AΔ| = 2(n

2−n)b, and there
exists a Δ such that the sum of ciphertexts in AΔ is 0. Moreover, some sub-keys
can also be deduced from the partition.

5 Application to Hashing Schemes

To apply these results to block ciphers directly, we need to know the difference
of the corresponding sub-key bytes which is impossible in most cases. However,
if the cipher is used as a building block of a hash function and the chain value
acts as the key, we can always get a new distinguisher of the hash function based
on these new observations. We use Whirlpool [2] as an example in this section.

5-Round Distinguisher for Whirlpool. Whirlpool [2] is a hash function
proposed by Barreto and Rijmen as a candidate for the NESSIE project. It
iterates the Miyaguchi-Preneel hashing scheme over t padded message blocks
mi, 0 ≤ i ≤ t − 1, using the dedicated 512-bit block cipher W :

Hi = WHi−1(mi−1) ⊕ Hi−1 ⊕ mi−1, i = 1, 2, . . . , t.

The W block cipher only employs one S-box, and the SR and the MC are defined
as follows:

πSR = (0, 1, 2, 3, 4, 5, 6, 7),
MMC = circ(01, 01, 04, 01, 08, 05, 02, 09).

Notice that the SR of Whirlpool applies to columns and MC applies to rows,
respectively (Fig. 3).

Noting that the matrix

(M−1
MC)T = circ(04, 3E, CB, C2, C2, A4, 0E, AE),

has two identical elements in each row, according to Theorem 1, we have the
following distinguishing property for Whirlpool:
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Fig. 3. The structure of Whirlpool Hash Function.

Corollary 3. Let V1 = {(pi,j) ∈ F
8×8
28 |p0,3 ⊕ p0,4 = h

(0)
0,3 ⊕ h

(0)
0,4}. Then for

Whirlpool reduced to 5 rounds, the sum of all the outputs over V1 is 0.

Although this distinguisher covers less rounds than the rebound attack [28],
our result shows some new features of Whirlpool that could be exploited in the
future. From the direct proof of Theorem 1, the key point is that the outputs
of the first round could be divided into some known structures which lead to
4-round integrals. Therefore we have the following property:

Corollary 4. Let V2 = {(pi,j) ∈ F
8×8
28 |AE · S(p0,0 ⊕ h

(0)
0,0) = 04 · S(p1,1 ⊕ h

(0)
1,1)}.

Then for Whirlpool reduced to 5 rounds, the sum of all the outputs over V2 is 0.

Proof. Let the input of the first column to the first MixColumns be X =
(x0, . . . , x7)T and Y = (y0, . . . , y7)T be the corresponding output. Then x0 =
S(p0,0⊕h

(0)
0,0), x1 = S(p1,1⊕h

(0)
1,1) and we have AE·x0 = 04·x1. Since X = M−1

MCY ,
therefore,
{

x0 = 04 · y0 ⊕ 3E · y1 ⊕ CB · y2 ⊕ C2 · y3 ⊕ C2 · y4 ⊕ A4 · y5 ⊕ 0E · y6 ⊕ AE · y7

x1 = AE · y0 ⊕ 04 · y1 ⊕ 3E · y2 ⊕ CB · y3 ⊕ C2 · y4 ⊕ C2 · y5 ⊕ A4 · y6 ⊕ 0E · y7.

Consequently,

AE(3E · y1 ⊕ CB · y2 ⊕ C2 · y3 ⊕ C2 · y4 ⊕ A4 · y5 ⊕ 0E · y6 ⊕ AE · y7)
= 04(04 · y1 ⊕ 3E · y2 ⊕ CB · y3 ⊕ C2 · y4 ⊕ C2 · y5 ⊕ A4 · y6 ⊕ 0E · y7),

which implies that there exists a linear function l such that

y4 = l(y1, y2, y3, y5, y6, y7).

Since the dimension of the input is n − 1, we know that y0 is independent of
y1, . . . , y7. As in constructing the 4-round integral distinguisher of the AES based
on the 3-round distinguisher, place this property in front of the known 4-round
integral distinguisher for Whirlpool and we conclude that the sum of the outputs
is 0. ��
Furthermore, we can extend the results to the structures with different S-boxes
and no constraints on the elements of (M−1

MC)T.

Theorem 2. In a Miyaguchi-Preneel hashing mode, if the block cipher adopts
a 5-round AES-like structure, there always exists a subset V such that when the
input takes all possible value in V , the sum of output is 0.
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Let the first two elements in the first column of the inverse MDS matrix be a0

and a1, and the input to these two positions be S0(p0,0⊕h0,0) and S1(p1,1⊕h1,1).
For any p0,0, we can always choose p1,1 such that

a1S0(p0,0 ⊕ h0,0) = a0S1(p1,1 ⊕ h1,1).

Then the conclusion follows from the proof of Corollary 4.

6 Application to AES

AES is one of the most widely used block ciphers since 2000, and many crypto-
graphic primitives adopt round-reduced AES as a building block. The first known
integral distinguisher for the AES covers 3 rounds [12] which was later improved
to a 4-round higher-order integral [17]. However, the technique that improved the
3-round integral to a 4-round one cannot be directly used to improve the integral
from 4 rounds to 5 rounds. In the following, we will show that the improvement
is possible provided the difference of some sub-key bytes is known.

Since for MMC adopted in the AES, we have

(M−1
MC)T =

⎛

⎜
⎜
⎝

0E 09 0D 0B
0B 0E 09 0D
0D 0B 0E 09
09 0D 0B 0E

⎞

⎟
⎟
⎠ = circ(0E, 09, 0D, 0B),

i.e., the elements in each row are different from each other, it seems that we
cannot construct such distinguishers for 5-round AES. However, since there are
two 1’s in each columns of MMC = circ(02, 03, 01, 01), we can construct a distin-
guisher for AES−1, i.e., we can turn the chosen-plaintext distinguishers shown
in Theorem 1 into a chosen-ciphertext one.

Lemma 3. Let V = {(xi,j) ∈ F
4×4
28 |x0,0 ⊕ x1,3 = k0,0 ⊕ k1,3} be the input set.

Then for each output byte of 5-round AES−1 without MixColumns operation in
the last round, every value of F28 appears 2112 times and the sum of every output
byte of the 5-round AES−1 with MixColumns operation in the last round is 0.

Theorem 3. 5-round AES with MixColumns in the last round can be distin-
guished from a random permutations as follows. Divide the whole input-output
space into the following 28 subsets:

AΔ = {(p, c)|c0,0 ⊕ c1,3 = Δ},

and let
TΔ =

∑

(p,c)∈AΔ

p.

Then there always exists a Δ such that k0,0 ⊕k1,3 = Δ and TΔ = 0. For random
permutations, this happens with probability 1 − (1 − 2−128)2

8 ≈ 2−120.
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To the best of our knowledge, Theorem 3 gives the best distinguisher1 of the
AES with respect to the rounds it covers. Since the AES adopts a circulant MDS
matrix, we can get many other different variants of this property by dividing the
whole set into different subsets. For example,

Corollary 5. 5-round AES with MixColumns in the last round can be distin-
guished from a random permutation as follows. Divide the whole input-output
space into the following 232 subsets:

Aα,β,γ,φ = {(p, c)|c0,0 ⊕ c1,3 = α, c0,1 ⊕ c3,2 = β, c1,2 ⊕ c2,1 = γ, c2,0 ⊕ c3,3 = φ},

and let
Tα,β,γ,φ =

∑

(p,c)∈Aα,β,γ,φ

p.

Then there always exists an (α, β, γ, φ) ∈ F
4
28 such that Tα,β,γ,φ = 0. For random

permutations, this happens with probability 1 − (1 − 2−128)2
32 ≈ 2−96.

7 Conclusion

Distinguishers on AES-like SPN structures are covered extensively in the lit-
erature. For example, we already have 4-round zero-correlation linear hulls for
AES-like structures without MixColumns in the last round and 4-round integral
distinguishers for AES-like structures with MixColumns in the last round. Note
that these distinguishers do not depend on which S-box and MDS matrix are
used in the cipher. This paper gives some new insights on such ciphers especially
with detailed S-boxes and MDS matrices.

Firstly, we observe that if there are two identical elements in a row of the
transpose of the inverse matrix of the MixColumns operation, and the S-boxes
used in these two positions are identical, then we can construct some 5-round
zero-correlation linear hull for a 5-round AES-like SPN structure provided some
differences of the sub-key bytes are known. Then, under the same setting, and
based on the link between zero-correlation linear hulls and integrals, we con-
struct 5-round integrals for such AES-like SPN structures both with and without
the MixColumns operation in the last round. These results show that such 5-
round AES-like SPN structures can be theoretically distinguished from random
permutations.

Secondly, in a hashing scheme where the chaining value serves as the secret
key in block ciphers, we can further remove the constraint on the matrices and
S-boxes. We apply the new results to the Whirlpool hash function and construct
5-round integral-like distinguishers.

Furthermore, since these results do not apply to the AES directly, we find that
although we cannot build a distinguisher in a chosen-plaintext mode, we can con-
struct a 5-round distinguisher for the AES in the chosen-ciphertext mode which is
the best distinguisher for the AES with respect to the number of rounds it covers.
1 This property could be used for instance, when the codebook is provided, to deter-

mine whether it is AES when both the block cipher and the keys are unknown.
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Our results show that despite the key schedule, there may be some differ-
ence between the security margins of round-reduced AES under chosen-plaintext
attacks and that under chosen-ciphertext attacks. Since we can distinguish 5-
round AES from random permutations, some dedicated cryptographic schemes
should be carefully investigated to guarantee the security claims. Furthermore,
when we design an AES-like cipher, it is better to choose those MDS matrices
MMC such that both MMC and M−1

MC do not have identical elements in the same
columns.

Now that we get some new features of 5-round AES, we leave as an open
problem whether one could mount better key-recovery attack against round-
reduced AES or some other schemes based on the AES-like SPN structure.
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