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Abstract. Functional encryption is a modern public-key paradigm
where a master secret key can be used to derive sub-keys SKF asso-
ciated with certain functions F in such a way that the decryption oper-
ation reveals F (M), if M is the encrypted message, and nothing else.
Recently, Abdalla et al. gave simple and efficient realizations of the prim-
itive for the computation of linear functions on encrypted data: given an
encryption of a vector y over some specified base ring, a secret key SKx

for the vector x allows computing 〈x,y〉. Their technique surprisingly
allows for instantiations under standard assumptions, like the hardness
of the Decision Diffie-Hellman (DDH) and Learning-with-Errors (LWE)
problems. Their constructions, however, are only proved secure against
selective adversaries, which have to declare the challenge messages M0

and M1 at the outset of the game.
In this paper, we provide constructions that provably achieve secu-

rity against more realistic adaptive attacks (where the messages M0 and
M1 may be chosen in the challenge phase, based on the previously col-
lected information) for the same inner product functionality. Our con-
structions are obtained from hash proof systems endowed with homo-
morphic properties over the key space. They are (almost) as efficient as
those of Abdalla et al. and rely on the same hardness assumptions.

In addition, we obtain a solution based on Paillier’s composite residu-
osity assumption, which was an open problem even in the case of selective
adversaries. We also propose LWE-based schemes that allow evaluation of
inner products modulo a prime p, as opposed to the schemes of Abdalla
et al. that are restricted to evaluations of integer inner products of short
integer vectors. We finally propose a solution based on Paillier’s com-
posite residuosity assumption that enables evaluation of inner products
modulo an RSA integer N = p · q.

We demonstrate that the functionality of inner products over a prime
field is powerful and can be used to construct bounded collusion FE for
all circuits.

Keywords: Functional encryption · Adaptive security · Standard
assumptions · DDH · LWE · Extended LWE · Composite residuosity

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 333–362, 2016.
DOI: 10.1007/978-3-662-53015-3 12



334 S. Agrawal et al.

1 Introduction

Functional encryption (FE) [19,56] is a generalization of public-key encryption,
which overcomes the all-or-nothing, user-based access to data that is inherent to
public key encryption and enables fine grained, role-based access that makes it
very desirable for modern applications. A bit more formally, given an encryption
enc(X) and a key corresponding to a function F , the key holder only learns
F (X) and nothing else. Apart from its theoretical appeal, the concept of FE
also finds numerous applications. In cloud computing platforms, users can store
encrypted data on a remote server and subsequently provide the server with
a key SKF which allows it to compute the function F of the underlying data
without learning anything else.

In some cases, the message X = (IND,M) consists of an index IND (which
can be thought of as a set of descriptive attributes) and a message M , which
is sometimes called “payload”. One distinguishes FE systems with public index,
where IND is publicly revealed by the ciphertext but M is hidden, from those
with private index, where IND and M are both hidden. Public index FE is
popularly referred to as attribute based encryption.

A Brief History of FE. The birth of Functional Encryption can be traced
back to Identity Based Encryption [17,57] which can be seen as the first non-
trivial generalization of Public Key Encryption. However, it was the work of
Sahai and Waters [56] that coined the term Attribute Based Encryption, and
the subsequent, natural unification of all these primitives under the umbrella of
Functional Encryption took place only relatively recently [19,49]. Constructions
of public index FE have matured from specialized – equality testing [13,17,35],
keyword search [1,16,44], Boolean formulae [42], inner product predicates [44],
regular languages [58] – to general polynomial-size circuits [18,34,40] and even
Turing machines [37]. The journey of private index FE has been significantly
more difficult, with inner product predicate constructions [3,44] being the state
of the art for a long time until the recent elegant generalization to polynomial-
size circuits [41].

However, although private index FE comes closer than ever before to the goal
of general FE, it falls frustratingly short. This is because all known constructions
of private index FE only achieve weak attribute hiding, which severely restricts
the function keys that the adversary can request in the security game – the
adversary may request keys for functions fi that do not decrypt the challenge
ciphertext (IND∗,M∗), i.e., fi(IND∗) �= 0 holds for all i. The most general notion
of FE – private index, strongly attribute hiding – has been built for the restricted
case of bounded collusions [38,39] or using the brilliant, but ill-understood1

machinery of multi-linear maps [33] and indistinguishability obfuscation [33].
These constructions provide FE for general polynomial-size circuits and Turing
machines [37], but, perhaps surprisingly, there has been little effort to build the
general notion of FE ground-up, starting from smaller functionalities.
1 Indeed, the two candidate multi-linear maps [24,32] put forth in 2013 were recently

found to be insecure [23,43].
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This appears as a gaping hole that begs to be filled. Often, from the practical
standpoint, efficient constructions for a smaller range of functionalities, such as
linear functions or polynomials, are extremely relevant, and such an endeavour
will also help us understand the fundamental barriers that thwart our attempts
for general FE. This motivates the question:

Can we build FE for restricted classes of functions, satisfying standard secu-
rity definitions, under well-understood assumptions?

In 2015, Abdalla et al. [2] considered the question of building FE for linear
functions. Here, a ciphertext C encrypts a vector y ∈ D� over some ring D,
a secret key for the vector x ∈ D� allows computing 〈x,y〉 and nothing else
about y. Note that this is quite different from the inner product predicate func-
tionality of [3,44]: the former computes the actual value of the inner product
while the latter tests whether the inner product is zero or not, and reveals a
hidden bit M if so. Abdalla et al. [2] showed, surprisingly, that this functionality
allows for very simple and efficient realizations under standard assumptions like
the Decision Diffie-Hellman (DDH) and Learning-with-Errors (LWE) assump-
tions [53]. The instantiation from DDH was especially unexpected since DDH is
not known to easily lend itself to the design of such primitives.2 What enables
this surprising result is that the functionality itself is rather limited – note that
with � queries, the adversary can reconstruct the entire message vector. Due to
this, the scheme need not provide collusion resistance, which posits that no col-
lection of secret keys for functions F1, . . . , Fq should make it possible to decrypt
a ciphertext that no individual such key can decrypt. Collusion resistance is usu-
ally the chief obstacle in proving security of FE schemes. On the contrary, for
linear FE constructions, if two adversaries combine their keys, they do get a valid
new key, but this key gives them a plaintext which could anyway be computed
by their individual plaintexts. Hence, collusion is permitted by the functionality
itself, and constructions can be much simpler. As we shall see below, linear FE
is already very useful and yields many interesting applications, as we discuss in
the full version of the paper [4].

More recently, Bishop et al. [12] considered the same functionality as Abdalla
et al. in the secret-key setting with the motivation of achieving function privacy.

While [12] considers adaptive adversaries, their construction requires bilin-
ear maps and does not operate over standard DDH-hard groups. In the public-
key setting, Abdalla et al. [2] only proved their schemes to be secure against
selective adversaries, that have to declare the challenge messages M0,M1 of
the semantic security game upfront, before seeing the master public key mpk.
Selective security is usually too weak a notion for practical applications and
is often seen as a stepping stone to proving full adaptive security. Historically,
most flavors of functional encryption have been first realized for selective adver-
saries [13,33,42,44,56] before being upgraded to attain full security. Boneh and
Boyen [14] observed that a standard complexity leveraging argument can be used

2 And indeed, this unsuitability partially manifests itself in the limitation of mes-
sage/function space of the aforementioned construction: message/function vectors
must be short integer vectors, and the inner product is evaluated over the integers.
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to argue that a selectively-secure system is also adaptively secure. However, this
argument is not satisfactory in general as the reduction incurs an exponential
security loss in the message length. Quite recently, Ananth et al. [8] described a
generic method of building adaptively secure functional encryption systems from
selectively secure ones. However their transformation is based on the existence
of a sufficiently expressive selectively secure FE scheme, where sufficiently secure
roughly means capable of evaluating a weak PRF. Since no such scheme from
standard assumptions is known, their transformation does not apply to our case,
and in any case would significantly increase the complexity of the construction,
even if it did.

Our Results. In this paper, we describe fully secure functional encryption sys-
tems for the evaluation of inner products on encrypted data. We propose schemes
that evaluate inner products of integer vectors, based on DDH, LWE and the
Composite Residuosity hardness assumptions. Our DDH-based and LWE-based
constructions for integer inner products are of efficiency comparable to those of
Abdalla et al. [2] and rely on the same standard assumptions. Note that a system
based on Paillier’s composite residuosity assumption was an open problem even
for the case of selective adversaries, which we resolve in this work.

Additionally, we propose schemes that evaluate inner products modulo a
prime p or a composite N = pq, based on the LWE and Composite Residu-
osity hardness assumptions. In contrast, the constructions of [2] must restrict
the ring D to the ring of integers, which is a significant drawback. Indeed,
although their DDH-based realization allows evaluating 〈x,y〉 mod p when the
latter value is sufficiently small, their security proof restricts the functionality
to the computation of 〈x,y〉 ∈ Z.

The functionality of inner products over a prime field is powerful: we show
that it can be bootstrapped all the way to yield a conceptually simple construc-
tion for bounded collusion FE for all circuits. The only known construction for
general FE handling bounded collusions is by Gorbunov et al. [39]. Our construc-
tion is conceptually simpler, albeit a bit more inefficient. Also, since it requires
the inner product functionality over a prime field, it can only be instantiated
with our LWE-based scheme for now.

1.1 Overview of Techniques

We briefly summarize our techniques below.

Fully Secure Linear FE: Hash Proof Systems. Our DDH-based construc-
tion and its security proof implicitly build on hash proof systems [26]. It involves
public parameters comprised of group elements

(
g, h, {hi = gsi · hti}�

i=1

)
, where

g, h generate a cyclic group G of prime order q, and the master secret key is
msk = (s, t) ∈ Z

�
q × Z

�
q. On input of a vector y = (y1, . . . , y�) ∈ Z

�
q, the encryp-

tion algorithm computes (gr, hr, {gyi · hr
i }�

i=1) in such a way that a secret key
of the form SKx = (〈s,x〉, 〈t,x〉) allows computing g〈y,x〉 in the same way as
in [2]. Despite its simplicity and its efficiency (only one more group element than
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in [2] is needed in the ciphertext), we show that the above system can be proved
fully secure using arguments – akin to those of Cramer and Shoup [25] – which
consider what the adversary knows about the master secret key (s, t) ∈ Z

�
q ×Z

�
q

in the information theoretic sense. The security proof is arguably simpler than
its counterpart in the selective case [2]. As in all security proofs based on hash
proof systems, it uses the fact that the secret key is known to the reduction at
any time, which makes it simpler to handle secret key queries without knowing
the adversary’s target messages y0,y1 ∈ Z

�
q in advance.

While our DDH-based realization only enables efficient decryption when the
inner product 〈x,y〉 is contained in a sufficiently small interval, we show how
to eliminate this restriction using Paillier’s cryptosystem in the same way as
in [21,22]. We thus obtain the first solution based on the Composite Residuosity
assumption, which was previously an open problem (even in the case of selective
security).

LWE-Based Fully Secure Linear FE. Our LWE-based construction builds on
the dual Regev encryption scheme from Gentry et al. [35]. Its security analysis
requires more work. The master public key contains a random matrix A ∈ Z

m×n
q .

For simplicity, we restrict ourselves to plaintext vectors and secret key vectors
with binary coordinates. Each vector coordinate i ∈ {1, . . . , �} requires a master
public key component uT

i = zT
i ·A ∈ Z

n
q , for a small norm vector zi ∈ Z

m made
of Gaussian entries which will be part of the master secret key msk = {zi}�

i=1.
Each {ui}�

i=1 can be seen as a syndrome in the GPV trapdoor function for
which vector zi is a pre-image. Our security analysis will rely on the fact that
each GPV syndrome has a large number of pre-images and, conditionally on
ui ∈ Z

n
q , each zi retains a large amount of entropy. In the security proof, this

will allow us to apply arguments similar to those of hash proof systems [26]
when we will generate the challenge ciphertext using {zi}�

i=1. More precisely,
when the first part c0 ∈ Z

m
q of the ciphertext is a random vector instead of an

actual LWE sample c0 = A · s + e0, the action of {zi}�
i=1 on c0 ∈ Z

m
q produces

vectors that appear statistically uniform to any legitimate adversary. In order to
properly simulate the challenge ciphertext using the master secret key {zi}�

i=1,
we use a variant of the extended LWE assumption [50] (eLWE) so as to have the
(hint) values {〈zi, e0〉}�

i=1 at disposal. One difficulty is that the reductions from
LWE to eLWE proved in [7,20] handle a single hint vector z. Fortunately, we
extend the techniques of Brakerski et al. [20] using the gadget matrix from [45]
to obtain a reduction from LWE to the multi-hint variant of eLWE that we use
in the security proof. More specifically, we prove that the multi-hint variant of
eLWE remains at least as hard as LWE when the adversary obtains as many as
n/2 hints, where n is the dimension of the LWE secret.

Evaluation Inner Products Modulo p. Our construction from the DDH
assumption natively supports the computation of inner products modulo a
prime p as long as the remainder 〈x,y〉 mod p falls in a polynomial-size interval.
Under the Paillier and LWE assumptions, we first show how to compute integer
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inner products 〈x,y〉 ∈ Z. In a second step, we upgrade our Paillier and LWE-
based systems so as to compute inner products modulo a composite N = pq and
a prime p, respectively, without leaking the actual value 〈x,y〉 over Z.

Hiding anything but the remainder modulo N or p requires additional tech-
niques. In the context of LWE-based FE, this is achieved by using an LWE mod-
ulus of the form q = p · p′ and multiplying plaintexts by p′, so that an inner
product modulo q over the ciphertext space natively translates into an inner
product modulo p for the underlying plaintexts.

The latter plaintext/ciphertext manipulations do not solve another difficulty
which arises from the discrepancy between the base rings of the master key
and the secret key vectors: indeed, the master key consists of integer vectors,
whereas the secret keys are defined modulo an integer. When the adversary
queries a secret key vector x ∈ Z

�
p (or Z�

N ), it gets the corresponding combination
modulo p of the master key components. By making appropriate vector queries
that are linearly dependent modulo p (and hence valid), an attacker could learn
a combination of the master key components which is singular modulo p but
invertible over the field of rational numbers: it would then obtain the whole
master key! However, note that as long as the adversary only queries secret keys
for � − 1 independent vectors over Z

�
p (or Z

�
N ), there is no reason not to reveal

more than �−1 secret keys overall. In order to make sure that the adversary only
obtains redundant information by making more than � − 1 queries, we assume
that a trusted authority keeps track of all vectors x for which secret keys were
previously given out (more formally, the key generation algorithm is stateful).

Compiling Linear FE to Bounded Collusion General FE. We provide a
conceptually simpler way to build q-query Functional Encryption for all circuits.
The only known construction for this functionality was suggested by Gorbunov
et al. in [39]. At a high level, the q-query construction by Gorbunov et al. is built
in several layers, as follows:

1. They start with a single key FE scheme for all circuits, which was provided
by [55].

2. The single FE scheme is compiled into a q-query scheme for NC1 circuits.
This is the most non-trivial part of the construction. They run N copies of
the single key scheme, where N = O(q4). To encrypt, they encrypt the views
of some N -party MPC protocol computing some functionality related to C,
à la “MPC in the head”. For the MPC protocol, they use the BGW [10] semi-
honest MPC protocol without degree reduction and exploit the fact that this
protocol is completely non-interactive when used to compute bounded degree
functions. The key generator provides the decryptor with a subset of the
single query FE keys, where the subsets are guaranteed to have small pairwise
intersections. This subset of keys enables the decryptor to recover sufficiently
many shares of C(x) which enables her to compute C(x) via polynomial
interpolation. However, an attacker with q keys only learns a share xi in the
clear if two subsets of keys intersect, and due to small pairwise intersections,
this does not occur often enough for him learn sufficiently many shares of x,
hence, by the guarantees of secret sharing, input x remains hidden.
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3. Finally, they bootstrap the q-query FE for NC1 to a q-query FE for all circuits
using computational randomized encodings [9]. They must additionally use
cover-free sets to ensure that fresh randomness is used for each randomized
encoding.

Our construction replaces steps 1 and 2 with a inner product modulo p FE
scheme, and then uses step 3 as in [39]. Thus, the construction of single key
FE in step 1 by Sahai and Seyalioglu, and the nontrivial “MPC in the head”
of step 2 can both be replaced by the simple abstraction of an inner product
FE scheme. For step 3, observe that the bootstrapping theorem of [39] provides
a method to bootstrap an FE for NC1 that handles q queries to an FE for all
polynomial-size circuits that is also secure against q queries. The bootstrapping
relies on the result of Applebaum et al. [9, Theorem 4.11] which states that every
polynomial time computable function f admits a perfectly correct computational
randomized encoding of degree 3. In more detail, let C be a family of polynomial-
size circuits. Let C ∈ C and let x be some input. Let C̃(x,R) be a randomized
encoding of C that is computable by a constant depth circuit with respect to
inputs x and R. Then consider a new family of circuits G defined by:

GC,Δ(x,R1, . . . , RS) =
{

C̃
(
x; ⊕

a∈Δ
Ra

)
: C ∈ C, Δ ⊆ [S]

}
,

for some sufficiently large S (quadratic in the number of queries q). As observed
in [39], circuit GC,Δ(·, ·) is computable by a constant degree polynomial (one
for each output bit). Given an FE scheme for G, one may construct a scheme
for C by having the decryptor first recover the output of GC,Δ(x,R1, . . . , RS)
and then applying the decoder for the randomized encoding to recover C(x).

However, to support q queries the decryptor must compute q randomized
encodings, each of which needs fresh randomness. This is handled by hardcod-
ing S random elements in the ciphertext and using random subsets Δ ⊆ [S]
(which are cover-free with overwhelming probability) to compute fresh random-
ness ⊕

a∈Δ
Ra for every query. The authors then conclude that bounded query FE

for NC1 suffices to construct a bounded query FE scheme for all circuits.
We observe that the ingredient required to bootstrap is not FE for the entire

circuit class NC1 but rather only the particular circuit class G as described above.
This circuit class, being computable by degree 3 polynomials, may be supported
by a linear FE scheme, via linearization of the degree 3 polynomials! To illustrate,
let us consider FE secure only for a single key. Then, the functionality that the
initial FE must support is exactly the randomized encoding of [9], which, indeed,
is in NC0. Now, to support q queries, we must ensure that each key uses a fresh
piece of randomness, and this is provided using a cover-free set family S as
in [39] – the key generator picks a random subset Δ ⊆ [S] and sums up its
elements to obtain i.i.d. randomness for the key being requested. To obtain a
random element in this manner, addition over the integers does not suffice, we
must take addition modulo p. Here, our inner product modulo p construction
comes to our rescue!
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Putting it together, the encryptor encrypts all degree 3 monomials in the
inputs R1, . . . , RS and x1, . . . , x�. Note that this ciphertext is polynomial in
size. Now, for a given circuit C, the keygen algorithm samples some Δ ⊆ [S]
and computes the symbolic degree 3 polynomials which must be released to the
decryptor. It then provides the linear FE keys to compute the same. By correct-
ness and security of Linear FE as well as the randomizing polynomial construc-
tion, the decryptor learns C(x) and nothing else. The final notion of security
that we obtain is non-adaptive simulation based security NA-SIM [39,49], i.e.
(poly,poly, 0) SIM security, where the adversary can request a polynomial num-
ber of pre-challenge keys, ask for polynomially sized challenge ciphertexts but
may not request post-challenge keys. For more details, we refer the reader to
Sect. 6. We note that the construction of [39] also achieves the stronger AD-SIM
security, but for a scheme that supports only a single ciphertext and bounded
number of keys. The bound on the number of ciphertexts is necessary due to a
lower bound by [19]. The notion of single ciphertext, bounded key FE appears
to be quite restrictive, hence we do not study AD-SIM security here.

We note that subsequent to our work, Agrawal and Rosen [6] used our adap-
tively secure mod p inner products FE scheme in a more sophisticated manner
than we do here, to achieve ciphertext size that improves upon the construction
of [39].

2 Background

In this section, we recall the hardness assumptions underlying the security of the
schemes we will describe. The functionality and security definitions of functional
and non-interactive controlled functional encryption schemes are given in the
full version of the paper [4].

Our first scheme relies on the standard DDH assumption in ordinary (i.e.,
non-pairing-friendly) cyclic groups.

Definition 1. In a cyclic group G of prime order q, the Decision
Diffie-Hellman (DDH) problem is to distinguish the distributions D0 =
{(g, ga, gb, gab) | g ←↩ G, a, b ←↩ Zq},D1 = {(g, ga, gb, gc) | g ←↩ G, a, b, c ←↩ Zq}.
A variant of our first scheme relies on Paillier’s composite residuosity assumption.

Definition 2 [51]. Let N = pq, for prime numbers p, q. The Decision Com-
posite Residuosity (DCR) problem is to distinguish the distributions D0 :=
{z = zN

0 mod N2 | z0 ←↩ Z∗
N} and D1 := {z ←↩ Z∗

N2}.
Our third construction builds on the Learning-With-Errors (LWE) problem,

which is known to be at least as hard as certain standard lattice problems in the
worst case [20,54].

Definition 3. Let q, α,m be functions of a parameter n. For a secret s ∈ Z
n
q ,

the distribution Aq,α,s over Z
n
q × Zq is obtained by sampling a ←↩ Zn

q and an
e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e) ∈ Z

n+1
q . The Learning With Errors
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problem LWEq,α,m is as follows: For s ←↩ Zn
q , the goal is to distinguish between

the distributions:

D0(s) := U(Zm×(n+1)
q ) and D1(s) := (Aq,α,s)m.

We say that a PPT algorithm A solves LWEq,α if it distinguishes D0(s) and D1(s)
with non-negligible advantage (over the random coins of A and the randomness
of the samples), with non-negligible probability over the randomness of s.

3 Fully Secure Functional Encryption for Inner Products
from DDH

In this section, we show that an adaptation of the DDH-based construction of
Abdalla et al. [2] provides full security under the standard DDH assumption.
Like [2], the scheme computes inner products over Z as long as they land in a
sufficiently small interval.

In comparison with the solution of Abdalla et al., we only introduce one
more group element in the ciphertext and all operations are just as efficient as
in [2]. Our scheme is obtained by modifying [2] in the same way as Damg̊ard’s
encryption scheme [27] was obtained from the Elgamal cryptosystem. The orig-
inal DDH-based system of [2] encrypts a vector y = (y1, . . . , y�) ∈ Z

�
q by com-

puting (gr, {gyi · hr
i }�

i=1), where {hi = gsi}�
i=1 are part of the master public

key and skx =
∑�

i=1 si · xi mod q is the secret key associated with the vector
x = (x1, . . . , x�) ∈ Z

�
q. Here, we encrypt y in the fashion of Damg̊ard’s Elgamal,

by computing (gr, hr, {gyi · hr
i }�

i=1). The decryption algorithm uses secret keys
of the form skx = (

∑�
i=1 si · xi,

∑�
i=1 ti · xi), where hi = gsi · hti for each i and

s = (s1, . . . , s�) ∈ Z
�
q and t = (t1, . . . , t�) ∈ Z

�
q are part of the master key msk.

The scheme and its security proof also build on ideas from the Cramer-
Shoup cryptosystem [25,26]. Analogously to the bounded-collusion-resistant IBE
schemes of Goldwasser et al. [36], the construction can be seen as an applying a
hash proof system [26] with homomorphic properties over the key space. It also
bears similarities with the broadcast encryption system of Dodis and Fazio [29]
in the way to use hash proof systems to achieve adaptive security.

Setup(1λ, 1�): Choose a cyclic group G of prime order q > 2λ with generators
g, h ←↩ G. Then, for each i ∈ {1, . . . , �}, sample si, ti ←↩ Zq and compute
hi = gsi · hti . Define msk := {(si, ti)}�

i=1 and

mpk :=
(
G, g, h, {hi}�

i=1

)
.

Keygen(msk,x): To generate a key for the vector x = (x1, . . . , x�) ∈ Z
�
q, compute

skx = (sx, tx) = (
∑�

i=1 si · xi,
∑�

i=1 ti · xi) = (〈s,x〉, 〈t,x〉).
Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y�) ∈ Z

�
q, sample r ←↩ Zq and

compute

C = gr, D = hr, {Ei = gyi · hr
i }�

i=1.

Return Cy = (C,D,E1, . . . , E�).
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Decrypt(mpk, skx, Cy): Given skx = (sx, tx), compute

Ex = (
�∏

i=1

Exi
i )/(Csx · Dtx).

Then, compute and output logg(Ex).

The decryption algorithm requires to compute a discrete logarithm. This is
in general too expensive. Like in [2], this can be circumvented by imposing that
the computed inner product lies in an interval {0, . . . , L}, for some polynomially
bounded integer L. Then, computing the required discrete logarithm may be
performed in time Õ(L1/2) using Pollard’s kangaroo method [52]. As reported
in [11], this can be reduced to Õ(L1/3) operations by precomputing a table of
size Õ(L1/3). Note that even though the functionality is limited (decryption may
not be performed efficiently for all key vectors and for all message vectors), while
proving security we will let the adversary query any key vector in Z

�
q.

Before proceeding with the security proof, we would like to clarify that,
although the scheme of [2] only decrypts values in a polynomial-size space, the
usual complexity leveraging argument does not prove it fully secure via a poly-
nomial reduction. Indeed, when � is polynomial in λ, having the inner product
〈y,x〉 in a small interval does not mean that original vector y ∈ Z

�
q lives in a

polynomial-size universe. In Sect. 5, we show how to eliminate the small-interval
restriction using Paillier’s cryptosystem [51].

The security analysis uses similar arguments to those of Cramer and
Shoup [25,26] in that it exploits the fact that mpk does not reveal too much
information about the master secret key. At some step, the challenge ciphertext
is generated using msk instead of the public key and, as long as msk retains
a sufficient amount of entropy from the adversary’s view, it will perfectly hide
which vector among y0,y1 is actually encrypted. The reason why we can prove
adaptive security is the fact that, as usual in security proofs relying on hash
proof systems [25,26], the reduction knows the master secret key at any time. It
can thus correctly answer all secret key queries without knowing the challenge
messages y0,y1 beforehand.

The DDH-based scheme can easily be generalized so as to rely on weaker
variants of DDH, like the Decision Linear assumption [15] or the Matrix DDH
assumption [31].

Theorem 1. The scheme provides full security under the DDH assumption.
(The proof is given in the full version of the paper [4]).

4 Full Security Under the LWE Assumption

We describe two LWE-based schemes: the first one for integer inner products of
short integer vectors, the second one for inner products over a prime field Zp.

In both cases, the security relies on the hardness of a variant of the extended-
LWE problem. The extended-LWE problem introduced by O’Neill et al. [50] and
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further investigated in [7,20]. At a high level, the extended-LWE problem can be
seen as LWEα,q with a fixed number m of samples, for which some extra infor-
mation on the LWE noises is provided: the adversary is provided a given linear
combination of the noise terms. More concretely, the problem is to distinguish
between the distributions

(
A, A · s + e,z, 〈e,z〉) and

(
A, u, z, 〈e,z〉),

where A ←↩ Z
m×n
q , s ←↩ Z

n
q ,u ←↩ Z

m
q ,e ←↩ Dm

Z,αq, and z is sampled from a
specified distribution. Note that in [50], a noise was added to the term 〈e,z〉.
The LWE to extended-LWE reductions from [7,20] do not require such an extra
noise term.

We will use a variant of extended-LWE for which multiple hints (zi, 〈e,zi〉)
are given, for the same noise vector e.

Definition 4 (Multi-hint Extended-LWE). Let q,m, t be integers, α be a real
and τ be a distribution over Z

t×m, all of them functions of a parameter n. The
multi-hint extended-LWE problem mheLWEq,α,m,t,τ is to distinguish between the
distributions of the tuples

(
A, A · s + e,Z, Z · e

)
and

(
A, u, Z, Z · e

)
,

where A ←↩ Zm×n
q , s ←↩ Zn

q ,u ←↩ Zm
q ,e ←↩ Dm

Z,αq, and Z ←↩ τ .

A reduction from LWE to mheLWE is presented in Subsect. 4.3.

4.1 Integer Inner Products of Short Integer Vectors

In the description hereunder, we consider the message space P = {0, . . . , P −1}�,
for some integer P and where � ∈ poly(n) denotes the dimension of vectors to
encrypt. Secret keys are associated with vectors in V = {0, . . . , V − 1}� for some
integer V . As in the DDH case, inner products are evaluated over Z. However,
unlike our DDH-based construction, we can efficiently decrypt without confining
inner product values within a small interval: here the inner product between the
plaintext and key vectors belongs to {0, . . . , K − 1} with K = �PV , and it is
possible to set parameters so that the scheme is secure under standard hardness
assumptions while K is more than polynomial in the security parameter. We
compute ciphertexts using a prime modulus q, with q significantly larger than K.

Setup(1n, 1�, P, V ): Set integers m, q ≥ 2, real α ∈ (0, 1) and distribution τ over
Z

�×m as explained below. Set K = �PV . Sample A ←↩ Zm×n
q and Z ←↩ τ .

Compute U = Z · A ∈ Z
�×n
q . Define mpk := (A,U,K, P, V ) and msk := Z.

Keygen(msk,x): Given a vector x ∈ V, compute and return the secret key
zx := xT · Z ∈ Z

m.
Encrypt(mpk,y): To encrypt a vector y ∈ P, sample s ←↩ Zn

q , e0 ←↩ Dm
Z,αq and

e1 ←↩ D�
Z,αq and compute

c0 = A · s + e0 ∈ Z
m
q ,

c1 = U · s + e1 +
⌊ q

K

⌋
· y ∈ Z

�
q.
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Then, return C := (c0, c1).
Decrypt(mpk,x,zx, C): Given a ciphertext C := (c0, c1) and a secret key zx

for x ∈ V, compute μ′ = 〈x, c1〉 − 〈zx, c0〉 mod q and output the value μ ∈
{−K + 1, . . . , K − 1} that minimizes |
 q

K � · μ − μ′|.
Setting the Parameters. Let Bτ be such that with probability ≥1 − n−ω(1),
each row of sample from τ has norm ≤Bτ . As explained just below, correctness
may be ensured by setting

α−1 ≥ K2Bτω(
√

log n) and q ≥ α−1ω(
√

log n).

The choice of τ is driven by the reduction from LWE to mheLWE (as sum-
marized in Theorem 4), and more precisely from Lemma 4 (another constraint
arises from the use of [35, Corollary 2.8] at the end of the security proof). We
may choose τ = D

�×m/2
Z,σ1

× (DZm/2,σ2,δ1
× . . . × DZm/2,σ2,δ�

), where δi ∈ Z
�

denotes the ith canonical vector, and the standard deviation parameters satisfy
σ1 = Θ(

√
n log m max(

√
m,K)) and σ2 = Θ(n7/2m1/2 max(m,K2) log5/2 m).

To ensure security based on LWEq,α′,m in dimension ≥c ·n for some c ∈ (0, 1)
via Theorems 2 and 4 below, one may further impose that � ≤ (1 − c) · n and
m = Θ(n log q), to obtain α′ = Ω(α/(n6K log2 q log5/2 n)). Note that LWEq,α′,m
enjoys reductions from lattice problems when q ≥ Ω(

√
n/α′).

Combining the security and correctness requirements, we may choose α′ =
1/((n log q)O(1) ·K2) and q = Ω(

√
n/α′), resulting in LWE parameters that make

LWE resist all known attacks running in time 2λ, as long as n ≥ Ω̃(λ log K).

Decryption Correctness. To show the correctness of the scheme, we first
observe that, modulo q:

μ′ = 〈x, c1〉 − 〈zx, c0〉 = 
q/K� · 〈x,y〉 + 〈x,e1〉 − 〈zx,e0〉.
Below, we show that the magnitude of the term 〈x,e1〉 − 〈zx,e0〉 is ≤

�V Bταqω(
√

log n) with probability ≥ 1 − n−ω(1). Thanks to the choices of α
and q, the latter upper bound is ≤
q/K�/4, which suffices to guarantee decryp-
tion correctness.

Note that e1 is an integer Gaussian vector of dimension � and standard
deviation αq ≥ ω(

√
log n), and that ‖x‖ ≤ √

�V . As a result, we have
that |〈x,e1〉| ≤ √

�V αqω(
√

log n) holds with probability 1 − n−ω(1). Similarly,
as ‖zx‖ ≤ �V Bτ , we obtain that |〈zx,e0〉| ≤ �V Bταqω(

√
log n) holds with

probability 1 − n−ω(1).

Full Security. In order to prove adaptive security of the scheme, we use the
multi-hint extended-LWE from Definition 4. Before we provide the formal proof,
we provide some intuition.

Intuition. Here we describe some challenges in proving adaptive security for our
LWE construction. To begin we describe the approach used by Abdalla et al. [2]
in showing selective security for a similar construction. In the selective game, the
adversary must announce the challenge vectors y0,y1 at the outset of the game.
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By definition of an admissible adversary, every query xi made must satisfy the
property that 〈xi, (y0−y1)〉 = 0 (over Z) for all i. For ease of exposition, consider
challenge messages y0,y1 that only differ in the last co-ordinate. Then, the
simulator knows at the very beginning of the game, the subspace within which
all queries must lie. Since the secret key is structured as (xi)T Z, it suffices for the
simulator to pick all but the final column of Z in order to answer all legitimate
key requests. It can set the public parameters by constructing all except one
row of U using its choice of Z, and receiving the final u� from the LWE oracle.
Now the challenge ciphertext can be embedded along this dimension to argue
security.

In the adaptive game however, the simulator cannot know in advance which
subspace the adversary’s queries will lie in, hence it must pick the entire master
secret key Z to answer key requests. Given that the simulator has no secrets,
it is unclear how it may leverage the adversary. To handle this, our approach
is to carefully analyze the entropy loss that occurs in the master secret Z via
that keys seen by the adversary. We show that despite seeing linear relations
involving Z, there is enough residual entropy left in the master secret so that
the challenge ciphertext created using this appears uniform to the adversary.

To the best of our knowledge, this proof technique has not been used in prior
constructions of LWE based FE systems, which mostly rely on a “punctured trap-
door” approach. This approach roughly provides the simulator with a trapdoor
that can be used to answer key requests but vanishes w.h.p for the challenge.
Our simulator does not use trapdoors, but relies on an argument about entropy
leakage as described above. We now proceed with the formal proof.

Theorem 2. Assume that � ≤ nO(1), m ≥ 4n log2 q, q > �K2 and τ is as
described above. Then the functional encryption scheme above is fully secure,
under the mheLWEq,α,m,�,τ hardness assumption.

Proof. The proof proceeds with a sequence of games that starts with the real
game and ends with a game in which the adversary’s advantage is negligible. For
each i, we call Si the event that the adversary wins in Game i.

Game 0: This is the genuine full security game. Namely: the adversary A is
given the master public key mpk; in the challenge phase, adversary A comes
up with two distinct vectors y0,y1 ∈ P and receives an encryption C of yβ

for β ←↩ {0, 1} sampled by the challenger; when A halts, it outputs β′ ∈ {0, 1}
and S0 is the event that β′ = β. Note that any vector x ∈ V queried by A to
the secret key extraction oracle must satisfy 〈x,y0〉 = 〈x,y1〉 over Z if A is a
legitimate adversary.

Game 1: We modify the generation of C = (c0, c1) in the challenge phase.
Namely, at the outset of the game, the challenger picks s ←↩ Zn

q , e0 ←↩ Dm
Z,αq

(which may be chosen ahead of time) as well as Z ←↩ τ . The master public
key mpk is computed by setting U = Z · A mod q. In the challenge phase,
the challenger picks a random bit β ←↩ {0, 1} and encrypts yβ by computing
(modulo q)
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c0 = A · s + e0,

c1 = Z · c0 − Z · e0 + e1 + 
q/K� · yβ ,

with e1 ←↩ D�
Z,αq. As the distribution of C is the same as in Game 0, we have

Pr[S1] = Pr[S0].

Game 2: We modify again the generation of C = (c0, c1) in the challenge phase.
Namely, the challenger picks u ←↩ Zm

q , sets c0 = u and computes c1 using c0,Z
and e0 as in Game 1.

Under the mheLWE hardness assumption with t = �, this modification has
no noticeable effect on the behavior of A. Below, we prove that Pr[S2] ≈ 1/2,
which completes the proof of the theorem.

Let xi ∈ V be the vectors corresponding to the secret key queries made
by A. As A is a legitimate adversary, we have 〈xi,y0〉 = 〈xi,y1〉 over Z for
each secret key query xi. Let g �= 0 be the gcd of the coefficients of y1 − y0 and
define y = (y1, . . . , y�) = 1

g (y1 − y0). We have that 〈xi,y〉 = 0 (over Z) for all i.
Consider the lattice {x ∈ Z

� : 〈x,y〉 = 0}: all the queries xi must belong to that
lattice. Without loss of generality, we assume the n0 first entries of y are zero
(for some n0), and all remaining entries are non-zero. Further, the rows of the
following matrix form a basis of a full-dimensional sublattice:

Xtop =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

In0

−yn0+2 yn0+1

−yn0+3 yn0+2

. . . . . .
−y� y�−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(�−1)×�.

We may assume that through the secret key queries, the adversary learns
exactly XtopZ, as all the queried vectors xi can be obtained as rational combi-
nations of the rows of Xtop.

Let Xbot = yT ∈ Z
1×�. Consider the matrix X ∈ Z

�×�
q obtained by putting

Xtop on top of Xbot. We claim that X is invertible modulo q. To see this, observe
that

XXT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In0

y2
n0+1 + y2

n0+2 −yn0+1 · yn0+3

−yn0+1 · yn0+3 y2
n0+2 + y2

n0+3

. . .
. . . . . . . . .

−y�−2 · y� y2
�−1 + y2

�

‖y‖2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

It can be proved by induction that its determinant is

det(XXT ) = (
�−1∏

k=n0+2

y2
k) · ‖y‖4.
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As each of the yk’s is small and non-zero, they are all non-zero modulo prime q.
Similarly, the integer (

∑�
k=n0+1 y2

k) is non-zero and < �P 2 < q. This shows that
(detX)2 �= 0 mod q, which implies that X is invertible modulo q.

In Game 2, we have c1 = Zu − f + 
q/K� · yβ , with f := −Ze0 + e1. We
write:

c1 = X−1 · X · (
Zu − f + 
q/K� · yβ

)
mod q.

We will show that the distribution of X · c1 mod q is (almost) independent of β.
As X is (almost) independent of β and invertible over Zq, this implies that the
distribution of c1 is (almost) independent of β and Pr[S2] ≈ 1/2.

The first � − 1 entries of X · c1 do not depend on β because Xtop · y0 =
Xtop · y1 mod q.

It remains to prove that the last entry of X · c1 mod q is (almost) inde-
pendent of β. For this, we show that the residual distribution of XbotZ given
the tuple (A,ZA,XtopZ) has high entropy. Using (a variant of) the leftover
hash lemma with randomness XbotZ and seed u, we will then conclude that
given (A,ZA,XtopZ), the pair (u,XbotZu) is close to uniform and hence sta-
tistically hides 
q/K� · yβ in c1.

Write A = (AT
1 |AT

2 )T with A1,A2 ∈ Z
(m/2)×n
q . Similarly, write Z = (Z1|Z2)

with Z1,Z2 ∈ Z
�×(m/2)
q . Recall that by construction, every entry of Z1 is inde-

pendently sampled from a zero-centered integer Gaussian of standard devia-
tion parameter σ1 = Θ(

√
n log m max(

√
m,K)). Further, every entry of Z2 is

independently sampled from a (not zero-centered) integer Gaussian of standard
deviation parameter σ2 that is larger than σ1.

Lemma 1. Conditioned on (A,ZA,XtopZ1), the row vector XbotZ1 is distrib-
uted as c + D‖y‖2Zm/2,‖y‖σ1,−c for some vector c that depends only on XtopZ1.

Proof. Thanks to [35, Corollary 2.8], we have that Z2A2 is within 2−Ω(n)

statistical distance to uniform. It hence statistically hides the term Z1A1 in
ZA = Z1A1+Z2A2, and we obtain that given (A,ZA), the distribution of each
entry of Z1 is still DZ,σ1 .

Note that in XtopZ1 and XbotZ1, matrices Xtop and Xbot act in parallel on
the columns of Z1. To prove the claim, it suffices to consider the distribution
of Xbotz conditioned on Xtopz, with z sampled from DZ�,σ1 . Let b = Xtopz ∈
Z

�−1 and fix z0 ∈ Z
� arbitrary such that b = Xtopz0. The distribution of z

given that Xtopz = b is z0 + DΛ,σ1,−z0 , with Λ = {x ∈ Z
� : Xtopx = 0}. By

construction of X, we have that Λ = Zy. As a result, the conditional distribution
of Xbotz is c + D‖y‖2Z,‖y‖σ1,−c with c = 〈y,z0〉 ∈ Z. ��

Now, let us write u = (uT
1 |uT

2 )T for vectors u1,u2 ∈ Z
m/2
q . We

have XbotZu = XbotZ1u1 + XbotZ2u2. Thanks to the claim above
and the result of [35, Corollay 2.8], we obtain that the distribution
of (u1, 〈D‖y‖2Zm/2,‖y‖σ1,−c,u1〉) is within 2−Ω(n) statistical distance to uni-
form (note that ‖y‖2 is invertible modulo q, that D‖y‖2Zm/2,‖y‖σ1,−c = ‖y‖2 ·
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DZm/2,σ1/‖y‖,−c/‖y‖2 , and that σ1/‖y‖ satisfies the assumption of [35, Corol-
lay 2.8]). This implies that given (A,ZA,XtopZ), the pair (u,XbotZu) is close
to uniform, which completes the security proof. ��

4.2 Inner Products Modulo a Prime p

We now modify the LWE-based scheme above so that it enables secure functional
encryption for inner products modulo prime p. The plaintext and key vectors
now belong to Z

�
p.

Note that the prior scheme evaluates inner products over the integers and is
insecure if ported as is to the modulo p setting. To see this, consider the following
simple attack in which the adversary requests a single key x so that integer
inner product with the challenge messages y0 and y1 are different by a multiple
of p. Since the functionality posits that the inner product evaluations only agree
modulo p, this is an admissible query. However, since decryption is performed
over Zq with q much larger than p, the adversary can easily distinguish. To
prevent this attack, we scale the encrypted message by a factor of q/p (instead
of 
q/K� as in the previous scheme): decryption modulo q forces arithmetic
modulo p on the underlying plaintext.

A related difficulty in adapting the previous LWE-based scheme to modu-
lar inner products is the distribution of the noise component after inner product
evaluation. Ciphertexts are manipulated modulo q, which internally manipulates
plaintexts modulo p. If implemented naively, the carries of the plaintext com-
putations may spill outside of the plaintext slots and bias the noise components
of the ciphertexts. This may result in distinguishing attacks. To handle this, we
take q a multiple of p. This adds some technical complications, as Zq is hence
not a field anymore.

A different attack is that the adversary may request keys for vectors that are
linearly dependent modulo p but linearly independent over the integers. Note
that with � such queries, the attacker can recover the master secret key. To
prevent this attack, we modify the scheme in that the authority is now stateful
and keeps a record of all key queries made so far, so that it can make sure that
key queries that are linearly dependent modulo p remain so modulo q. We also
take q a power of p to simplify the implementation of this idea.

We note that for our application to bounded query FE for all circuits, all
queries will be linearly independent modulo p, hence we will not require a stateful
keygen. For details, see Sect. 6.

We now describe our scheme for inner products modulo p.

Setup(1n, 1�, p): Set integers m, q = pk for some integer k, real α ∈ (0, 1) and
distribution τ over Z�×m as explained below. Sample A ←↩ Zm×n

q and Z ←↩ τ .
Compute U = Z · A ∈ Z

�×n
q . Define mpk := (A,U) and msk := Z.

Keygen(msk,x, st): Given a vector x ∈ Z
�
p, and an internal state st, compute

the secret key zx as follows. Recall that Keygen is a stateful algorithm with
empty initial State st. At any point in the scheme execution, State st contains
at most � tuples (xi,xi,zi) where the xi’s are (a subset of the) key queries
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that have been made so far, and the (xi,zi)’s are the corresponding secret
keys. If x is linearly independent from the xi’s modulo p, set x = x ∈ Z

�

(with coefficients in [0, p)), zx = xT · Z ∈ Z
m and add (x,x,zx) to st.

If x =
∑

i kixi mod p for some ki’s in [0, p), then set x =
∑

i kixi ∈ Z
�

and zx =
∑

i kizi ∈ Z
m. In both cases, return (x,zx).

Encrypt(mpk,y): To encrypt a vector y ∈ Z
�
p, sample s ←↩ Zn

q , e0 ←↩ Dm
Z,αq and

e1 ←↩ D�
Z,αq and compute

c0 = A · s + e0 ∈ Z
m
q ,

c1 = U · s + e1 + pk−1 · y ∈ Z
�
q.

Then, return C := (c0, c1).
Decrypt(mpk, (x,zx), C): Given a ciphertext C := (c0, c1) and a secret key

(x,zx) for x ∈ Z
�
p, compute μ′ = 〈x, c1〉 − 〈zx, c0〉 mod q and output the

value μ ∈ Zp that minimizes |pk−1 · μ − μ′|.
Decryption Correctness. Correctness derives from the following observation:

μ′ = 〈x, c1〉 − 〈zx, c0〉 = pk−1 · (〈x,y〉 mod p) + 〈x,e1〉 − 〈zx,e0〉 mod q.

By adapting the proof of the first LWE-based scheme, we can show that the
magnitude of the term 〈x,e1〉 − 〈zx,e0〉 is ≤�2p2Bταqω(

√
log n) with probabil-

ity ≥1 − n−ω(1). This follows from the bound ‖zx‖ ≤ �‖x‖ ≤ �2p2Bτ .

Setting the Parameters. The main difference with the previous LWE-based
scheme with respect to parameter conditions is the choice of q of the form q = pk

instead of q prime. As explained just above, correctness may be ensured by
setting

α−1 ≥ �2p3Bτω(
√

log n) and q ≥ α−1ω(
√

log n).

The choice of τ is driven by Lemma 2 below (the proof requires that σ1 is
large) and the reduction from LWE to mheLWE (as summarized in Theorem 4),
and more precisely from Lemma 4. We may choose τ = D

�×m/2
Z,σ1

× (DZm/2,σ2,δ1
×

. . . × DZm/2,σ2,δ�
), where δi ∈ Z

� denotes the ith canonical vector, and the
standard deviation parameters satisfy σ1 = Θ(

√
n log m max(

√
m,K ′)) and σ2 =

Θ(n7/2m1/2 max(m,K ′2) log5/2 m), with K ′ = (
√

�p)�.
To ensure security based on LWEq,α′,m in dimension ≥c ·n for some c ∈ (0, 1)

via Theorems 2 and 4 below, one may further impose that � ≤ (1 − c) · n and
m = Θ(n log q), to obtain α′ = Ω(α/(n6K ′ log2 q log5/2 n)). Remember that
LWEq,α′,m enjoys reductions from lattice problems when q ≥ Ω(

√
n/α′).

Note that the parameter conditions make the scheme efficiency degrade
quickly when � increases, as K ′ is exponential in �. Assume that p ≤ nO(1)

and � = Ω(log n). Then σ1, σ2, 1/α, 1/α′ and q can all be set as 2 ˜O(�). To
maintain security against all 2o(λ) attacks, one may set n = Θ̃(�λ).
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Theorem 3. Assume that � ≤ nO(1), m ≥ 4n log2 q and τ is as described above.
Then the stateful functional encryption scheme above is fully secure, under the
mheLWEq,α,m,�,τ hardness assumption.

Proof. The sequence of games in the proof of Theorem 2 can be adapted to the
modified scheme. The main difficulty is to show that in the adapted version of
the last game, the winning probability is close to 1/2. Let us recall that game.

Game 2′: At the outset of the game, the challenger picks s ←↩ Zn
q , e0 ←↩ Dm

Z,αq

as well as Z ←↩ τ . The master public key mpk is computed by setting U =
Z·A mod q and is provided to the adversary. In the challenge phase, adversary A
comes up with two distinct vectors y0,y1 ∈ Z

�
p. The challenger picks a random

bit β ←↩ {0, 1},u ←↩ Zm
q and encrypts yβ by computing (modulo q)

c0 = u,

c1 = Z · c0 − Z · e0 + e1 + pk−1 · yβ ,

with e1 ←↩ D�
Z,αq. Note that any vector x ∈ Z

�
p queried by A to the secret

key extraction oracle must satisfy 〈x,y0〉 = 〈x,y1〉 mod p if A is a legitimate
adversary. Adversary A is then given a secret key (x,zx) as in the real scheme.
When A halts, it outputs β′ ∈ {0, 1} and wins in the event that β′ = β.

Define y = y1 − y0 ∈ Z
�
p. Let xi ∈ Z

�
p be the vectors corresponding to

the secret key queries made by A. As A is a legitimate adversary, we have
〈xi,y〉 = 0 mod p for each secret key query xi.

We consider the view of the adversary after it has made exactly j key queries
that are linearly independent modulo p, for each j from 0 up to � − 1. In fact,
counter j may stop increasing before reaching �−1, but without loss of generality,
we may assume that it eventually reaches �−1. We are to show by induction that
for any j, the view of the adversary is almost independent of β. In particular,
for all j < � − 1, this implies that the (j + 1)th linearly independent key query
is almost (statistically) independent of β. It also implies, for j = � − 1, that the
adversary’s view through Game 2′ is almost independent of β, which is exactly
what we are aiming for. In what follows, we take j ∈ {0, . . . , � − 1}, and assume
that state st is independent from β. We also assume that the jth private key
query occurs after the challenge phase since the adversary’s view is trivially
independent of β before the generation of the challenge ciphertext.

At this stage, the state st contains exactly j tuples (xi,xi,zi), where the
vectors {xi}j

i=1 form a Zp-basis of a subspace of the (� − 1)-dimensional vector
space y⊥ := {x ∈ Z

�
p : 〈x,y〉 = 0 mod p}. From y, we deterministically extend

{xi}j
i=1 into a basis of y⊥ that is statistically independent of β. A way to inter-

pret this is to imagine that the challenger makes dummy private key queries
{xi}�−1

i=j+1 for itself so as to get a full basis of y⊥ and creates the corresponding
{xi}�−1

i=j+1 in Z
�. We define Xtop ∈ Z

(�−1)×� as the matrix whose ith row is xi

for all i, including the genuine and dummy keys. Through the secret key queries,
the adversary learns at most XtopZ ∈ Z

(�−1)×m.
Let x′ ∈ Z

�
p be a vector that does not belong to y⊥, and Xbot ∈ Z

1×� be the
canonical lift of (x′)T over the integers. Consider the matrix X ∈ Z

�×� obtained
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by putting Xtop on top of Xbot. By construction, the matrix X is invertible
modulo p, and hence modulo q = pk. Also, by induction and construction, X ∈
Z

�×� is statistically independent of β ∈ {0, 1}.
In Game 2′, we have c1 = Zu − f + pk−1 · yβ , with f := −Ze0 + e1. We

write:

c1 = X−1 · X · (
Zu − f + pk−1 · yβ

)
mod q.

We will show that the distribution of X · c1 mod q is (almost) independent of β.
As the matrix X is independent of β ∈ {0, 1} and invertible over Zq, this implies
that the distribution of c1 is statistically independent of β (recall that X is
information-theoretically known to A, which means that, if c1 carries any notice-
able information on β, so does X · c1 mod q). This ensures that the winning
probability in Game 2′ is negligibly far from 1/2.

First, the first �−1 entries of X ·c1 do not depend on β because we have the
equality pk−1 · Xtop · y0 = pk−1 · Xtop · y1 mod q by construction of Xtop.

It remains to prove that the last entry of X·c1 mod q is (almost) independent
of β. Let us write A = (AT

1 |AT
2 )T with A1,A2 ∈ Z

(m/2)×n
q . Similarly, we also

write Z = (Z1|Z2) with Z1,Z2 ∈ Z
�×(m/2). Recall that by construction, every

entry of Z1 is independently sampled from a zero-centered integer Gaussian
of standard deviation parameter σ1 = Θ(

√
n log m max(

√
m,K ′)) with K ′ =

(
√

�p)�. Further, every entry of Z2 is independently sampled from a (not zero-
centered) integer Gaussian of standard deviation parameter σ2 that is larger
than σ1.

Lemma 2. Conditioned on (A,ZA,XtopZ1), the row vector XbotZ1 mod p is
within negligible statistical distance from the uniform distribution over Z

m/2
p .

Proof. Thanks to [35, Corollary 2.8], we have that Z2A2 is within 2−Ω(n) statisti-
cal distance to uniform over Z(�−1)×m

q . It hence statistically hides the term Z1A1

in ZA = Z1A1 + Z2A2 mod q, and we obtain that given (A,ZA), the distribu-
tion of each entry of Z1 is still DZ,σ1 .

Note that in XtopZ1 and XbotZ1, matrices Xtop and Xbot act in parallel on the
columns of Z1. To prove the claim, it suffices to consider the distribution of Xbotz
conditioned on Xtopz, with z sampled from DZ�,σ1 . Let b = Xtopz ∈ Z

�−1

and fix z0 ∈ Z
� arbitrary such that b = Xtopz0. The distribution of z given

that Xtopz = b is z0 + DΛ,σ1,−z0 , with Λ = {x ∈ Z
� : Xtopx = 0} (where the

equality holds over the integers). Note that Λ is a 1-dimensional lattice in Z
�.

We can write Λ = y′ ·Z, for some y′ ∈ Z
�. Note that there exists α ∈ Zp \{0}

such that y′ = α ·y mod p: otherwise, the vector y′/p would belong to Λ \y′ ·Z,
contradicting the definition of y′. Further, we have ‖y′‖ = det Λ ≤ det Λ′, where
Λ′ is the lattice spanned by the rows of Xtop (see, e.g., [48], for properties on
orthogonal lattices). Hadamard’s bound implies that ‖y′‖ ≤ (

√
�p)�−1.

By [35, Corollary 2.8], the fact that σ1 ≥ √
n(

√
�p)� implies that the distri-

bution (DΛ,σ1,−z0 mod pΛ) is within 2−Ω(n) statistical distance from the uni-
form distribution over Λ/pΛ � yZp. We conclude that the conditional distri-
bution of (Xbotz mod p) is within exponentially small statistical distance from
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the uniform distribution over Zp (here we use the facts that p is prime and
that Xboty �= 0 mod p, by construction of Xbot). ��

Now, write u = (uT
1 |uT

2 )T with u1,u2 ∈ Z
m/2
q . We have XbotZu =

XbotZ1u1 + XbotZ2u2. Thanks to Lemma 2 and a variant of the leftover
hash lemma modulo q = pk (given in the full version of the paper [4]), we
obtain that conditioned on (A,ZA,XtopZ), the distribution of (u1,XbotZ1u1)
is within 2−Ω(n) statistical distance to uniform modulo q (here we used the
assumption that m ≥ k + n/(log p)). This implies that given (A,ZA,XtopZ),
the pair (u,XbotZu) is close to uniform, which completes the security proof. ��

4.3 Hardness of Multi-hint Extended-LWE

In this section, we prove the following theorem, which shows that for some para-
meters, the mheLWE problem is no easier than the LWE problem.

Theorem 4. Let n ≥ 100, q ≥ 2, t < n and m with m = Ω(n log n) and
m ≤ nO(1). There exists ξ ≤ O(n4m2 log5/2 n) and a distribution τ over Z

t×m

such that the following statements hold:

• There is a reduction from LWEq,α,m in dimension n − t to mheLWEq,αξ,m,t,τ

that reduces the advantage by at most 2Ω(t−n),
• It is possible to sample from τ in time polynomial in n,
• Each entry of matrix τ is an independent discrete Gaussian τi,j = DZ,σi,j ,ci,j

for some ci,j and σi,j ≥ Ω(
√

mn log m),
• With probability ≥1 − n−ω(1), all rows from a sample from τ have norms ≤ξ.

Our reduction from LWE to mheLWE proceeds as the reduction from LWE
to extended-LWE from [20], using the matrix gadget from [45] to handle the
multiple hints. We first reduce LWE to the following variant of LWE in which the
first samples are noise-free. This problem generalizes the first-is-errorless LWE
problem from [20].

Definition 5 (First-are-errorless LWE). Let q, α,m, t be functions of a para-
meter n. The first-are-errorless LWE problem faeLWEq,α,m,t is defined as follows:
For s ←↩ Zn

q , the goal is to distinguish between the following two scenarios. In the
first, all m samples are uniform over Z

n
q ×Zq. In the second, the first t samples

are from Aq,{0},s (where {0} denotes the distribution that is deterministically
zero) and the rest are from Aq,α,s.

Lemma 3. For any n > t, m, q ≥ 2, and α ∈ (0, 1), there is an efficient
reduction from LWEq,α,m in dimension n − t to faeLWEq,α,m,t in dimension n
that reduces the advantage by at most 2−n+t+1.

The proof, postponed to the appendices, is a direct adaptation of the one
of [20, Lemma 4.3].

In our reduction from faeLWE to mheLWE, we use the following gadget
matrix from [45, Corollary 10]. It generalizes the matrix construction from [20,
Claim 4.6].
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Lemma 4. Let n,m1,m2 with 100 ≤ n ≤ m1 ≤ m2 ≤ nO(1). Let σ1, σ2 > 0
be standard deviation parameters such that σ1 ≥ Ω(

√
m1n log m1), m1 ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2√m1σ
2
1 log3/2(m1σ1)). Let m = m1 + m2. There

exists a probabilistic polynomial time algorithm that given n,m1,m2 (in unary)
and σ1, σ2 as inputs, outputs G ∈ Z

m×m such that:

• The top n × m submatrix of G is within statistical distance 2−Ω(n) of τ =
Dn×m1

Z,σ1
× (DZm2 ,σ2,δ1 × . . . × DZm2 ,σ2,δn

)T with δi denoting the ith canonical
unit vector,

• We have |det(G)| = 1 and ‖G−1‖ ≤ O(
√

nm2σ2), with probability ≥ 1 −
2−Ω(n).

Lemma 5. Let n,m1,m2,m, σ1, σ2, τ be as in Lemma 4, and ξ ≥ Ω(
√

nm2σ2).
Let q ≥ 2, t ≤ n, α ≥ Ω(

√
n/q). Let τt be the distribution obtained by keeping

only the first t rows from a sample from τ . There is a (dimension-preserving)
reduction from faeLWEq,α,m,t to mheLWEq,2αξ,m,t,τt

that reduces the advantage
by at most 2−Ω(n).

Proof. Let us first describe the reduction. Let (A, b) ∈ Z
m
q × Zq be the

input, which is either sampled from the uniform distribution, or from distri-
bution At

q,{0},s × Am−t
q,α,s for some fixed s ←↩ Z

n
q . Our objective is to distin-

guish between the two scenarios, using an mheLWE oracle. We compute G as
in Lemma 4 and let U = G−1. We let Z ∈ Z

t×m denote the matrix formed
by the top t rows of G, and let U′ ∈ Z

m×(m−t) denote the matrix formed by
the right m − t columns of U. By construction, we have ZU′ = 0. We define
A′ = U · A mod q. We sample f ←↩ Dαq(ξ2I−U′U′T )1/2 (thanks to Lemma 4 and
the choice of ξ, the matrix ξ2I − U′U′T is positive definite). We sample e′ from
{0}t ×Dm−t

αq and define b′ = U ·(b+e′)+f . We then sample c ←↩ D
Zm−b′,

√
2αξq,

and define h = Z(f + c).
Finally, the reduction calls the mheLWE oracle on input (A′, b′ +c,Z,h), and

outputs the reply.
Correctness is obtained by showing that distribution At

q,{0},s × Am−t
q,α,s is

mapped to the mheLWE “LWE” distribution and that the uniform distribution
is mapped to the mheLWE “uniform” distribution, up to 2−Ω(n) statistical dis-
tances (we do not discuss these tiny statistical discrepancies below). The proof
is identical to the reduction analysis in the proof of [20, Lemma 4.7]. ��

Theorem 4 is obtained by combining Lemmas 3, 4 and 5.

5 Constructions Based on Paillier

In this section, we show how to remove the main limitation of our DDH-based
system which is its somewhat expensive decryption algorithm. To this end, we use
Paillier’s cryptosystem [51] and the property that, for an RSA modulus N = pq,
the multiplicative group Z

∗
N2 contains a subgroup of order N (generated by

(N + 1)) in which the discrete logarithm problem is easy. We also rely on the
observation [21,22] that combining the Paillier and Elgamal encryption schemes
makes it possible to decrypt without knowing the factorization of N = pq.
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5.1 Computing Inner Products over Z

In the following scheme, key vectors x and message vectors y are assumed to
be of bounded norm ‖x‖ ≤ X and ‖y‖ ≤ Y , respectively. The bounds X and Y
are chosen so that X · Y < N , where N is the composite modulus of Paillier’s
cryptosystem. Decryption allows to recover 〈x,y〉 mod N , which is exactly 〈x,y〉
over the integers, thanks to the norm bounds. The security proof further requires
that �Y 2 < N and we thus assume X,Y < (N/�)1/2.

Setup(1λ, 1�,X, Y ): Choose safe prime numbers p = 2p′ + 1, q = 2q′ + 1 with
sufficiently large primes p′, q′ > 2l(λ), for some polynomial l, and compute
N = pq > XY . Then, sample g′ ←↩ Z

∗
N2 and compute g = g′2N mod N2,

which generates the subgroup of (2N)th residues in Z
∗
N2 with overwhelming

probability. Then, sample an integer vector s = (s1, . . . , s�)T ←↩ DZ�,σ with
discrete Gaussian entries of standard deviation σ >

√
λ · N5/2 and compute

hi = gsi mod N2. Define

mpk :=
(
N, g, {hi}�

i=1, Y
)

and msk := ({si}�
i=1,X). The prime numbers p, p′, q, q′ are no longer needed.

Keygen(msk,x): To generate a key for the vector x = (x1, . . . , x�) ∈ Z
�

with ‖x‖ ≤ X, compute skx =
∑�

i=1 si · xi over Z.
Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y�) ∈ Z

� with ‖y‖ ≤ Y ,
sample r ←↩ {0, . . . , 
N/4�} and compute

C0 = gr mod N2,

Ci = (1 + yiN) · hr
i mod N2, ∀i ∈ {1, . . . , �}.

Return Cy = (C0, C1, . . . , C�) ∈ Z
�+1
N2 .

Decrypt(mpk, skx, Cy): Given skx ∈ Z, compute

Cx =

(
�∏

i=1

Cxi
i

)

· C−skx
0 mod N2.

Then, compute and output log(1+N)(Cx) = Cx−1 mod N2

N .

As in previous constructions (including those of [2]), our security proof
requires inner products to be evaluated over Z, although the decryptor tech-
nically computes 〈x,y〉 mod N . The reason is that, since secret keys are com-
puted over the integers, our security proof only goes through if the adversary
is restricted to only obtain secret keys for vectors x such that 〈x,y0〉 = 〈x,y1〉
over Z.

Theorem 5. The scheme provides full security under the DCR assumption.
(The proof is available in the full version of the paper [4]).
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5.2 A Construction for Inner Products over ZN

Here, we show that our first DCR-based scheme can be adapted in order to
compute the inner product 〈y,x〉 mod N instead of computing it over Z. To
do this, a first difficulty is that, as in our LWE-based system, private keys are
computed over the integers and the adversary may query private keys for vectors
that are linearly dependent over Z

�
N but independent over Z

�. This problem is
addressed as previously, by having the authority keep track of all previously
revealed private keys. As in our LWE-based construction over Zp, we also need
to increase the size of private keys (by a factor ≈ �) because we have to use a
different information-theoretic argument in the last step of the security proof.

Setup(1λ, 1�): Choose safe prime numbers p = 2p′+1, q = 2q′+1 with sufficiently
large primes p′, q′ > 2l(λ), for some polynomial l, and compute N = pq.
Then, sample g′ ←↩ Z∗

N2 and compute g = g′2N mod N2, which generates the
subgroup of (2N)th residues in Z

∗
N2 with overwhelming probability. Then,

sample an integer vector s = (s1, . . . , s�)T ←↩ DZ�,σ with discrete Gaussian
entries of standard deviation σ >

√
λ(

√
�N)�+1 and compute hi = gsi mod

N2. Define msk := {si}�
i=1 and

mpk :=
(
N, g, {hi}�

i=1

)
.

Keygen(msk,x, st): To generate the jth secret key skx for a vector x ∈ Z
�
N using

the master secret key msk and an (initially empty) internal state st, a stateful
algorithm is used. At any time, st contains at most � tuples (xi,xi,zxi

)
where the (xi,zxi

)’s are the previously revealed secret keys and the xi are
the corresponding vectors.

– If x is linearly independent from the xi’s modulo N , set x = x ∈ Z
�

(with coefficients in [0, N)), zx = 〈s,x〉 ∈ Z and add (x,x,zx) to st.
– If x =

∑
i kixi mod N for some coefficients {ki}i≤j−1 in ZN , then com-

pute x =
∑

i ki · xi ∈ Z
� and zx =

∑
i ki · zxi

∈ Z
m.

In either case, return skx = (x,zx).
Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y�) ∈ Z

�
N , sample r ←↩

{0, . . . , 
N/4�} and compute

C0 = gr mod N2,

Ci = (1 + yiN) · hr
i mod N2, ∀i ∈ {1, . . . , �}.

Return Cy = (C0, C1, . . . , C�) ∈ Z
�+1
N2 .

Decrypt(mpk, skx, Cy): Given skx = (x,zx) ∈ Z
� × Z with x = (x1, . . . , x�),

compute

Cx =

(
�∏

i=1

Cxi
i

)

· C−zx
0 mod N2.

Then, compute and output log(1+N)(Cx) = Cx−1 mod N2

N .
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From a security standpoint, the following result is proved in the full version
of the paper [4].

Theorem 6. The above stateful scheme provides full security under the DCR
assumption.

6 Bootstrapping Linear FE to Efficient Bounded
FE for All Circuits

In this section, we describe how to compile our Linear FE scheme, denoted by
LinFE which computes linear functions modulo p (for us p = 2), into a bounded
collusion FE scheme for all circuits, denoted by BddFE. The underlying scheme
LinFE is assumed to be AD-IND secure, which, by [49], is equivalent to non-
adaptive simulation secure NA-SIM, since linear functions are “preimage sam-
pleable”. We refer the reader to [49] for more details.

Let C be a family of polynomial-size circuits. Let C ∈ C and let x be some
input. Let C̃(x, R) be a randomized encoding of C that is computable by a
constant depth circuit with respect to inputs x and R (see [9]). Then consider a
new family of circuits G defined by:

GC,Δ(x,R1, . . . , RS) =
{

C̃
(
x; ⊕

a∈Δ
Ra

)
: C ∈ C, Δ ⊆ [S]

}
,

for some S to be chosen below. As observed in [39, Sect. 6], circuit GC,Δ(·, ·) is
computable by a constant degree polynomial (one for each output bit). Given
an FE scheme for G, one may construct a scheme for C by having the decryptor
first recover the output of GC,Δ(x, R1, . . . , RS) and then applying the decoder
for the randomized encoding to recover C(x).

Note that to support q queries the decryptor must compute q randomized
encodings, each of which needs fresh randomness. As shown above, this is handled
by hardcoding sufficiently many random elements in the ciphertext and taking
a random subset sum of these to generate fresh random bits for each query.
As in [39], the parameters are chosen so that the subsets form a cover-free sys-
tem, so that every random subset yields fresh randomness (with overwhelming
probability).

In more details, we let the set S, v,m be parameters to the construction. Let
Δi for i ∈ [q] be a uniformly random subset of S of size v. To support q queries,
we identify the set Δi ⊆ S with query i. If v = O(λ) and S = O(λ · q2) then
the sets Δi are cover-free with high probability. For details, we refer the reader
to [39, Sect. 5]. We now proceed to describe our construction. Let L � (�+S ·m)3,
where m ∈ poly(λ) is the size of the random input in the randomized encoding
and � is the length of the messages to be encrypted.

BddFE.Setup(1λ, 1�): Upon input the security parameter λ and the message
space M = {0, 1}�, invoke (mpk,msk) = LinFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk, C): Upon input the master secret key and a circuit C, do:
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1. Sample a uniformly random subset Δ ⊆ S of size v.
2. Express C(x) by GC,Δ(x, R1, . . . , RS), which in turn can be expressed as

a sequence of degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).
3. Linearize each polynomial Pi and let P ′

i be its vector of coefficients. Note
that the ordering of the coefficients can be aribitrary but should be public.

4. Output BddFE.SKC = {SKi = LinFE.KeyGen(LinFE.msk, P ′
i )}i∈[k].

BddFE.Enc(x,mpk): Upon input the public key and the plaintext x, do:
1. Sample R1, . . . , RS ← {0, 1}m.
2. Compute all symbolic monomials of degree 3 in the variables x1, . . . , x�

and Ri,j for i ∈ [S], j ∈ [m]. The number of such monomials is L =
(� + S · m)3. Arrange them according to the public ordering and denote
the resulting vector by y.

3. Output CTx = LinFE.Enc(LinFE.mpk,y).
BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a

secret key SKC = {SKi}i∈[k] for circuit C, do the following:
1. Compute GC,Δ(x, R1, . . . , RS) = {Pi(Y)}i∈[k] = {LinFE.Dec(CTx, SKi)}i∈[k].
2. Run the decoder for the randomized encoding to recover C(x) from

GC,Δ(x, R1, . . . , RS).

Correctness follows from the correctness of LinFE and the correctness of ran-
domized encodings.

Security. The definition for q-NA-SIM security is provided in the full version of
the paper [4]. We proceed to describe our simulator Bdd.Sim. Let RE.Sim be the
simulator guaranteed by the security of randomized encodings and LinFE.Sim be
the simulator guaranteed by the security of the LinFE scheme.

Simulator Bdd.Sim
({Ci, Ci(x),SKi}i∈[q∗]

)
: The simulator Bdd.Sim receives the

secret key queries Ci, the corresponding (honestly generated) secret keys SKi and
the values Ci(x) for i ∈ [q∗] where q∗ ≤ q, and must simulate the ciphertext CTx.
It proceeds as follows:

1. Sample Δ1, . . . , Δq ⊆ S, of size v each.
2. For each i ∈ [q∗], invoke RE.Sim(Ci(x)) to learn GCi

(x, R̂i) for some R̂i chosen
by the simulator. Interpret

R̂i = ⊕Ra
a∈Δi

and GCi,Δi
(x, R1, . . . , RS) = GCi

(x, R̂i) =
(
P1(Y), . . . , Pk(Y)

)
.

3. Let CTx = LinFE.Sim
({GCi,Δi

, GCi,Δi
(x, R1, . . . , RS),SKi}i∈[q∗]

)
and out-

put it.

The correctness of Bdd.Sim follows from the correctness of RE.Sim and
LinFE.Sim.

A last remaining technicality is that the most general version of our con-
struction for FE for inner product modulo p is stateful. This is because a general
adversary against LinFE may request keys that are linearly dependent modulo p
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but linearly independent over the integers, thus learning new linear relations in
the master secret. This forces the simulator (and hence the key generator) to
maintain a state.

However, in our application, we can make do with a stateless variant, since
all the queries will be linearly independent over Z2. To see this, note that in
the above application of LinFE, each query is randomized by a unique random
set Δi. Recall that by cover-freeness, the element ⊕

a∈Δi

Ra must contain at least

one fresh random element, say R∗, which is not contained by ∪
j �=i

Δj . Stated a bit

differently, if we consider the query vectors of size L, then cover-freeness implies
that no query vector lies within the linear span of the remaining queries made by
the adversary. For any query Q, there is at least one position j ∈ [L] so that this
position is nonzero in the L vector representing Q but zero for all other vectors.
Hence the query vectors are linearly independent over Z2, for which case, our
construction of Sect. 4.2 is stateless.
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A Definitions for Functional Encryption

We now recall the syntax of Functional Encryption, as defined by Boneh
et al. [19], and their indistinguishability-based security definition.

Definition 6 [19]. A functionality F defined over (K,Y) is a function F : K ×
Y → Σ ∪ {⊥}, where K is a key space, Y is a message space and Σ is an output
space, which does not contain the special symbol ⊥.

Definition 7. A functional encryption (FE) scheme for a functionality F is
a tuple FE = (Setup,Keygen,Encrypt,Decrypt) of algorithms with the following
specifications:

Setup(1λ): Takes as input a security parameter 1λ and outputs a master key
pair (mpk,msk).

Keygen(msk,K): Given the master secret key msk and a key (i.e., a function)
K ∈ K, this algorithm outputs a key skK .

Encrypt(mpk, Y ): On input of a message Y ∈ Y and the master public key mpk,
this randomized algorithm outputs a ciphertext C.

Decrypt(mpk, skK , C): Given the master public key mpk, a ciphertext C and a
key skK , this algorithm outputs v ∈ Σ ∪ {⊥}.

We require that, for all (mpk,msk) ← Setup(1λ), all keys K ∈ K and all messages
Y ∈ Y, if skK ← Keygen(msk,K) and C ← Encrypt(mpk, Y ), with overwhelming
probability, we have Decrypt(mpk, skK , C) = F (K,Y ) whenever F (K,Y ) �=⊥.
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In some cases, we will also give a state st as input to algorithm Keygen, so
that a stateful authority may reply to key queries in a way that depends on the
queries that have been made so far. In that situation, algorithm Keygen may
additionally update state st.

Indistinguishability-based security. From a security standpoint, what we
expect from a FE scheme is that, given C ← Encrypt(mpk, Y ), the only thing
revealed by a secret key skK about the underlying Y is the function evaluation
F (K,Y ). In the natural definition of indistinguishability-based security (see,
e.g., [19]), one asks that no efficient adversary be able to differentiate encryptions
of Y0 and Y1 without obtaining secret keys skK such that F (K,Y0) �= F (K,Y1).

A detailed definition of indistinguishability-based security (which initially
comes from [19, Sect. 4]) is given in the full version of the paper. It captures
adaptive security in that the adversary is allowed to choose the messages Y0, Y1

in the middle of the game, based on the information obtained so far. Abdalla
et al. [2] considered a weaker notion, called selective security, where the adversary
has to declare the messages Y0, Y1 before even seeing mpk. In this scenario, the
adversary can receive the challenge ciphertext at the same time as the public
key.
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