
Efficient Algorithms for Supersingular Isogeny
Diffie-Hellman

Craig Costello(B), Patrick Longa, and Michael Naehrig

Microsoft Research, Redmond, USA
{craigco,plonga,mnaehrig}@microsoft.com

Abstract. We propose a new suite of algorithms that significantly
improve the performance of supersingular isogeny Diffie-Hellman (SIDH)
key exchange. Subsequently, we present a full-fledged implementation
of SIDH that is geared towards the 128-bit quantum and 192-bit
classical security levels. Our library is the first constant-time SIDH
implementation and is up to 2.9 times faster than the previous best
(non-constant-time) SIDH software. The high speeds in this paper are
driven by compact, inversion-free point and isogeny arithmetic and fast
SIDH-tailored field arithmetic: on an Intel Haswell processor, generat-
ing ephemeral public keys takes 46 million cycles for Alice and 52 million
cycles for Bob, while computing the shared secret takes 44 million and
50 million cycles, respectively. The size of public keys is only 564 bytes,
which is significantly smaller than most of the popular post-quantum key
exchange alternatives. Ultimately, the size and speed of our software illus-
trates the strong potential of SIDH as a post-quantum key exchange candi-
date and we hope that these results encourage a wider cryptanalytic effort.

Keywords: Post-quantum cryptography · Diffie-Hellman key exchange ·
Supersingular elliptic curves · Isogenies · SIDH

1 Introduction

Post-quantum Cryptography. The prospect of a large scale quantum com-
puter that is capable of implementing Shor’s algorithm [43] has given rise to
the field of post-quantum cryptography (PQC). Its goal is to develop and ulti-
mately deploy cryptographic primitives that resist cryptanalysis by both classi-
cal and quantum computers. Recent developments in quantum computing (see,
e.g., [16,23,34]) have helped catalyze government and corporate action in this
arena. For example, in April 2015, the National Institute of Standards and Tech-
nology (NIST) held a “Workshop on Cybersecurity in a Post-Quantum World”,
reaching out to academia and industry to discuss potential future standard-
ization of PQC. Later, in August 2015, the National Security Agency (NSA)
released a major policy statement that announced plans to “transition to quan-
tum resistant algorithms in the not too distant future” [35]. In February 2016,
NIST published a draft “Report on Post-Quantum Cryptography” [11], which

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 572–601, 2016.
DOI: 10.1007/978-3-662-53018-4 21



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 573

emphasizes the need to start working towards the deployment of post-quantum
cryptography in our information security systems, and outlines NIST’s plans to
“initiate a standardization effort in post-quantum cryptography”.

In terms of public-key PQC, there are four well-known and commonly cited
classes of cryptographic primitives that are believed to remain secure in the pres-
ence of a quantum computer: code-based cryptography, lattice-based cryptogra-
phy, hash-based cryptography, and multivariate cryptography. Specific examples
for each of these are McEliece’s code-based encryption scheme [29]; Hoffstein,
Pipher and Silverman’s lattice-based encryption scheme “NTRU” [21]; Merkle’s
hash-tree signatures [30]; and Patarin’s “HFEv−” signature scheme [38]. A posi-
tive trait shared by all of these examples is a resistance to decades of attempted
classical and quantum cryptanalysis which has inspired widespread confidence
in their suitability as a post-quantum primitive. However, most of these exam-
ples also share the trait of having enormous public key and/or signature sizes,
particularly when compared to traditional primitives based on the hardness of
integer factorization or (elliptic curve) discrete logarithm computation.

Supersingular Isogeny Diffie-Hellman. In this paper, we study a differ-
ent primitive that does not fall into any of the above classes, but is cur-
rently believed to offer post-quantum resistance: the supersingular isogeny Diffie-
Hellman (SIDH) key exchange protocol proposed by Jao and De Feo in 2011 [22].
The SIDH key exchange protocol is more than a decade younger than all of the
above schemes, so its security is yet to withstand the tests of time and of a
wide cryptanalytic effort. Nevertheless, the current picture of its security prop-
erties looks promising. The best known classical and quantum attacks against
the underlying problem are both exponential in the size of the underlying finite
field, and their complexities make current SIDH key sizes significantly smaller
than their post-quantum key exchange and/or encryption counterparts1.

Our Contributions. We present a full-fledged, high-speed implementation of
(unauthenticated) ephemeral SIDH that currently provides 128 bits of quantum
security and 192 bits of classical security. This implementation uses 48-byte
private keys to produce 564-byte ephemeral Diffie-Hellman public keys, is written
in C and includes an optimized version of the field arithmetic written in assembly.
To our knowledge, our library (see [14]) presents the first SIDH software that runs
in constant-time, i.e., that is designed to resist timing [26] and cache-timing [37]
attacks. On x64 platforms, our implementation runs up to 2.9 times faster than
the (previously fastest) implementation of SIDH by Azarderakhsh et al. [2].
Note that this performance comparison does not take into account the fact that
the implementation from [2] is not protected against timing attacks. The main
technical contributions that lead to these improvements are:

1 An exception here is NTRUEncrypt [21], which has comparable public key sizes –
see https://github.com/NTRUOpenSourceProject/ntru-crypto.

https://github.com/NTRUOpenSourceProject/ntru-crypto


574 C. Costello et al.

Projective Curve Coefficients. A widely-deployed technique in traditional ECC
involves avoiding inversions by working with elliptic curve points in projective
space. Following Jao and De Feo [22], we also employ this technique to work
efficiently with points in P

1 by making use of the fast arithmetic associated with
the Kummer varieties of Montgomery curves. A crucial difference in this work,
however, is that we also work projectively with the curve coefficients; unlike
traditional ECC where the curve is fixed, every SIDH key exchange requires
computations on many different isogenous curves. In Sect. 3 we show that the
Montgomery model also allows all of the necessary isogeny arithmetic to be per-
formed efficiently in P

1. This gives rise to more compact algorithms, significantly
simplifies the overall computation, and means that key generation and shared
secret computations only require one and two field inversions, respectively.

Prime Selection and Tailor-Made Montgomery Multiplication. We select a prime
with form p = �eA

A �eB

B f −1, where �A = 2, �B = 3, and the bit lengths of 2eA and
3eB are slightly smaller than a multiple of 64. This supports efficient arithmetic
on a wide range of platforms and allows access to a large variety of optimizations
such as the efficient use of vector instructions, Karatsuba multiplication, and lazy
reduction. Moreover, it is well-known that primes of a special form can lead to
faster algorithms for computing modular arithmetic in comparison with general-
purpose algorithms. In this work, we note the special shape of these SIDH-
friendly primes and modify the popular Montgomery multiplication algorithm
to speed up modular arithmetic.

Ground Field Scalar Multiplications for Key Generation. Secure key generation
in the SIDH protocol requires the definition of two independent cyclic subgroups
of a fixed order (see Sect. 2). Jao and De Feo [22, Sect. 4.1] propose that genera-
tors of these two groups can be computed by multiplying random curve points by
an appropriate cofactor, and that their linear independence can be checked via
the Weil pairing. In Sect. 4 we employ a well-known technique from the pairing
literature [42, Sect. 5] to work with two advantageous choices of torsion sub-
groups: the base-field and trace-zero subgroups. These choices allow the initial
scalar multiplications that are required during key generation to be performed
entirely over the base field. While these scalar multiplications only constitute
a small fraction of the overall key generation time, and therefore the overall
speedup from this technique is only moderate, a more visible benefit is the sig-
nificant decrease in the size of the public parameters – see Sect. 6. We discuss
possible security implications of this choice in Sect. 4.

Several of the above choices not only aid efficiency, but also the overall sim-
plicity and compactness of the SIDH scheme. Choosing to unify points with their
inverses and to unify Montgomery curves with their quadratic twists (see Sect. 3)
effectively compresses the elements that are sent over the wire, i.e., the public
keys, by a factor of two. Moreover, our software never requires the computation
of square roots.

The timings we present in Sect. 7 reveal that high-security SIDH key exchange
is more efficient than it was previously known to be. Our constant-time software
shows that, if confidence in the security of SIDH warrants real-world deployment



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 575

in the future, the same level of side-channel protection can be achieved in the
SIDH setting as in traditional number-theoretic schemes. We therefore hope that
this paper encourages a wider cryptanalytic effort on the problems underlying
the security of SIDH (see Sect. 2). Moreover, even if cryptanalytic improvements
are made in the future, the huge difference between current SIDH key sizes and
those of other PQC primitives suggest that the problem could remain of interest
to practitioners. So long as the best known attacks remain exponential with a
reasonable exponent (see the discussion below), it is reasonable to suggest that
elliptic curves could offer the same benefit in post-quantum cryptography that
they did in classical cryptography.

Beyond the efficiency improvements above, we present several techniques that
help to bridge the gap between the theoretical SIDH scheme in [22] and its real-
world deployment. Of particular importance are the contributions discussed in
the following two paragraphs.

A Strong ECDH+SIDH Hybrid. Given the uncertainty surrounding the arrival
date of large-scale quantum computers (as well as the time it takes for new
primitives to be thoroughly cryptanalyzed, standardized and deployed), many
real-world cryptographers are hastily pushing for deployment of post-quantum
primitives sooner rather than later. Subsequently, a proposal that is gaining
popularity in the PQC community is the deployment of hybrid schemes, i.e.,
schemes where a long-standing classically-secure primitive P is partnered along-
side a newer post-quantum candidate Q (cf. [5]). The simple reasoning here is
that, even if further cryptanalysis weakens Q’s resistance to classical computers,
the hybrid scheme P+Q is likely to remain classically secure; conversely, P’s pre-
sumed weakness against a quantum computer does not affect the post-quantum
security of P + Q. Taking such a prudent measure in the case of SIDH, which is
much newer than other post-quantum primitives, seems especially wise. In Sect. 8
we present a possibility to partner SIDH public keys alongside traditional elliptic
curve Diffie-Hellman (ECDH) public keys that are extremely strong. In partic-
ular, while our proposed SIDH parameters respectively offer around 128 and
192 bits of security against the best known quantum and classical attacks, the
proposed hybrid offers around 384 bits of classical security based on the elliptic
curve discrete logarithm problem (ECDLP). While this might seem like overkill,
we show that this partnering is a very natural choice and comes at a relatively
small cost: compared to a standalone SIDH, the size of the public keys and the
overall runtime in our SIDH+ ECDH hybrid increase by no more than 17 % and
13 %, respectively, and there is almost no additional code required to include
ECDH in the scheme.

Public Key Validation. The security of unauthenticated ephemeral key exchange
is modeled using passive adversaries, in which case we can assume that both
parties’ public keys are honestly generated. As was pointed out in April 2015 by
a group at the NSA [24], in static key exchange when private keys are reused,
validating public keys in the case of isogeny-based cryptography becomes both
necessary and non-trivial. The suggested indirect public key validation procedure
described in [24] is costly and requires one party to reveal their secret key, such



576 C. Costello et al.

that only the other party can reuse theirs. In Sect. 9 we detail a form of direct
validation for the public keys used in our scheme, and show how to achieve this
validation efficiently in our compact framework.

SIDH History and Security. Beginning with an unpublished preprint with
Rostovtsev in early 2006 [40], and then in a series of Russian papers that
culminated in his thesis [45], Stolbunov proposed a Diffie-Hellman-like cryp-
tosystem based on the difficulty of computing isogenies between ordinary (i.e.,
non-supersingular) elliptic curves. The best algorithm to solve this problem
on a classical computer runs in exponential time and is due to Galbraith and
Stolbunov [18].

In late 2010, however, Childs et al. [12] gave a quantum algorithm that com-
putes isogenies between ordinary curves in subexponential time, assuming the
Generalized Riemann Hypothesis (GRH). Subsequently, in late 2011, Jao and
De Feo [22] put forward SIDH, which is instead based on the difficulty of com-
puting isogenies between supersingular elliptic curves. This problem is immune
to the quantum attack in [12], since this attack crucially relies on the endomor-
phism ring being commutative, which is not the case for a supersingular curve
whose endomorphism ring is isomorphic to an order in a quaternion algebra [44,
Sect. V.3.1].

Given two isogenous supersingular elliptic curves defined over a field of char-
acteristic p, the general supersingular isogeny problem is to construct an isogeny
between them. The best known classical algorithm for this problem is due to
Delfs and Galbraith [15] and requires Õ(p1/2) bit operations, while the best
known quantum algorithm is due to Biasse et al. [6] and requires Õ(p1/4) bit
operations. The problems underlying SIDH (see Sect. 2) are not general in that
the degree of the isogeny, which is smooth and in O(

√
p), is known and public.

As is discussed by De Feo et al. [17, Sect. 5.1]2, this specialized problem can be
viewed as an instance of the claw problem, and the optimal asymptotic classical
and quantum complexities for the claw problem are known to be O(p1/4) and
O(p1/6), respectively [47,52]. Currently, this approach yields the best known
classical and quantum attacks against SIDH.

Organization . In Sect. 2 we recall the key concepts from [17] that are needed
in SIDH. In Sect. 3 we show that all isogeny and point computations can be per-
formed in P

1; here we derive all of the lower-level functions that are called during
the key generation and shared secret operations. In Sect. 4 we fix the underlying
isogeny class used in our software, describe the high-level key exchange opera-
tions, and discuss other implementation choices. In Sect. 5 we detail the special
field arithmetic that is tailored towards our chosen prime (as well as many other
well-chosen SIDH-friendly primes).

We give a summary of the scheme in Sect. 6 and present performance results
of our implementation in Sect. 7. In Sect. 8 we describe our proposal for a strong

2 This is an extended version of the original SIDH paper by Jao and De Feo [22].



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 577

hybrid key exchange scheme that combines classical ECDH with post-quantum
SIDH, and in Sect. 9 we show how to efficiently validate SIDH public keys in
static key exchange settings. We conclude the paper in Sect. 10.

To promote future implementations of SIDH, we have endeavored to make
this paper as self-contained as possible. Essentially, all functions that are needed
to implement SIDH are described in Sect. 3. High level functions can be found
in the appendix of the full version [13]. All other details can be found in the
released code [14].

2 Diffie-Hellman Key Exchange from Supersingular
Elliptic Curve Isogenies

This section sets the stage by introducing notation, giving some basic properties
of torsion subgroups and isogenies, and recalling the supersingular isogeny Diffie-
Hellman key exchange protocol. This is all described in a similar fashion by
De Feo et al. in [17, Sect. 2].

Smooth Order Supersingular Elliptic Curves. SIDH uses isogeny classes
of supersingular elliptic curves with smooth orders so that rational isogenies
of exponentially large (but smooth) degree can be computed efficiently as a
composition of low degree isogenies. Fix two small prime numbers �A and �B ,
an integer cofactor f , and let p be a prime of the form p = �eA

A �eB

B f ± 1. It is
then easy to construct a supersingular elliptic curve E defined over Fp2 of order
(�eA

A �eB

B f)2 [9].
For � ∈ {�A, �B} and e ∈ {eA, eB} the corresponding exponent, we have that

the full �e-torsion group on E is defined over Fp2 , i.e. E[�e] ⊆ E(Fp2). Since
� is coprime to p, E[�e] ∼= (Z/�e

Z) × (Z/�e
Z) [44, III. 6.4]. Let P,Q ∈ E[�e]

be two points that generate E[�e] such that the above isomorphism is given by
(Z/�e

Z)×(Z/�e
Z) → E[�e], (m,n) �→ [m]P +[n]Q. Roughly speaking, the SIDH

secret keys are degree �e isogenies of the base curve E, which are in one-to-one
correspondence with the cyclic subgroups of order �e that form their kernels.
A point [m]P + [n]Q has full order �e if and only if at least either m or n
are not divisible by �. There are �2e−2(�2 − 1) such points. Since distinct cyclic
subgroups only intersect in points of order less than �e and all full-order points
in a single subgroup are coprime multiples of one such point, it follows that there
are �e−1(� + 1) distinct cyclic subgroups of order �e.

Computing Large Degree Isogenies. Given a cyclic subgroup 〈R〉 ⊆ E[�e]
of order �e, there is a unique isogeny φR of degree �e, defined over Fp2 with
kernel 〈R〉 [44, III. 4.12], mapping E to an isogenous elliptic curve E/〈R〉. The
isogeny φR can be computed as the composition of e isogenies of degree � which
in turn can be computed by using Vélu’s formulas [49]. As described in [17,
Sect. 4.2.2], we can start with E0 := E and R0 := R and then iteratively compute
Ei+1 = Ei/〈[�e−i−1]Ri〉 for 0 ≤ i < e as follows. Each iteration computes the



578 C. Costello et al.

degree-� isogeny φi : Ei → Ei+1 whose kernel is the cyclic group 〈[�e−i−1]Ri〉 of
order �, before applying the isogeny to compute Ri+1 = φi(Ri). The point Ri

is an (�e−i)-torsion point and so [�e−i−1]Ri has order �. Thus, the composition
φR = φe−1 ◦ · · · ◦ φ0 has degree �e, which together with (φe−1 ◦ · · · ◦ φ0)(R) =
Re = O shows that ker(φR) = 〈R〉, and therefore that φ = φe−1 ◦ · · · ◦ φ0.

There are two obvious ways of computing φ using the above decomposition.
One of them follows directly from the description above: in each iteration, one
first computes the scalar multiplication [�e−i−1]Ri to obtain a point of order �,
then uses Vélu’s formulas to compute φi, and evaluates it at Ri to obtain the
next point Ri+1. Jao and De Feo [22, Fig. 2] call this the multiplication-based
strategy because it is dominated by the number of scalar multiplications by � that
are needed to obtain the �-torsion points. The second obvious approach is called
the isogeny-based method [22, Fig. 2] because it is dominated by the number
of isogeny evaluations. It requires only one loop of scalar-multiplications that
stores all �-multiples of R, i.e., all intermediate results Qi = [�i]R for 0 ≤ i < e.
The point Qe−1 has order � and can be used to obtain the isogeny φ0 as above.
One then replaces all Qi for 0 ≤ i ≤ (e − 2) by φ0(Qi). At this point Qe−2 has
order � and is used to obtain φ1. This is repeated until one obtains φe−1 and
hence the composition φ.

De Feo et al. [17, Sect. 4.2.2] demonstrate that both of these methods are
rather wasteful and that there is a much more efficient way to schedule the
multiplications-by-� and �-isogeny evaluations. We briefly touch on this in Sect. 4,
and defer the finer details to the full version [13].

SIDH Key Exchange. This paragraph recalls the SIDH key exchange protocol
from [17, Sect. 3.2]. The public parameters are the supersingular curve E0/Fp2

whose group order is (�eA

A �eB

B f)2, two independent points PA and QA that gen-
erate E0[�eA

A ], and two independent points PB and QB that generate E0[�eB

B ]. To
compute her public key, Alice chooses two secret integers mA, nA ∈ Z/�eA

A Z, not
both divisible by �A, such that RA = [mA]PA +[nA]QA has order �eA

A . Her secret
key is computed as the degree �eA

A isogeny φA : E0 → EA whose kernel is RA, and
her public key is the isogenous curve EA together with the image points φA(PB)
and φA(QB). Similarly, Bob chooses two secret integers mB , nB ∈ Z/�eB

B Z, not
both divisible by �B , such that RB = [mB ]PB + [nB ]QB has order �eB

B . He
then computes his secret key as the degree �eB

B isogeny φB : E0 → EB whose
kernel is RB, and his public key is EB together with φB(PA) and φB(QA). To
compute the shared secret, Alice uses her secret integers and Bob’s public key
to compute the degree �eA

A isogeny φ′
A : EB → EBA whose kernel is the point

[mA]φB(PA) + [nA]φB(QA) = φB([mA]PA + [nA]QA) = φB(RA). Similarly, Bob
uses his secret integers and Alice’s public key to compute the degree �eB

B isogeny
φ′

B : EB → EAB whose kernel is the point [mB ]φA(PB)+[nB ]φA(QB) = φA(RB).
It follows that EBA and EAB are isomorphic, so Alice and Bob can compute a
shared secret as the common j-invariant j(EBA) = j(EAB).



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 579

Security Under SSDDH. In [17, Sect. 5], De Feo et al. give a number of
computational problems related to SIDH and discuss their complexity. In [17,
Sect. 6], they prove that SIDH is session-key secure in the authenticated-
links adversarial model of Canneti and Krawczyk [10] under the Supersingu-
lar Decision Diffie-Hellman (SSDDH) problem, which we recall as follows. With
the public parameters as above, one is given a tuple sampled with probabil-
ity 1/2 from either (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB) or from
(EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where EAB

∼= E0/
〈
[mA]PA +

[nA]QA, [mB ]PB + [nB ]QB

〉
, EC

∼= E0/
〈
[m′

A]PA + [n′
A]QA, [m′

B ]PB + [n′
B ]QB

〉
,

and the values m′
A, n′

A,m′
B and n′

B are chosen randomly from the same respec-
tive distributions as mA, nA,mB and nB . The SSDDH problem is to determine
from which distribution the tuple is sampled.

3 Projective Points and Projective Curve Coefficients

In this section we present one of our main technical contributions by showing
that, just as the Montgomery form allows point arithmetic to be carried out
efficiently in P

1, in the context of SIDH it also allows isogeny arithmetic to be
carried out in P

1. This gives rise to fast, inversion-free point-and-isogeny oper-
ations that significantly boost the performance of SIDH. In comparison to the
software3 accompanying [17] that computes at least one inversion per isogeny
computation, and therefore O(�) inversions per round of the protocol, our soft-
ware only requires one inversion during key generation and two inversions during
the computation of the shared secret.

Montgomery Curves. Over a field K, a Montgomery curve [33] is defined by
the two constants (a, b) ∈ A

2(K) as E(a,b) : by2 = x3+ax2+x. Unlike traditional
ECC, in this work the defining curve does not stay fixed, but changes as we move
around an isogeny class. As we discuss further below, it is therefore convenient
to work projectively both with points on curves and with the curve coefficients
themselves. Let (A : B : C) ∈ P

2(K) with C ∈ K̄× be such that a = A/C and
b = B/C. Then E(a,b) can alternatively be written as E(A : B : C) : By2 = Cx3 +
Ax2+Cx. The K-rational points on E(a,b) or E(A : B : C) are contained in P

2(K),
so as usual we use the notation (X : Y : Z) ∈ P

2(K) with Z �= 0 to represent all
points (x, y) = (X/Z, Y/Z) in A

2(K), and the point at infinity is O = (0: 1 : 0).
The j-invariants of the curves given by these models are j(Ea,b) = 256(a2−3)3

a2−4

and j(E(A : B : C)) = 256(A2−3C2)3

C4(A2−4C2) .

Kummer Varieties and Points in P
1. Following [33], viewing the x-line P

1

as the Kummer variety of E(a,b) allows for particularly efficient arithmetic in
E(a,b)/〈±1〉 ∼= P

1. Let x : E(a,b) \ {O} → P
1, (X : Y : Z) �→ (X : Z). For the

points P,Q ∈ E(a,b) \ {O} and m ∈ Z, Montgomery [33] gave efficient formulas

3 See https://github.com/defeo/ss-isogeny-software/.

https://github.com/defeo/ss-isogeny-software/


580 C. Costello et al.

for computing the doubling function xDBL : (x(P ), a) �→ x([2]P ), the function
xADD : (x(P ), x(Q), x(Q−P )) �→ x(Q+P ) for differential additions, and the func-
tion xDBLADD : (x(P ), x(Q), x(Q − P ), a) �→ (x([2]P ), x(Q − P )) for the merging
of the two. These are all ingredients in the Montgomery ladder function to com-
pute the Z-action on E(a,b)/〈±1〉 ∼= P

1, i.e., LADDER : (x(P ), a,m) �→ x([m]P ). We
also make use of the Montgomery tripling function xTPL : (x(P ), a) �→ x([3]P )
on E(a,b)/{±1}, which is taken from [17].

We note that the xADD function works identically for E(a,b) and E(A : B : C),
while the other functions on E(a,b) that involve a can be trivially modified to work
on E(A : B : C) by substituting a = A/C and avoiding the inversion by carrying
the denominator C through to the projective output. All of these functions are
summarized in Table 1. Conveniently, all of these subroutines are only needed to
work entirely in only one of E(A : B : C) and E(a,b).

During the computations of shared secrets, we found it advantageous to
employ the function LADDER 3 pt : (x(P ), x(Q), x(Q − P ), a,m) �→ x(P + [m]Q),
which is precisely the “three point ladder” given by De Feo et al. [17, Algorithm 1].

Minimizing the Number of Inversions via Curves in P
1. Observe that

all of the functions mentioned above on E(a,b)/{±1} (resp. E(A : B : C)/{±1})
depend entirely on a (resp. A and C) and are independent of b (resp. B). This is
because, for a fixed a = A/C and up to isomorphism, there are only two curves
found by varying b (resp. B) over K: the curve E and its non-trivial quadratic
twist. Indeed, an elliptic curve and its twist are unified under the quotient by
{±1}, i.e., have the same Kummer variety, so it is no surprise that the Kummer
arithmetic is independent of the Montgomery b (resp. B) coefficient. Moreover,
we see above that the j-invariant is also independent of b (resp. B).

Our implementation profits significantly from these observations, and the
choice of Montgomery form provides two advantages in parallel. The first is
the well-known Montgomery-style point arithmetic that unifies points and their
inverses by ignoring the Y coordinate to work with (X : Z) ∈ P

1; the second is
new isogeny arithmetic that unifies curves and their quadratic twists by ignoring
the B coefficient to instead work only with (A : C) ∈ P

1. In this way all point
operations and isogeny computations are performed in P

1, meaning that only one
inversion is required (at the very end) when generating public keys or computing
shared secrets. In the latter case, the inversion is computed during the j-invariant
function j inv : (A,C) �→ j(E(A : B : C)), while in the former case we use a 3-way
simultaneous inversion [33] to normalize all of the components of the public key
prior to transmission; see Table 1 for more details on these functions.

Projective Three Isogenies. Let x(P ) = (X3 : Z3) ∈ P
1 be such that P

has order 3 in E(A : C). Let E′
(A′ : C′) = E(A : C)/〈P 〉, φ : E(A : C) → E′

(A′ : C′),
Q ∈ Ea \ ker(φ), and write x(Q) = (X : Z) ∈ P

1 with x(φ(Q)) = (X ′ : Z ′) ∈ P
1.

Our goal is to derive two sets of explicit formulas: the first set computes the
isogenous curve E(A′ : C′) from (X3 : Z3) and E(A : C), while the second set
is used to evaluate the corresponding isogeny by computing (X ′ : Z ′) from



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 581

the additional input (X : Z). The projective version of [17, Eq. (17)] gives
(A′ : C ′) =

(
(AX3Z3 + 6(Z2

3 − X2
3 ))X3 : CZ3

3

)
, which can be computed in

6M + 2S + 5a4. However, it is possible to do much better by using Z3 �= 0
and the fact that X3/Z3 is a root of the 3-division polynomial ψ3(x) =
3x4 + 4(A/C)x3 + 6x2 − 1 on E(A : C). This yields the alternative expression
(A′ : C ′) =

(
Z4
3 + 18X2

3Z2
3 − 27X4

3 : 4X3Z
3
3

)
, which is independent of the coef-

ficients of E(A : C) and can be computed in 3M + 3S + 8a; see the function
get 3 isog in Table 1. For the evaluation of the isogeny, we modify the map
in [17, Eq. (17)] to give (X ′ : Z ′) =

(
X(X3X − Z3Z)2 : Z(Z3X − X3Z)2

)
. This

costs 6M + 2S + 2a; see the function eval 3 isog in Table 1.

Projective Four Isogenies. We now let x(P ) = (X4 : Z4) ∈ P
1 be such that

P has exact order 4 in E(A : C), and leave all other notation and definitions as
above. As is discussed in [17, Sect. 4.3.2], there are some minor complications in
the derivation of 2- and 4-isogenies, either because a direct application of Vélu’s
formulas [49] for a 2-isogeny do not preserve the Montgomery form, or because
repeated application of the 4-isogeny resulting from Vélu’s formulas is essentially
degenerate. For our purposes, i.e., in the case of 4-isogenies (overall, we found
using 4-isogenies to be significantly faster than using 2-isogenies), the latter
problem is remedied by application of the simple isomorphism in [17, Eq. (15)].
When building the 4e isogenies as a composition of 4-isogenies, this isomorphism
is needed in every 4-isogeny computation except for the very first one, and we
derive explicit formulas for both of these cases.

Note that for the very first 4-isogeny φ0 : E(A : C) → E(A′ : C′) computed in
the public key generation phase, the curve E(A : C) is that which is specified in
the system parameters; and, for the first 4-isogeny in the shared secret compu-
tation, E(A : C) is the curve that is received as part of a public key sent over
the wire. In both cases the curve is normalized so that A = a and C = 1. In
this case we use [17, Eq. (20)] directly, which gives (A′ : C ′) = (2(a + 6): a − 2),
and projectivize the composition of [17, Eqs. (19) and (21)] to give (X ′ : Z ′) =(
(X + Z)2(aXZ + X2 + Z2) : (2 − a)XZ(X − Z)2

)
. This costs 4M + 2S + 9a;

see the function first 4 isog in Table 1.
For the general 4-isogeny, we projectivized the composition of the above

isogeny with the isomorphism in [17, Eq. (15)], making some modifications as
follows. We made use of the xDBL function to parameterize the point of order 2
in [17, Eq. (15)] in terms of the point (X4 : Z4) of order 4. For the isogeny eval-
uation function, we again found it advantageous to simplify under the applica-
ble component of the 4-division polynomial ψ4(x, y) = 4y(x − 1)(x + 1)ψ̂4(x),
which is ψ̂4(x) = x4 + 2(A/C)x3 + 6x2 + 2(A/C)x + 1 and which vanishes
at X4/Z4. For the computation of the isogenous curve, we get (A′ : C ′) =(
2(2X4

4 − Z4
4 ) : Z4

4

)
, and for the evaluation of the isogeny, we get the image

4 As usual, M, S and a represent the costs of field multiplications, squarings, and
additions, respectively. We always count multiplications by curve coefficients as full
multiplications, since these coefficients change within an isogeny class and thus we
cannot expect any savings by treating them differently to generic elements.



582 C. Costello et al.

point (X ′ : Z ′) where X ′ = X
(
2X4Z4Z − X(X2

4 + Z2
4 )

)
(X4X − Z4Z)2 and

Z ′ = Z
(
2X4Z4X − Z(X2

4 + Z2
4 )

)
(Z4X − X4Z)2. Since each 4-isogeny is evalu-

ated at multiple points, during the above computation of the isogenous curve,
we also compute and store five values that can be (re)used in the evaluation:
c = [X2

4 + Z2
4 ,X2

4 − Z2
4 , 2X4Z4,X

4
4 , Z4

4 ].
The computation of the isogenous curve and of the five values in c above

costs 5S + 7a, and on input of c and Q = (X : Z), the isogeny evaluation costs
9M + 1S + 6a; see the functions get 4 isog and eval 4 isog in Table 1.

Summary of Subroutines. All of the point and isogeny operations are sum-
marized in Table 1. We note that the input c ∈ K5 into the eval 4 isog function
is the same tuple of constants output from get 4 isog, as described above.

Table 1. Summary of the subroutines used in our SIDH implementation. Here the
points P and Q are on the curve E(a,b) = E(A : B : C), and E′ = E(A′ : B′ : C′) is used to
denote the isogenous curve. We use n = log2 m− 1 to count operations in loops. For a
more detailed table, see the full version [13].

Function Input (s) Output (s) M S a I

j inv (A, C) j(E) 3 4 8 1

xDBLADD
(
x(P ), x(Q), x(Q − P ), a+2

4

)
(x([2]P ), x(Q + P )) 6 4 8 -

xADD (x(P ), x(Q), x(Q − P )) x(Q + P ) 3 2 6 -

xDBL
(
x(P ), A + 2C, 4C

)
x([2]P ) 4 2 4 -

xDBLe (x(P ), A, C, e) x([2e]P ) 4e 2e 4e -

LADDER
(
x(P ), a, m

)
x([m]P ) 5n 4n 9n -

LADDER 3 pt (x(P ), x(Q), x(Q − P ), a, m) x(P + [m]Q) 9n 6n 14n -

xTPL
(
x(P ), A + 2C, 4C

)
x([3]P ) 8 4 8 -

xTPLe (x(P ), A, C, e) x([3e]P ) 8e 4e 8e -

get 3 isog x(P ) (A′, C′) 3 3 8 -

eval 3 isog (x(P ), x(Q)) x(φ(Q)) 6 2 2 -

first 4 isog (x(Q), a) (x(φ0(Q)), A′, C′) 4 2 9 -

get 4 isog x(P ) (A′, C′, c) - 5 7 -

eval 4 isog (c, x(Q)) x(φ(Q)) 9 1 6 -

secret pt (P, Q = τ(P ), m) x(P + [m]Q) 5n 4n 9n -

distort and diff xP x(τ(P )− P ) - 1 2 -

get A (xP , xQ, xQ−P ) A 4 1 7 1

inv 3 way (z1, z2, z3) (z−1
1 , z−1

2 , z−1
3 ) 6 - - 1

4 Parameters and Implementation Choices

Prime Field and Isogeny Class. From here on, the field K is fixed as K =
Fp2 , where p := 2372 · 3239 − 1, and Fp2 = Fp(i) for i2 = −1. In terms of the



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 583

notation from Sect. 2, this means that �A = 2, �B = 3, eA = 372, eB = 239 and
f = 1. We searched for primes of the form 2eA3eBf − 1 with a bit length close
to (but no larger than) 768, aiming to strike a balance �eA

A ≈ �eB

B to ensure that
one side of the key exchange is not appreciably easier to attack than the other
(more on this below), and to balance the computational costs for Alice and Bob.
We originally searched with no restriction on the cofactor f , but did not find
an example of another prime that would perform as fast as ours and where the
overall security was increased enough to warrant f �= 1. Given the best known
classical and quantum attack complexities (see Sect. 1), choosing a prime close
to 768 bits aims to reach a claim of 192 bits of classical security and 128 bits of
quantum security. The arithmetic advantages of this prime choice are detailed
in Sect. 5.

Our implementation works in the isogeny class of elliptic curves over Fp2 that
contains the supersingular Montgomery curve E0/Fp2 : y2 = x3 +x. Every curve
in this isogeny class has (p + 1)2 = (2372 · 3239)2 points and is also supersingular
[44, Exercise 5.4 and 5.10(a)]. The curve E0 is the public parameter that is the
starting point for the key exchange protocol.

The Base-Field and Trace-Zero Torsion Subgroups. A valuable technique
that was introduced by Verheul [50] and that has played a key role in the imple-
mentation of symmetric pairings on supersingular elliptic curves [42], is that of
using a distortion map. Verheul showed that every supersingular elliptic curve
has a distortion map [50]. For a prime power �e | #E0(Fp), such a map connects
the cyclic torsion subgroup E0(Fp)[�e] defined over the base field Fp with the
trace-zero subgroup of E0(Fp2)[�e]. The distortion map we use for E0 is given
by the endomorphism τ : E0(Fp2) → E0(Fp2), (x, y) �→ (−x, iy).

An �e torsion point P ∈ E0(Fp) is mapped to an �e-torsion point τ(P ) ∈
E0(Fp2) and the Weil pairing e�e(P, τ(P )) �= 1 is non-trivial. It is easy to see that
the trace of the image point is zero, namely Tr(τ(P )) = τ(P ) + πp(τ(P )) = O,
where πp is the p-power Frobenius endomorphism on E0. An advantage of using
the trace-zero subgroup is that its points can be represented by two Fp-elements
only and are therefore half the size of a general curve point defined over Fp2 .

Choosing Generator Points for Torsion Subgroups. We apply a similar
idea in that we fix the public �eA

A -torsion points PA, QA and �eB

B -torsion points
PB, QB as generators of the (respective) base field and trace-zero subgroups,
chosen as follows. Let PA ∈ E0(Fp)[2372] be the point given as [3239](z,

√
z3 + z),

where z is the smallest positive integer such that
√

z3 + z ∈ Fp and PA has order
2372. The point PB is selected in the same way with order and cofactor swapped.
We then take QA = τ(PA) and QB = τ(PB), which produces the following
generators: PA = [3239](11,

√
113 + 11), QA = τ(PA), PB = [2372](6,

√
63 + 6),

and QB = τ(PB).
In addition to the base field representations mentioned above, the simple

relationship between the coordinates of QA and PA and the coordinates of QB

and PB helps to further compactify the public parameters; see Sect. 6. However,



584 C. Costello et al.

choosing {PA, QA} and {PB , QB} as the bases for generating isogeny kernels
from the base-field and trace-zero torsion subgroups can have caveats. For exam-
ple, in the case � = �A = 2, one obtains the following lemma (the proof of which
is in the full version [13]).

Lemma 1. Let E : y2 = x3+x be a supersingular elliptic curve defined over Fp,
p > 3, p ≡ 3 (mod 4), such that #E(Fp) = 2e · N with N odd. Let Fp2 = Fp(i),
i2 = −1, and let E[�e] ⊆ E(Fp2). Let P ∈ E(Fp)[2e] be any point of order 2e and
let Q ∈ E(Fp2)[2e] be any point of order 2e with Tr(Q) = Q + πp(Q) = O. Then
the order of P + Q equals 2e−1.

In particular, Lemma 1 proves that any point of the form P + [m]Q for odd
m has order less than 2e. Also note that if m is even, then the order of P +[m]Q
is 2e because [2e−1](P + [m]Q) = [2e−1]P �= O. Furthermore, this means that
the points P and Q do not generate the full 2e-torsion subgroup, and strictly
speaking, the two points are not independent5.

In the following two paragraphs we show how Alice and Bob can choose their
secret scalars to guarantee that the degrees of their isogenies are maximal, i.e.,
�eA

A and �eB

B respectively.

Sampling Full Order 2-Torsion Points. To sample a 2-torsion point RA

of full order, we sample a uniform random integer m′ ∈ {1, 2, . . . , 2eA−1 − 1 =
2371−1} and set RA = PA +[2m′]QA; RA is guaranteed to have order 2eA by the
above discussion. Because two distinct choices for m′ lead to two distinct cyclic
subgroups generated by the corresponding RA, one can reach 2eA−1−1 = 2371−1
distinct subgroups and thus isogenies with this sampling procedure. We have seen
in Sect. 2 that there are 3 · 2eA−1 distinct full order subgroups in E0[2eA ], and
thus our sampling procedure only reaches about one third of those.

Sampling Full Order 3-Torsion Points. To sample a 3-torsion point RB

of full order, we sample a uniform random integer m′ ∈ {1, 2, . . . , 3eB−1 − 1 =
3238 − 1} and set RB = PB + [3m′]QB . Since [3eB−1]RB = [3eB−1]PB �= O, RB

is guaranteed to have order 3eB . In this way, we reach 3238 − 1 of the possible
subgroups and corresponding isogenies. Since there are 4 · 3eB−1 such subgroups
in E0[3eB ], we sample from about one quarter of those.

Strategies for Isogeny Computation and Evaluation. For computing and
evaluating �eA

A - and �eB

B -isogenies, we closely follow the methodology described
in [17, Sect. 4.2]. As already described in Sect. 2, such isogenies are composed of
eA isogenies of degree �A and eB isogenies of degree �B , respectively. Figure 2 in
[17] illustrates this computation with the help of a directed acyclic graph. In order
to be able to evaluate the desired isogeny, one needs to compute all points that are

5 Whenever we use the term independent for the points P and Q in what follows, we
mean that the Weil pairing evaluated at P and Q is non-trivial.



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 585

represented by the final vertices, i.e., the leaves in the graph. As described earlier in
Sect. 2, using the multiplication-based or isogeny-based methods to traverse this
graph yields a simple but costly algorithm. De Feo et al. [17, Sect. 4.2.2] provide a
discussion of how to obtain an optimal algorithm. They formally define the notion
of a strategy for evaluating φ along a directed acyclic graph and show how to find
an optimal strategy depending on the relative costs of scalar multiplication-by-�
and �-isogeny evaluation. For the details on the optimal strategies for our chosen
parameters, we refer to the full version [13].

5 Field Arithmetic

In this section, we describe the advantages of the chosen prime and optimizations
to speed up the modular reduction inside SIDH, which were inspired by similar
work on so-called Montgomery-friendly primes (e.g., see [19,27]). We remark
that similar ideas can be easily applied to selecting primes and implementing
their modular arithmetic at different security levels.

In our case, arithmetic is performed modulo the prime p = 2372 · 3239 − 1.
As described in Sect. 4, choosing an SIDH prime such that �eA

A ≈ �eB

B ensures
a certain security strength across the whole key exchange scheme. Additionally,
some implementations benefit from having a prime with a bit length slightly
smaller than a multiple of a word size. Since 768 is the next multiple of 32 and
64 above the bit length of our prime, and log2 p = 751 = 768 − 17, the extra
room available at the word boundaries enables the efficient use of other opti-
mization techniques such as carry-handling elimination, and eases the efficient
use of vector instructions. Working on a field of size slightly smaller than 2768

enables us to, e.g., use 12 × 64-bit limbs to represent field elements, whereas a
prime slightly larger than 2768, such as p768 = 2387 · 3242 − 1 from [2], requires
13 × 64-bit limbs; the latter choice brings a relatively small increase in security
at the expense of a significant increase in the cost of the modular arithmetic.

Since we work over Fp2 , where Fp2 = Fp(i) for i2 = −1, we can leverage the
extensive research done on the efficient implementation of such quadratic exten-
sion fields. In the context of pairings, high-speed implementations have exploited
the combination of Karatsuba multiplication, lazy reduction, and carry-handling
elimination; e.g., these techniques have been combined in optimized implemen-
tations on the curve BN254 [1]. Here we can follow a similar strategy since our
field definition and underlying prime share several common traits with BN254,
e.g., our prime being slightly smaller than a multiple of the word size enables the
computation of several additions without carry-outs in the most significant word.

Efficient Modular Reduction. The cost of modular arithmetic (and, in par-
ticular, of modular multiplication) dominates the cost of the isogeny-based key
exchange, so its efficient implementation is crucial for achieving high perfor-
mance. At first glance, it would seem that SIDH primes prompt the use of generic
Montgomery [32] or Barrett [3] reduction algorithms, which are relatively expen-
sive in comparison with the efficient reduction of certain primes with special



586 C. Costello et al.

form (e.g., pseudo-Mersenne primes). For example, Azarderakhsh et al. [2] use
a generic Barrett reduction for computing the modular multiplication in their
SIDH implementation. However, we note that primes of this form do have a spe-
cial shape that is amenable to faster modular reduction. Consider the case of the
well-known Montgomery reduction [32]: letting R = 2768 and p′ = −p−1 mod R,
then one can compute the Montgomery residue c = aR−1 mod p for an input
a < pR, by using c = (a + (ap′ mod 2768) · p)/2768, which costs approximately
s2 + s multiplications for a 2s-limb value a. For p = 2372 · 3239 − 1, however, this
computation simplifies to c = (a + (ap′ mod 2768) · 2372 · 3239)/2768.

Moreover, p′ = −p−1 mod 2768 also exhibits a special form which reduces
the cost of computing ap′ mod 2768 (e.g., p′ − 1 contains five 64-bit limbs or
eleven 32-bit limbs of value 0). In total, the cost of computing c in this case is
s(s − �372/w�) multiplications for a word-size w. For example, if w = 64 (i.e.,
s = 12), the theoretical speedup for the simplified modular reduction is about
1.85x when applying these optimizations.

It is straightforward to extend the above optimizations to the different Mont-
gomery reduction variants that exist in the literature. For our implementa-
tion, we adapted the Comba-based Montgomery reduction algorithm from [41].
Although merged multiplication/reduction algorithms, such as the coarsely inte-
grated operand scanning (CIOS) Montgomery multiplication [25], offer perfor-
mance advantages in certain scenarios, we prefer an implementation variant that
consists of separate routines for integer multiplication and modular reduction.
This approach enables the use of lazy reduction for the Fp2 arithmetic and
allows easy-to-implement improvements in the integer multiplication, e.g., by
using Karatsuba.

Algorithm 1 is based on the Montgomery reduction algorithm in product
scanning form (a.k.a. Comba) presented in [41]. It has been especially tailored
for efficient computation modulo the prime p = 2372 · 3239 − 1 following the opti-
mizations discussed above. As usual, given a radix-2r field element representation
using s limbs, the algorithm receives as input an operand a < 2rsp (e.g., the inte-
ger product of two Montgomery residues) and outputs the Montgomery residue
c = a · 2−rs mod p. Here c is typically computed as (a + (ap′ mod 2r) · p)/2r

(s times) in a Comba-like fashion, where p′ = −p−1 mod 2r. However, as
mentioned above, this expression simplifies to (a + (a mod 2r) · p̂)/2r where
p̂ = p+1 = 2372 · 3239, since p′ = 1 for our prime. In addition, Algorithm 1 elim-
inates several multiplications due to the fact that the �eA/r� least significant
limbs in p̂ have value 0.

Since our scheme forces the availability of extra room in the radix-2r rep-
resentation (which is made possible by having the additional condition that
p < 2rs−2), there is no overflow in the most significant word during the com-
putation of c in Algorithm 1 (i.e., its intermediate value can be held on exactly
s r-bit registers). Moreover, if field elements are represented as elements in
[0, 2p − 1] (instead of the typical range [0, p − 1]), the output of Algorithm 1
remains bounded without the need of the conditional subtraction in Steps 19–
20 [51].



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 587

Algorithm 1. Optimized Comba-based Montgomery reduction for the prime
p = 2372 · 3239 − 1.
Input: The prime p = 2eA · 3eB − 1; the value p̂ = p + 1 containing z = �eA/r�
0-value terms in its r-bit representation, where eA = 372, eB = 239 and 2r is the
radix; the Montgomery constant 2rs such that 2r(s−1) ≤ p < 2rs−1; and, the operand
a = (a2s−1, ..., a1, a0) with a < 2rsp and s = �log2 p/r�.
Output: The Montgomery residue c = a · 2−rs mod p.

1: (t, u, v) = 0
2: for i = 0 to s − 1 do
3: for j = 0 to i − 1 do
4: if j < i − z + 1 then
5: (t, u, v) = cj × p̂i−j + (t, u, v)
6: (t, u, v) = (t, u, v) + ai

7: ci = v
8: v = u, u = t, t = 0
9: for i = s to 2s − 2 do

10: if z > 0 then
11: z = z − 1
12: for j = i − s + 1 to s − 1 do
13: if j < s − z then
14: (t, u, v) = cj × p̂i−j + (t, u, v)
15: (t, u, v) = (t, u, v) + ai

16: ci−s = v
17: v = u, u = t, t = 0
18: cs−1 = v + a2s−1

19: if c ≥ p then
20: c = c − p
21: return c

Although typical values for r would be w = 32 or 64 to match w-bit archi-
tectures, some redundant representations might benefit from the use of r < w
in order to avoid additions with carries or to facilitate the efficient use of vector
instructions. To this end, the chosen prime is very flexible and supports different
efficient alternatives; for example, it supports the use of a 58-bit representation
with s = 13 limbs when using 64-bit multipliers or the use of a 26-bit represen-
tation with s = 29 limbs when using 32-bit multipliers.

In our 64-bit implementation, we opted for a generic radix-264 representation
using s = 12 limbs, in which case the Montgomery constant is 2rs = 2768. In
this case, given that the initial and final loop iterations can be simplified in an
unrolled implementation of Algorithm 1, the cost of the modular reduction is
83 multiplication instructions. This result almost halves the number of multipli-
cation instructions compared to a näıve Montgomery reduction, which requires
122 + 12 = 156 multiplication instructions (per reduction).

Inversions. Our SIDH implementation requires one modular inversion during key
generation, and two modular inversions during the computation of the shared



588 C. Costello et al.

secret. These inversions can be implemented using Montgomery inversion based
on, e.g., the binary GCD algorithm. However, this method does not run in con-
stant time by default, and therefore requires additional countermeasures to pro-
tect it against timing attacks (e.g., the application of input randomization).
Since inversion is used scarcely in our software, we instead opted for the use of
Fermat’s little theorem, which inverts the field element a via the exponentiation
ap−2 mod p that uses a fixed addition chain. Our experiments showed that the
cost of this exponentiation is around 9 times slower than (an average run of) the
GCD-based method, however even the more expensive inversion only contributes
to less than 1 % of the overall latency of each round of the protocol. Thus, our
choice to compute each isolated inversion via a fixed exponentiation protects the
implementation without impacting the performance in any meaningful way, and
avoids the need for any additional randomness.

6 SIDH Implementation Summary

In this section we pull together all of the main ingredients from Sects. 2–5 to give
a brief overview of the scheme and its implementation. For high-level Magma
code that illustrates the entire SIDH protocol, see SIDH.mag in [14].

Public Parameters. Together with the curve E0 : y2 = x3 + x and the prime
p = 23723239 − 1, the public parameters are PA = [3239](11,

√
113 + 11), QA =

τ(PA), PB = [2372](6,
√

63 + 6), and QB = τ(PB). Given that all these square
roots are in Fp (we choose the “odd” ones), and that QA and QB require no
storage, this means that only 4 Fp-elements (or 3004 bits) are required to fully
specify the public generators. If we were to instead randomly choose extension
field torsion generators without use of the distortion map, as is suggested in [17],
then 16 Fp elements (or 12016 bits) would be required to specify the public
generators.

Key Generation. On input of the public parameters above, and the secret
key mA chosen as in Sect. 4, Alice proceeds as in [13, Algorithm 3] (see [13,
Algorithm 2] for the simple, but slower multiplication-based main loop). She
calls the secret pt function, which computes PA + [mA]QA by calling LADDER
to compute x([mA]QA), before recovering the corresponding y-coordinate using
the Okeya-Sakurai strategy [36]; this allows the addition of PA and [mA]QA.
All of these operations are performed over the ground field and we proceed by
taking only x(PA + [mA]QA) through the main loop.

We note that our implementation requires that Alice’s secret isogeny is evalu-
ated at both of the public parameters xPB

and xQB
, as well as at the x-coordinate

of the difference, xQB−PB
; this allows Bob to kickstart the three pt ladder

function (from [17, Algorithm 1]) during his shared secret phase. Conversely,
Bob must also evaluate his secret isogeny at xQA−PA

. In both cases, rather than
setting xQ−P as a public parameter, it can be computed on-the-fly from xP ,



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 589

since in this special instance, xQ−P = xτ(P )−P = i · (x2
P + 1)/(2xP ). This is

fed directly into our projective isogeny evaluation function, so we do not need
xQ−P ∈ A, but can instead compute x(Q − P ) = (i(x2

P + 1): 2xP ) ∈ P
1, which

costs just one squaring and two additions in Fp; this operation is performed with
the distort and diff function.

At the conclusion of [13, Algorithm 3], Alice outputs her public key as
PKAlice = [xφA(PB), xφA(QB), xφA(QB−PB)] ∈ F

3
p2 . Bob proceeds similarly, as

shown in [13, Algorithm 5] (again, see [13, Algorithm 4] for a simpler, but
slower multiplication-based approach), and outputs his public key as PKBob =
[xφB(PA), xφB(QA), xφB(QA−PA)] ∈ F

3
p2 .

Alice’s fast key generation via [13, Algorithm 3], using the strategies for com-
puting the isogeny trees as given in Sect. 4, requires 638 multiplications-by-4 and
the evaluation of 1330 4-isogenies; calling the simpler [13, Algorithm 2] requires
17020 multiplications-by-4 an 744 4-isogeny evaluations. On Bob’s side, the opti-
mal strategy (i.e., fast key generation) requires 811 multiplications-by-3 and the
evaluation of 1841 3-isogenies; the simpler version requires 28441 multiplications-
by-3 and 956 3-isogeny evaluations. See Sect. 7 for the benchmarks and further
discussion.

Remark 1. Observe that the public keys above only contain x-coordinates of
points, and do not contain the Montgomery coefficient, a, that defines the isoge-
nous curve Ea. This is because a can be recovered (on the other side) by exploit-
ing the relation a = (1−xP xQ−xP xQ−P −xQxQ−P )2

4xP xQxQ−P
−xP −xQ −xQ−P , which holds

if xP , xQ and xQ−P are the respective x-coordinates of three points P , Q and
Q − P on the Montgomery curve with coefficient a [19, Sect. A.2]. Here public
key compression (i.e., dropping the a coefficient) is free, and decompression via
the above equation amounts to 4M+1S+7a+1I; see the function get A in [14].
Compared to the overall shared secret computation, this decompression comes at
a minor cost. In an earlier draft of this paper, we provided an option for a com-
pression that instead transmitted the a coefficient, together with xP , xQ, and
a sign bit that was used to choose the correct square root (during the recovery
of xQ−P ). The above compression has the obvious advantage of saving the sign
bit, and, more importantly, means that decompression only requires an inversion
(instead of a square root). Since our software already required inversions, but
did not use square roots anywhere else, the amount of additional code required
to include this compression is minimal. We thank Luca De Feo and Ben Smith
for pointing out this simpler compression.

Shared Secret. On input of PKBob = [xφB(PA), xφB(QA), xφB(QA−PA)] and her
secret key mA, Alice first computes aB = get A(xφB(PA), xφB(QA), xφB(QA−PA)),
then calls [13, Algorithm 7] (again, see [13, Algorithm 6] for a more compact,
but significantly slower main loop) to generate her shared secret. This starts
by calling the three pt ladder function (from [17, Algorithm 1]) to compute
x(φB(PA) + [mA]φB(QA)), which is used to generate the kernel of the isogeny



590 C. Costello et al.

that is computed in the main loop. Finally, Alice uses the j inv function to
compute her shared secret. For Bob’s analogous shared key generation, see [13,
Algorithms 8–9].

Alice’s fast key generation via [13, Algorithm 7], again using the strategies in
Sect. 4, requires 638 multiplications-by-4 and the evaluation of 772 4-isogenies;
calling the simpler [13, Algorithm 6] requires 17020 multiplications-by-4 and 186
4-isogeny evaluations. On Bob’s side, the optimal strategy (i.e., fast key gener-
ation) requires 811 multiplications-by-3 and the evaluation of 1124 3-isogenies;
the simpler version requires 28441 multiplications-by-3 and 239 3-isogeny evalu-
ations. See Sect. 7 for the benchmarks and further discussion.

7 SIDH Performance

To evaluate the performance of the proposed supersingular isogeny system and
the different optimizations, we wrote a software library supporting ephemeral
SIDH key-exchange. The software is mostly written in the C language and has
been designed to facilitate the addition of specialized code for different platforms
and applications. The first release of the library comes with a fully portable C
implementation supporting 32- and 64-bit platforms and two optional x64 imple-
mentations of the field arithmetic: one implementation based on intrinsics (which
is, e.g., supported on Windows OS by Visual Studio) and one implementation
written in x64 assembly (which is, e.g., supported on Linux OS using GNU
GCC and clang compilers). The latter two optional modules are intended for
high-performance applications. All of the software is publicly available in [14].

In Table 2, we present the performance of our software using the x64 assembly
implementation in comparison with the implementation proposed by [2]. Results
for the implementation in [2] were obtained by benchmarking their software6

on the same Intel Sandy Bridge and Haswell machines, running Ubuntu 14.04
LTS. Note that the results in Table 2 differ from what was presented in Table 3
in [2]. The differences might be due to the use of overclocking (i.e., TurboBoost
technology). For our comparisons, we disabled TurboBoost for a more precise
and fair comparison.

Table 2 shows that the total cost of computing one Diffie-Hellman shared key
(adding Alice’s and Bob’s individual costs together) using our software is, on
both platforms, over 2.8 times faster than the software from [2]. These results
are due to the different optimizations discussed throughout this work, the most
prominent two being (i) the elimination of inversions during isogeny computa-
tions by working with projective curve coefficients, and (ii) the faster modu-
lar arithmetic triggered by the selected prime and the tailor-made Montgomery
reduction for SIDH primes. It is important to note that, in particular, the advan-
tage over [2] is not even larger because the numerous inversions used during the
isogeny computations in [2] are not computed in constant time. Making such
inversions constant-time would significantly degrade their performance (see the
related paragraph in Sect. 5).
6 See http://djao.math.uwaterloo.ca/thesis-code.tar.bz2.

http://djao.math.uwaterloo.ca/thesis-code.tar.bz2


Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 591

Table 2. Performance results (expressed in millions of clock cycles) of the proposed
SIDH implementation in comparison with the implementation by Azarderakhsh et al.
[2] on x64 platforms. Benchmark tests were taken with Intel’s TurboBoost disabled
and the results were rounded to the nearest 106 clock cycles. Benchmarks were done
on a 3.4 GHz Intel Core i7-2600 Sandy Bridge and a 3.4 GHz Intel Core i7-4770 Haswell
processor running Ubuntu 14.04 LTS.

Operation This work Prior work [2]

Sandy Bridge Haswell Sandy Bridge Haswell

Alice’s keygen 50 46 165 149

Bob’s keygen 57 52 172 152

Alice’s shared key 47 44 133 118

Bob’s shared key 55 50 137 122

Total 207 192 608 540

Remark 2. In Sect. 4 we discussed several specialized choices that were made for
reasons unrelated to performance, e.g., in the name of simplicity and/or com-
pactness. We stress that, should future cryptanalysis reveal that these choices
introduce a security vulnerability, the performance of SIDH and the performance
improvements in Sects. 3 and 5 are unlikely to be affected (in any meaningful
way) by reverting back to the more general case(s). In particular, if it turns out
that sampling from a fraction of the possible 2- and 3-torsion subgroups gives an
attacker some appreciable advantage, then modifying the code to sample from
the full set of torsion subgroups is merely an exercise, and the subsequent per-
formance difference would be unnoticeable. Similarly, if any of (i) starting on
a subfield curve (see [13, Remark 2]), (ii) using of the base-field and trace-zero
subgroups, or (iii) using the distortion map, turns out to degrade SIDH security,
then the main upshot of reverting to randomized public generators or starting
on a curve minimally defined over Fp2 would be the inflated public parameters
(see Sect. 6); the slowdown during key generation would be minor and the shared
secret computations would be unchanged.

8 BigMont: A Strong ECDH + SIDH Hybrid

We now return to the discussion (from Sect. 1) of a hybrid scheme. Put sim-
ply, and in regards to both security and suitability, at present there is not
enough confidence and consensus within the PQC community to warrant the
standalone deployment of one particular post-quantum key exchange primitive.
Subsequently, there is interest (cf. [5]) in deploying classical primitives alongside
post-quantum primitives in order to hedge one’s bets until a confidence-inspiring
PQC key exchange standard arrives. This is particularly interesting in the case
of SIDH, whose security has (because of its relatively short lifespan) received
less cryptanalytic scrutiny than its post-quantum counterparts.



592 C. Costello et al.

In this section we discuss how traditional ECDH key exchange can be
included alongside SIDH key exchange at the price of a very small overhead. The
main benefit of our approach is its simplicity; while SIDH could be partnered
with ECDH on any of the standardized elliptic curves, this would mean that a
lot more code needs to be written and/or maintained. In particular, it is often
the case that the bulk of the code in high-speed ECC implementations relates
to the underlying field arithmetic. Given that none of the fields underlying the
standardized curves are SIDH-friendly7, such a partnership would require either
a generic implementation that would be much less efficient, or two unrelated
implementations of field arithmetic. Our proposal avoids this additional com-
plexity by performing ECDH on an elliptic curve defined over the same ground
field as the one used for SIDH.

For p = 23723239 − 1, recall that our SIDH software works with isogenous
curves Ea/Fp2 : y2 = x3 + ax2 + x whose group orders are of the form #Ea =
2i ·3j , meaning that elliptic curve discrete logarithms are easy on all such curves
by the Pohlig-Hellman algorithm [39]. However, there are also (exponentially
many) ordinary curves of the form Ea/Fp2 that are cryptographically secure. In
particular, over the base field Fp, we can hope to find a ∈ Fp such that Ea/Fp

and its quadratic twist E′
a/Fp are cryptographically strong, i.e., such that Ea/Fp

is twist-secure [4].
Since p ≡ 3 mod 4, we searched for such a curve in exactly the same way

as, e.g., Hamburg’s Goldilocks curve [20] was found. Namely, since the value
(a+2)/4 is the constant that appears in Montgomery’s ladder computation [33],
we searched for the value of a that gave rise to the smallest absolute value of
(a + 2)/4 (when represented as an integer in [0, p)), and such that #Ea and
#E′

a are both 4 times a large prime. For p as above, the first such value is
a = 624450; to make a clear distinction between curves in the supersingular
isogeny class and the strong curve used to perform ECDH, we (re)label this
curve as Ma/Fp : y2 = x3 + ax2 + x with a = 624450. The trace tMa

of the
Frobenius endomorphism on Ma (see [13]) gives #Ma = p + 1 − tMa

= 4ra and
#M ′

a = p + 1 + tMa
= 4r′

a, where ra and r′
a are both 749-bit primes.

Following [4], every element in Fp corresponds to the x-coordinate of a point
on either Ma or on M ′

a. Together with the fact that Montgomery’s LADDER
function correctly computes underlying scalar multiplications independently of
the quadratic twist, Ma being twist-secure allows us to treat all Fp elements as
valid public keys and to perform secure ECDH without the need for any point
validation.

The ECDH secret keys are integers in [0, ra). To ensure an easy constant-
time LADDER function, we search for the smallest α ∈ N such that αra and
(α + 1)ra − 1 are the same bit length, which is α = 3; accordingly, secret keys
are parsed into [3ra, 4ra) prior to the execution of scalar multiplications via
LADDER. Subsequently, for m ∈ [0, ra) and x(P ) ∈ P

1(Fp), computing x([m]P ) =
LADDER(x(P ),m, a) requires 1 call to xDBL and 750 calls to xDBLADD (see Table 1
for the operation counts of these functions, but note that here we can take

7 Nor are any of the fields large enough to support highly (quantum-)secure SIDH.



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 593

Table 3. Comparison of standalone SIDH versus hybrid SIDH+ ECDH. Timing bench-
marks were taken on a 3.4 GHz Intel Core i7-4770 Haswell processor running Ubuntu
14.04 LTS with TurboBoost disabled and results rounded to the nearest 106 clock
cycles. For simplicity, the bit-security of the primitives was taken to be the target
security level and is not intended to be precise.

Comparison Standalone SIDH Hybrid SIDH+ECDH

≈ bit-security (hard problem) Classical 192 (SSDDH) 384 (ECDHP)

PQ 128 (SSDDH) 128 (SSDDH)

Public key size 564 658

Speed (cc ×106) Alice’s keygen 46 52

Bob’s keygen 52 58

Alice’s shared key 44 50

Bob’s shared key 50 57

advantage of the fixed, small constant a). As all of these computations take
place over the ground field, the total time taken to compute ECDH public keys
and shared secrets is only a small fraction of the total time taken to compute
the analogous SIDH keys – see Table 3.

From an implementation perspective, partnering SIDH with ECDH as above
is highly advantageous because the functions required to compute x([m]P ) =
LADDER(x(P ),m, a) are already available from our Montgomery SIDH frame-
work. In particular, the key generation (see Sect. 6) already has a tailored Mont-
gomery LADDER function that works entirely over the base field, i.e., on the
starting curve E0, so computing ECDH keys is as simple as calling pre-existing
functions on input of a different constant.

Though the speed overhead incurred by adding ECDH to SIDH in this way
is small (see Table 3), choosing to use such a large elliptic curve group makes
concatenated keys larger than they would be if a smaller elliptic curve was used
for ECDH. For example, suppose we were to instead use the curve currently rec-
ommended in Suite B [35], Curve P-384, and (noting that uncompressed Curve
P-384 points are larger than our proposed ECDH public keys) were to compress
ECDH public keys as an x-coordinate and a sign bit. The total public key size
with SIDH-compressed keys would then be 612 bytes, instead of the 658 bytes
reported in Table 3. Though this difference is noticeable, it must be weighed
up against the cost of the extensive additional code required to support Curve
P-384, which would almost certainly share nothing in common with the existing
SIDH code. Moreover, the simplicity of adding ECDH to SIDH as we propose
is not the only reason to justify slightly larger public keys; the colossal 384-bit
security achieved by M624450 also puts it in a position to tolerate the possibility
of significant future advancements in ECDLP attacks. Due to the complexity
of the ECDLP on M624450 in comparison with all of the elliptic curves in the
standards, we dub this curve “BigMont”.

In Table 3 we compare hybrid SIDH+ ECDH versus standalone SIDH. The
take-away message is that for a less than 1.17x increase in public key sizes



594 C. Costello et al.

and less than 1.13x increase in the overall computing cost, we can increase the
classical security of the key exchange from 192 bits (based on the relatively new
SSDDH problem) to 384 bits (based on the long-standing ECDLP).

9 Validating Public Keys

Recall from Sect. 2 that De Feo et al. [17] prove that SIDH is session-key secure
(under SSDDH) in the authenticated-links adversarial model [10]. This model
assumes perfectly authenticated links which effectively forces adversaries to be
passive eavesdroppers; in particular, it assumes that public keys are correctly
generated by honest users. While this model can be suitable for key exchange
protocols that are instantiated in a truly ephemeral way, in real-world scenarios
it is often the case that (static) private keys are reused. This can incentivize
malicious users to create faulty public keys that allow them to learn information
about the other user’s static private key, and in such scenarios validating public
keys becomes a mandatory practical requirement.

In traditional elliptic curve Diffie-Hellman (ECDH), validating public keys
essentially amounts to checking that points are on the correct and cryptographi-
cally secure curve [7]. Such point validation is considered trivial in ECDH, since
checking that a point satisfies a curve equation requires only a handful of field
multiplications and additions, and this is negligible compared to the overall cost
(e.g., of a scalar multiplication).

In contexts where SIDH private keys are reused, public key validation is
equally as important but is no longer as trivial. In April 2015, a group from the
NSA [24] pointed out that “direct public key validation is not always possible
for [...] isogeny based schemes” before describing more complicated options that
validate public keys indirectly. In this section we describe ways to directly vali-
date various properties of our public keys that, in particular, work entirely in our
compact framework, i.e., without the need of y-coordinates or of the Montgomery
b coefficient that fixes the quadratic twist.

Recall from Sect. 6 that an honest user generates public keys of the form
PK =

[
xP , xQ, xQ−P

] ∈ F
3
p2 , where P = (xP , yP ) and Q = (xQ, yQ) are of

the same order �e on a Montgomery curve Ea that is Fp2 -isogenous to E0, and
are such that Q �= [λ]P for any λ ∈ Z; the algorithms we describe below will
only deem a purported public key as valid if this is indeed the case. Recall from
Remark 1 that the three x-coordinates in the public key are immediately used to
recover the Montgomery a coefficient that was dropped during compression; this
coefficient must also be considered as part of the public key during validation.

Public key validation must check that the (underlying) points P and Q are
of the full order �e. If not, then an SIDH-like analogue of the Lim-Lee [28] small
subgroup attack becomes a threat; e.g., an attacker could send xQ where Q
has small order q and guess the shared secret (i.e., the kernel 〈P + [m]Q〉) to
learn m mod q. In addition, the procedure must also assert that Q �= [λ]P (or
equivalently, that P �= [λ]Q) for some λ ∈ Z; if this assertion is not made, then
a malicious user can simply send a public key where Q = [λ]P , which ultimately



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 595

forces the shared secret to be independent of the honest party’s private key.
Such capabilities could be catastrophic if the authentication mechanism does
not detect them.

The validation procedure we describe below guards against all of these attacks
by asserting that P and Q both have order �e, and that the Weil pairing e�e(P,Q)
has the maximum possible order, namely the same order as the Weil pairing
of the corresponding public parameters8; this means that the points P and Q
generate as much of the �e torsion as is possible (according to the definition of
the public parameters). This second assertion can be made in a very simple way,
thanks to an observation by Ben Smith, who pointed out the following (using [31,
Lemma 16.2]). If the points P and Q are in E[mn], then the n-th power of the
Weil pairing emn(P,Q) can be computed as emn(P,Q)n = em([n]P, [n]Q), which
allows us to efficiently check that the order of the Weil pairing is as it should be9.

The application of the above validation procedure (to the three x-coordinates
in a public key) is different for Alice and Bob, so we now describe these cases sep-
arately. We then discuss how both parties validate that the curve Ea corresponds
to a supersingular curve in the correct isogeny class, and conclude the section
with performance benchmarks for the validation process. All of the procedures
described below can be found in the file Validate.mag [14].

Alice’s Validation of Bob’s Public Key. Alice must determine whether
Bob’s transmission [xP , xQ, xR] ∈ F

3
p2 passes the tests described above. Recall

from Sect. 4 that a consequence of Lemma 1 is that if the public parameters PA

and QA are chosen from the base field and trace-zero subgroups, then they do
not form a basis for the full �eA

A -torsion. In particular, the order of the Weil
pairing e�

eA
A

(PA, QA) in our case is �eA−1
A = 2371; although this order is less than

�eA

A , it is as large as is possible when the two basis elements are chosen from
these particular torsion subgroups.

If Bob’s public key is honestly generated, then xP and xQ correspond to
points P and Q whose Weil pairing also has order �eA−1

A ; indeed, checking that
this is the case ensures that we maximize the number of torsion subgroups that
are spanned by P + [2m′]Q. Let a be computed from xP , xQ and xR as in
Remark 1, and let m = 4 and n = 2370 so that mn = �eA

A = 2372. We assert
that the exact order of e�

eA
A

(P,Q) is �eA−1
A by showing that e�

eA
A

(P,Q)�
eA−2
A

is non-trivial, making use of the identity above which gives e�
eA
A

(P,Q)�
eA−2
A =

emn(P,Q)n,= em([n]P, [n]Q) = e4
(
[2370]P, [2370]Q

)
. Together with the asser-

tion that P and Q both have exact order 2372, the assertion that the Weil pair-
ing e4

(
[2370]P, [2370]Q

)
is non-trivial completes the validation of xP and xQ.

If indeed P and Q have order 2372, the points P ′ = [2370]P and Q′ = [2370]Q

8 We thank Steven Galbraith and David Jao, who independently pointed out that the
Pohlig-Hellman algorithm [39] can also be used to efficiently check whether P and
Q are dependent.

9 A prior version of this paper made a weaker assertion using a more elaborate com-
putation.



596 C. Costello et al.

have exact order 4. In that case, e4(P ′, Q′) �= 1 if, and only if, x(P ′) �= x(Q′).
This can be seen by an elementary proof using [8, Theorem IX.10(5.)] and [8,
Corollary IX.11] together with the fact that Q′ ∈ 〈P ′〉 implies x(P ′) = x(Q′).
All of these checks can be performed entirely with x-coordinates as follows. We
compute x(P ′) = x([2370]P ) = xDBLe(x(P ), a, 370) and x(Q′) = x([2370]Q) =
xDBLe(x(Q), a, 370). Next, we assert that x(P ′) �= x(Q′), which is done projec-
tively via a cross-multiplication. To check that P has full order 2372, we then
use two more calls to xDBL to assert that (X : Z) = x([2]P ′) has Z �= 0 and that
(X̃ : Z̃) = x([4]P ′) has Z̃ = 0; we do exactly the same for Q. If any of these
checks fail, the public key is deemed invalid and rejected.

The assertion that xR is the correct difference xQ−P on Ea is implicit from
the computation of a during decompression, and from the combined validation
of xP , xQ and a. Validating that a indeed corresponds to a supersingular curve
in the correct isogeny class is performed in the same way for Alice and Bob, so
we postpone it until after describing Bob’s validation.

Bob’s Validation of Alice’s Public Key. Bob must determine whether
Alice’s transmission [xP , xQ, xR] ∈ F

3
p2 passes the tests described above. In this

case our choice of the base field and trace-zero subgroups does not impede the
possibility of the Weil pairing having full order; indeed, the public generators PB

and QB are such that the order of e(PB , QB) is �eB

B . Thus, honest public keys
also give rise to the Weil pairing e�

eB
B

(P,Q) having order �eB

B . To make use of
the identity above, we set m = 3 and n = 3238 so that mn = �eB

B = 3239, which
gives e�

eB
B

(P,Q)�
eB−1
B = emn(P,Q)n = em([n]P, [n]Q) = e3

(
[3238]P, [3238]Q

)
.

Together with the assertion that P and Q both have exact order 3239, the
assertion that the Weil pairing e3

(
[3238]P, [3238]Q

)
is non-trivial completes

the validation of xP and xQ. If P ′ = [3238]P and Q′ = [3238]Q have order
3, then e3 (P ′, Q′) �= 1 if, and only if, x(P ′) �= x(Q′). This follows directly
from [8, Corollary IX.11]. Again, we perform all of these checks using only x-
coordinates as follows. We compute x(P ′) = x([3238]P ) = xTPLe(x(P ), a, 238)
and x(Q′) = x([2238]Q) = xTPLe(x(Q), a, 238) and assert that x(P ′) �= x(Q′),
which is again done projectively via a cross-multiplication. To check that P has
full order 3239, we assert that (X : Z) = x(P ′) has Z �= 0, and use one more
call to xTPL to assert that (X̃ : Z̃) = x([3]P ′) has Z̃ = 0; again, we do the same
for Q. If any of these checks fail, the public key is deemed invalid and rejected.

Validating the Curve. We now show how to validate that a (i.e., the curve
coefficient that is computed during the decompression of Alice or Bob’s public
key) corresponds to a Montgomery curve Ea that is a member of the correct
supersingular isogeny class. The validation has two steps: we firstly assert that
j(Ea) /∈ Fp so that Ea is not a subfield curve, then we assert that Ea is in the
correct supersingular isogeny class.

The first step is easy and totals a handful of multiplications in Fp (see the
full version [13]); the less trivial step is to validate that Ea is supersingular.



Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 597

To do this, we make use of Sutherland’s probabilistic algorithm [46, Algorithm
1], which (for our purposes) says to pick a random point P ∈ Ea(Fp2), and
to check whether [p − 1]P = O or [p + 1]P = O. If this is the case, then Ea is
supersingular with overwhelming probability: the probability that this test would
pass if Ea was actually an ordinary curve is at most 8p/(p − 1)2 < 1/2747 [46,
Proposition 1].

We now point out that Ea being supersingular is equivalent to either Ea or
its quadratic twist, E′

a, belonging to the correct isogeny class. Namely, by [44,
V.5.10(a)], Ea is supersingular if and only if its trace, tEa

, satisfies tEa
≡ 0 mod

p. Together with [48, Theorem 1], and recalling that −2p ≤ tEa
≤ 2p [44, V.1.1],

this means that there are (at most) 5 possible isogeny classes of supersingular
elliptic curves, those which are described by tEa

∈ {−2p,−p, 0, p, 2p}. Since p ≡
3 mod 4, there are only two possibilities for tEa

that correspond to a Montgomery
curve, i.e., two possible tEa

such that 4 | #Ea [33], namely tEa
= −2p and

tEa
= 2p. These traces respectively correspond to curves with #Ea = (p + 1)2

that are in the correct isogeny class, and to curves with #E′
a = (p−1)2 that are

in the isogeny class containing all of their non-trivial quadratic twists.
In our case we are trying to validate that a corresponds to a curve with

#Ea = (p + 1)2, so at first glance it would seem that the best route is to
pick a random point P ∈ Ea(Fp2) and to assert that [p + 1]P = O. However,
generating such a random point requires a square-root computation, and it turns
out that we can (again) avoid the need for a square root altogether. For a given
a, recall from Sect. 8 (or, in turn, from [4]) that elements in Fp2 are either the
x-coordinate of a point on Ea/Fp2 or the x-coordinate of a point on E′

a/Fp2 . This
means that if Ea is supersingular, every element in Fp2 is the x-coordinate of a
point whose order divides either p − 1 or p + 1. This gives us a way to quickly
assert (with overwhelming probability) that a corresponds to a supersingular
Montgomery curve in the correct isogeny class. With the Montgomery LADDER
function as described in Sect. 3, we simply take a random element r in Fp2 ,
compute (X : Z) = LADDER((r : 1), a, p + 1) and (X ′ : Z ′) = LADDER((r : 1), a, p −
1), and ensure that Z · Z ′ = 0; otherwise, we reject the public key as invalid.
We can compute a condition equivalent to Z · Z ′ = 0 using only one call to the
LADDER function as follows. The condition O ∈ {[p − 1]P, [p + 1]P} is equivalent
to the condition x(P ) = x([p]P ), which can be checked by computing (X : Z) =
LADDER(x(P ), a, p) with x(P ) = (xP : 1) and checking that Z ·xP = X. However,
calling LADDER to compute x([p]P ) directly is undesirable; given that p + 1 =
2�A3�B , it is instead preferable to write a tailored ladder (consisting only of xDBL
and xTPL operations) that computes a scalar multiplication by p+1. We do this
by noting that the condition x(P ) = x([p]P ) is equivalent to the condition that
either x([p + 1]P ) = x([2]P ) or [p + 1]P = O is satisfied.

The Price of Our Public Key Validation Procedure. On our target plat-
forms, i.e., a 3.4 GHz Intel Core i7-2600 Sandy Bridge and a 3.4 GHz Intel
Core i7-4770 Haswell processor running Ubuntu 14.04 LTS, the validation of
Alice’s public key costs (according to the above procedure) around 23 million



598 C. Costello et al.

and 21 million clock cycles, respectively. Similarly, the validation of Bob’s public
key costs around 20 million and 18 million clock cycles, respectively. Refer-
ring back to Table 2, this means that both Alice and Bob’s validation proce-
dures cost between 0.39 and 0.43 times their key generation and shared secret
computations.

Unlike public key validation in some other contexts, e.g., point validation
in ECC, the compute time of the above SIDH public key validation is non-
negligible compared to the compute time of each round of the key exchange.
Nevertheless, in scenarios where static keys are desirable, the above overhead
might be preferred over changes in the protocol description, e.g., the indirect
validation proposed in [24].

10 Conclusion

We presented several new algorithms that have given rise to more efficient SIDH
key exchange. We built a software library around a supersingular isogeny class
determined by a fixed base curve that was chosen to target 128 bits of quan-
tum security, and showed that these techniques give rise to a factor speedup of
up to 2.9x over the previous fastest SIDH software. To our knowledge, our SIDH
key exchange software is the first such implementation to run in constant time,
and offers a range of additional benefits, such as compactness. In addition, we
introduced two new techniques that bridge the gap between theoretical and real-
world deployment of SIDH key exchange: the ECDH+SIDH hybrid and efficient
algorithms for validating properties of public keys. The speed of our software
(and the size of the public keys it generates) highlights the potential that SIDH
currently offers as a candidate for post-quantum key exchange.

Acknowledgements. This paper has been significantly improved due to the feedback
we received on a previous version. We are especially thankful to Ben Smith who pointed
out a much simpler and faster method of our public key validation (see Sect. 9). We
thank Luca De Feo and Ben Smith for pointing out a simplified compression of public
keys (see Sect. 6). We thank Luca De Feo, Steven Galbraith and David Jao for their
useful feedback, and the anonymous reviewers for their comments.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

2. Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-
resistant key-exchange protocol on embedded systems. Technical report (2014).
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf

3. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf


Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 599

4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

5. Bernstein, D.J.: The post-quantum internet. Invited talk at PQCrypto 2016, Feb-
ruary 2016. https://cr.yp.to/talks/2016.02.24/slides-djb-20160224-a4.pdf

6. Biasse, J., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Berlin (2014)

7. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 131. Springer,
Heidelberg (2000)

8. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryptog-
raphy. London Mathematical Society Lecture Notes Series, vol. 317. Cambridge
University Press, Cambridge (2004)

9. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory
1(3), 269–273 (2009)

10. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

11. Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. NISTIR 8105, DRAFT (2016). http://
csrc.nist.gov/publications/drafts/nistir-8105/nistir 8105 draft.pdf

12. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptology 8(1), 1–29 (2014)

13. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman (full version). Cryptology ePrint Archive, Report 2016/413 (2016).
http://eprint.iacr.org/

14. Costello, C., Longa, P., Naehrig, M.: SIDH Library (2016). https://www.microsoft.
com/en-us/research/project/sidh-library/

15. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

16. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum informa-
tion: an outlook. Science 339(6124), 1169–1174 (2013)

17. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptology 8, 209–247 (2014)

18. Galbraith, S.D., Stolbunov, A.: Improved algorithm for the isogeny problem for
ordinary elliptic curves. Appl. Algebra Eng. Commun. Comput. 24(2), 107–131
(2013)

19. Hamburg, M.: Fast and compact elliptic-curve cryptography. IACR Cryptolo-
gyePrint Archive, 2012:309 (2012)

20. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/

21. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

22. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011)

https://cr.yp.to/talks/2016.02.24/slides-djb-20160224-a4.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://eprint.iacr.org/
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/
http://eprint.iacr.org/


600 C. Costello et al.

23. Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank,
D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A.,
Hoi, I.-C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A.,
Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error
detection in a superconducting quantum circuit. Nature 519, 66–69 (2015)

24. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Failure
is not an option: standardization issues for post-quantum key agreement. Talk at
NIST Workshop on Cybersecurity in a Post-Quantum World, April 2015. http://
www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

25. Koc, C.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

27. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)

28. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1997)

29. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Cod-
ing Thv 4244, 114–116 (1978)

30. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stan-
ford University (1979)

31. Milne, J.S.: Abelian Varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 103–150. Springer, New York (1986)

32. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

33. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

34. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready?
Cryptology ePrint Archive, Report 2015/1075 (2015). http://eprint.iacr.org/

35. National Security Agency (NSA): Cryptography today, August 2015. https://www.
nsa.gov/ia/programs/suiteb cryptography/

36. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar multipli-
cation algorithm with recovery of the y-coordinate on a Montgomery-form elliptic
curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 126–141. Springer, Heidelberg (2001)

37. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report CSTR-02-003, Department of Computer Science, University of Bristol
(2002). http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

38. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

39. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978)

40. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/

41. Scott, M.: Fast machine code for modular multiplication (1995). Manuscript, avail-
able for download at ftp://ftp.computing.dcu.ie/pub/crypto/fastmodmult2.ps

http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://eprint.iacr.org/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf
http://eprint.iacr.org/
ftp://ftp.computing.dcu.ie/pub/crypto/fast mod mult2.ps


Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 601

42. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

43. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Proceed-
ings, pp. 124–134. IEEE (1994)

44. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, 2nd edn. Springer, New York (2009)

45. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian
University of Science and Technology (2012). http://www.item.ntnu.no/ media/
people/personalpages/phd/anton/stolbunov-crypthographic schemes based on
isogenies-phd thesis 2012.pdf

46. Sutherland, A.V.: Identifying supersingular elliptic curves. LMS J. Comput. Math.
15, 317–325 (2012)

47. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

48. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math.
2(2), 134–144 (1966)

49. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

50. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. J. Cryptology 17(4), 277–296 (2004)

51. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electron.
Lett. 35(21), 1831–1832 (1999)

52. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005)

http://www.item.ntnu.no/_media/people/personalpages/phd/anton/stolbunov-crypthographic_schemes_based_on_isogenies-phd_thesis_2012.pdf
http://www.item.ntnu.no/_media/people/personalpages/phd/anton/stolbunov-crypthographic_schemes_based_on_isogenies-phd_thesis_2012.pdf
http://www.item.ntnu.no/_media/people/personalpages/phd/anton/stolbunov-crypthographic_schemes_based_on_isogenies-phd_thesis_2012.pdf

	Efficient Algorithms for Supersingular Isogeny Diffie-Hellman
	1 Introduction
	2 Diffie-Hellman Key Exchange from Supersingular Elliptic Curve Isogenies
	3 Projective Points and Projective Curve Coefficients
	4 Parameters and Implementation Choices
	5 Field Arithmetic
	6 SIDH Implementation Summary
	7 SIDH Performance
	8 BigMont: A Strong ECDH+SIDH Hybrid
	9 Validating Public Keys
	10 Conclusion
	References


