
Estimating the Complexity of Software
Services Using an Entropy Based Metric

George Feuerlicht1,2,3(&) and David Hartman1

1 Unicorn College, V Kapslovně 2767/2, 130 00 Prague 3, Czech Republic
george.feuerlicht@gmail.com,

david.hartman@unicorncollege.cz
2 Prague University of Economics,

W. Churchill Square. 4, 130 67 Prague 3, Czech Republic
3 University of Technology, Sydney,

Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia

Abstract. Poor design of software services results in unnecessarily complex
and inflexible SOA applications that are difficult to maintain and evolve. There
is also some evidence that the quality of service-oriented applications degrades
and as complexity increases with new service versions that include modifica-
tions to rectify problems and improve functionality. Design quality metrics play
an important role in identifying software quality issues early in the software
development lifecycle. The concept of software entropy has been used in lit-
erature to express decline in the quality, maintainability and understandability of
software through its lifecycle. In this paper we propose a Service Entropy Metric
(SEM) that estimates the complexity of service design based on the complexity
of the XML message structures that form the basis for service interfaces. We
illustrate the application of the SEM metric using the Open Travel Alliance
specification and show that the complexity of the specification as measured by
SEM increases over time as new versions of the specification are released.

Keywords: Service design metrics � Service complexity � Software entropy

1 Introduction

Increasing size and complexity of SOA (Service Oriented Architecture) applications
presents a challenge to the developers of software services. Large-scale SOA projects
typically involve thousands of software services (SOAP and REST [1] services),
making the maintenance and evolution of applications implemented using these ser-
vices highly challenging. It is widely accepted that excessive complexity leads to
reduced quality of software and consequently to an increase in the maintenance effort.
Predicting the quality of software during the design stage of the SDLC (Software
Development Life Cycle), i.e. before the software is implemented, allows early recti-
fication of design defects and can lead to a significant reduction of maintenance costs
[2]. Early detection of service design issues requires reliable metrics that access soft-
ware quality. Software quality can be measured by assessing structural properties of
software (i.e. size, complexity, cohesion, coupling, etc.), and various design metrics for

© Springer-Verlag Berlin Heidelberg 2016
A. Norta et al. (Eds.): ICSOC 2015 Workshops, LNCS 9586, pp. 15–23, 2016.
DOI: 10.1007/978-3-662-50539-7_2



object-oriented and component-based software development have been proposed and
experimentally verified. [3–5]. Such metrics mostly rely on estimating cohesion and
coupling, as maximizing cohesion and minimizing coupling reduces interdependencies
between software components allowing individual components to be maintained
independently without causing undesirable side effects [6, 7]. However, most of the
proposed metrics were originally designed for fine-grained object-oriented software
components and are of limited applicability for assessing the quality of coarse-grained,
document-centric services that are used extensively in SOA applications. In order to
develop a more suitable metric for estimating the quality of software services we focus
on analysing the underlying XML message schemas that constitute the basis for service
interfaces and directly impact on the quality of SOA applications. In our previous work
we have proposed metrics that evaluate interdependencies among a set of XML
message schemas by estimating the level of data coupling. Unlike most of the existing
service metrics that were derived from metrics for object-oriented software, the DCI
(Data Coupling Index) [8] and MDCI (Message Data Coupling Index) [9] analyse the
underlying XML data structures to estimate the level coupling and to predict the impact
of schema changes on existing SOA applications.

In this paper we focus on estimating the complexity of software services, as a
measure of the effort required to develop and maintain software. The concept of en-
tropy has been used to measure software complexity for over two decades [10], and
more recently it was applied to estimating the complexity of XML schemas [11]. The
proposed Software Entropy Metric (SEM) estimates the complexity of a software
service based on the complexity of the XML message structures that form the service
interface. In the following section (Sect. 2) we review related work that addresses the
problem of measuring software quality and complexity. We then describe our approach
to estimating the complexity of services and the XSD Analyzer tool that we have
developed to compute the SEM complexity metric (Sect. 3). In Sect. 4 we present
experimental results obtained by analysing the Open Travel Alliance schemas, and in
Sect. 5 we presents our conclusions and outline directions for further work.

2 Related Work

Predicting maintainability of SOA applications using variants of existing metrics has
been the subject of recent research interest [2, 12, 13]. Both coupling and cohesions
have been used in traditional software design as indicators of software quality [14, 15,
16, 17, 18]. For example Chidamber et al. proposed the Lack of Cohesion in Methods
(LCOM) metric for object-oriented software based on evaluating the similarity of
methods. This original work has been used as the basis for developing metrics for
software services [19, 13, 12]. While there are similarities between object-oriented
software and software services, there are also significant differences and that make it
difficult to apply similar metrics to both approaches. The underlying assumption for
such metrics is that each service has a number of operations and that the interfaces of
these operations are formed by input and output messages [12]. However, most SOA
applications use coarse-grained (document-centric) services that implement the
request/response message exchange pattern and do not involve service operations,

16 G. Feuerlicht and D. Hartman



making such metrics difficult to apply. Another significant difference is that services are
often based on pre-existing XML message schemas developed by various consortia and
standards organizations. For example, the travel domain web services are based on the
OTA (Open Travel Alliance) specification [20] that defines the structure of messages
for travel applications. As the message schemas constitute the basis for service inter-
faces, it follows that the quality of service design is closely related to the quality of
design of the underlying XML schemas. There is evidence that such schemas
frequently contain overlaps and inconsistencies and suffer from excessive complexity
[21, 22]. Standard XML specifications (e.g. OTA [23], UBL [24], etc.) typically
contain hundreds of XML message schemas and thousands of schema elements. As
these specifications evolve over time incorporating new requirements, their complexity
increases even further. Design of such XML schemas typically follows document
engineering [25–27] or a similar methodology that produces XML documents by
aggregating data elements based on pre-defined simple and complex types [28]. For
example, OTA message level schemas are constructed by aggregation of simple
(OpenTravel Simple Types) and complex (OpenTravel Common Types, and Industry
Common Types) schema elements [23]. This design approach results in overlapping
message schemas and high levels of data coupling reducing the maintainability of
services implemented using these specifications [4, 29].

Ensuring XML schema design quality in the context of SOA applications presents a
particularly difficult problem as the schemas are often developed in the absence of a
domain data model [30]. Current work in this area includes research that focuses on
identifying dependencies among schema elements and developing tools for automating
the propagation of these changes to all dependent schema components. Necasky, et al.
proposed a five-level XML evolution architecture with the top level Platform-
Independent Model (PIM) that represents the data requirements for a particular domain
of interest. PIM model is mapped into a Platform-Specific Model (PSM) that describes
how parts of the PIM schema are represented in XML. PSM then maps into Schema,
Operational and Extensional level models. Atomic operations (create, update, and
remove) for editing schemas are defined on classes, attributes, and associations, and a
mechanism for propagating these operations from PIM to PSM schema is proposed.
Composite operations are constructed from atomic operations to implement complex
schema changes [21, 31, 32].

Evaluation of the quality of design of XML schemas is another research direction
that has attracted recent attention [2, 30, 33]. Numerous XML schema quality metrics
have been proposed primarily with the objective to measure various aspects of schema
complexity. McDowell et al. proposed eleven metrics and two composite indexes to
measure the quality and complexity of XML schemas. These metrics are based on
counts of complex type declarations, derived complex types, number of global type
declarations, number of simple types, and element fanning (fan-out – number of child
elements that an element has, and fan-in – number of times that an element is refer-
enced) [30]. The authors formulate a Quality Index and a Complexity Index that esti-
mate the quality and complexity of XML schemas based on weighted values of the
metrics. A metric analysis tool is provided for developers to verify the validity of the
metrics in the context of specific projects.

Estimating the Complexity of Software Services 17



The concept of entropy [34] has been adapted for the measurement of complexity of
software, and was initially applied to procedural software [35], and later to
object-oriented design [36, 37]. Ruellan [38] used an entropy measure to assess the
amount of information contained in XML documents (information density) with the
objective to reduce the size of XML documents and to improve processing speed of
XML messaging applications. Thaw et al. [39] proposed entropy-based metrics to
measure reusability, extensibility, understandability of XML schema documents. Basci
et al. [2] proposed and validated XML schema complexity metric that evaluates the
internal structure of XML documents taking into account various sources of complexity
that include recursion and complexity arising from importing external schema elements.
The authors used the concept of Schema Entropy (SE) to assess XML schema com-
plexity. SE is evaluated based on the complexity of schema elements as measured by
fan-in and fan-out, and the number of simple elements that constitute individual schema
elements. The SE metric was empirically validated using publicly available XML
schemas, and the authors concluded that the metric provides a useful feedback when
comparing schemas with equal number of elements [11]. In [40] Tang et al. apply an
entropy-based measure to assessing the structural uniformity (structuredness) of XML
documents. Two metrics are defined: Path-Based Entropy and Subtree-Based Entropy
metrics that attempt to measure the level of diversity of a set of XML documents. Unlike
Basci et al. [2, 11], the authors base the entropy calculation on XML documents, rather
than XML schemas. Pichler et al. [22] developed a set of metrics to analyse the com-
plexity of business documents with the objective of estimating the effort involved in data
element mapping between different business document standards.

In summary, different XML schema features, including the number of schema
elements, number of complex types, fan-in and fan-out have been used to measures
schema complexity. Our approach (described in the next section) is an adaption of the
Class Definition Entropy (CDE) metric for object-oriented design developed by
Bansiya et al. [36] that measures schema complexity by estimating entropy based on
complex schema elements.

3 Service Entropy Metric (SEM)

In this section we describe our approach to estimating the complexity of services using
an entropy-based metric. Software services typically use the request/response message
exchange pattern and have an interface that can be described by:

S(M_RQ, M_RS)
where S is a service and M_RQ and M_RS are the request and response messages,
respectively. For example, the OTA flight booking service has the following interface:

AirBook(OTA_AirBookRQ, OTA_AirBookRS)
where OTA_AirBookRQ and OTA_AirBookRS are the request and response mes-
sages, respectively.

We estimate the complexity of the service S as the sum of the entropies of the
request and response messages, based on the Message Schema Entropy (MSE) [41]. In
our formulation of the MSE metric we adapt the approach of Bansiya et al. [36] who
developed the Class Definition Entropy (CDE) metric for object-oriented design.

18 G. Feuerlicht and D. Hartman



The CDE metric evaluates the frequency of occurrence of name strings for a given
class; our MSE metric computes the frequency of occurrence of complex schema
elements in a given XML message schema (e.g. the OTA_AirAvailRQ schema). MSE
entropy is computed as:

MSE ¼ �
XN

j¼1
ðPi log2 PiÞ

where:
N = total number of unique complex elements in the message schema
ni = number of occurrences of the ith complex element in the message schema
M = total number of (non-unique) complex elements in the message schema
Pi = ni/M
MSE calculation is based on counting complex schema elements (i.e. elements

based on complex types) and represents an approximation, as the complexity of
individual element substructures is not taken into account. OTA differentiates between
complex types that contain multiple data elements, and simple types that contain a
single data element. In addition to globally defined schema elements (common data
types), individual message schemas include locally defined elements. For example, the
OTA_AirAvailRQ message that is used to implement the (web) service for flight
availability inquiry includes 428 elements with multiple levels of nesting. OTA defines
common data types (OTA_AirCommonTypes) for the airline messages that form a
global type repository of XML Schema components used in the construction OTA Air
messages. While the level of nesting and the number of simple elements that constitute
the messages contribute to complexity of the services, their inclusion into the metric
calculation involves assigning arbitrary weights and can make the interpretation of the
metric more difficult.

As entropy values are additive, we can calculate SEM as the sum of the entropies of
request and response messages:

SEM Sð Þ ¼ MSE M RQð Þ þ MSE M RSð Þ

We have developed a prototype XSD Analyzer tool that calculates the values of the
MSE and SEM metrics. XSD Analyzer allows the selection of message schemas and
produces an output that includes the total number of non-unique schema elements (M), the
number of unique (distinct) schema elements (N), counts of occurrences of individual
schema elements, and the values of MSE and SEM, for the selected service interface.

4 Experimental Results Using the OTA Air Message Schemas

In this section we use the SEM metric to estimate the complexity of services based on
the OTA Air messages specification. OTA Air messages are a subset of the OTA
specification for services that support various business functions related to airline
travel, such as checking flight availability, flight booking, etc. For example, the Search
and Availability of flights service is implemented using the Air_AvailabilityRQ/RS
request/response message pair [42].

Estimating the Complexity of Software Services 19



Table 1 shows SEM values for a subset of eight OTA Air services for the period of
2006 to 2014. It is evident that complexity of the services as measured by SEM
increases as the specification evolves over time. The increase in SEM ranges from
11.2 % for the AirBook service to 24 % for the AirDemandTicket service over the
nine-year period.

All services shown in Table 1 increase in complexity over time, indicating that as
new elements are added to extend the functionality of the services, existing elements
are retained to maintain compatibility with previous versions of the specification.
Figures 1 and 2 show the values of SEM for the AirAvailability (AirAvail) and Air-
Book (AirBook) services for the period of 2006 to 2014. Complexity of both services
increases over time, in particular in the period around 2011 that most likely corre-
sponds to a major revision of the specification.

Table 1. Values of SEM for OTA Air Services (versions 2006-2014)

OTA Air Service 2006 2007 2008 2009 2010 2011 2012 2013 2014

AirAvail 10.66 10.82 11.04 11.12 11.13 11.24 12.60 12.60 12.60
AirBook 13.62 13.84 14.13 14.30 14.59 14.54 15.26 15.19 15.14
AirCheckIn 12.45 12.49 12.74 13.01 13.06 13.06 14.24 14.15 14.10
AirDemandTicket 9.25 9.45 9.52 9.62 9.81 10.88 11.53 11.50 11.47
AirFareDisplay 11.33 11.33 11.54 11.54 11.57 11.57 12.94 12.94 12.94
AirLowFareSearch 11.95 12.15 12.57 12.57 12.57 12.53 14.59 14.59 14.59
AirPrice 11.60 11.83 12.45 12.63 12.63 12.63 13.42 13.42 13.42
AirSeatMap 10.05 10.05 10.05 10.05 10.14 10.43 11.35 11.35 11.35

Fig. 1. Increase in complexity of the AirAvail service

20 G. Feuerlicht and D. Hartman



5 Conclusions and Further Work

The focus of this paper is the estimation of complexity of services based on the analysis
of the underlying message schemas. Following a review of related literature in Sect. 2,
we have defined an entropy-based service complexity metrics and used the XSD
Analyzer tool to compute the values of SEM for eight OTA Air services over a period
of nine years (2006–2014). The results indicate an almost monotonic increase in ser-
vice complexity over the nine-year period, with the increase in SEM ranging from
11.2 % (for the AirBook service) to 24 % (for the AirDemandTicket service). While
the exact significance of this increase is difficult to determine without further investi-
gation, it can be argued that an increase in the complexity of the specification leads to a
reduction in application development productivity. We note here that we use the OTA
specification as an example of a domain specification designed using the document
engineering approach, and that we do not imply any criticism of the quality of the OTA
specification. Some researchers (in particular in the REST community) argue that large
complex schemas are not problematic as long as they have a well-designed extension
model and that the resulting coarse-grained services simplify the interaction dialog and
have performance advantages in unreliable network environments. We argue that as the
reliability of the Internet improves, the impact of excessive complexity on the main-
tainability of the services will outweigh such performance advantages.

The current version of the SEM metric is purely based on complex element counts
and it does not take into account the internal complexity of individual elements (i.e. the
sub-structure of complex elements). This makes it relatively easy to interpret the
metric, but it also reduces the accuracy of the estimates of service complexity. We are
currently working on improving the sensitivity of the SEM metric by incorporating a

Fig. 2. Increase in complexity of the AirBook service

Estimating the Complexity of Software Services 21



range of structural features (i.e. number of schema levels, number of simple elements,
etc.) into the calculation of the metric.

References

1. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures (2000). http://www.ics.uci.edu/*fielding/pubs/dissertation/top.htm

2. Basci, D., Misra, S.: Measuring and evaluating a design complexity metric for XML schema
documents. J. Inf. Sci. Eng. 25(5), 1405–1425 (2009)

3. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

4. Etzkorn, L.H., et al.: A comparison of cohesion metrics for object-oriented systems. Inf.
Softw. Technol. 46(10), 677–687 (2004)

5. Eder, J., Kappel, G., Schrefl, M.: Coupling and cohesion in object-oriented systems.
Technical report, University of Klagenfurt, Austria (1994)

6. Papazoglou, M.P., Yang, J.: Design methodology for web services and business processes.
In: Buchmann, A.P., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. (eds.) TES 2002. LNCS,
vol. 2444, pp. 54–64. Springer, Heidelberg (2002)

7. Papazoglou, M.P., Heuvel, W.V.D.: Service-oriented design and development methodology.
Int. J. Web Eng. Technol. 2(4), 412–442 (2006)

8. Feuerlicht, G.: Simple metric for assessing quality of service design. In: Maximilien, E.,
Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568,
pp. 133–143. Springer, Heidelberg (2011)

9. Feuerlicht, G.: Evaluation of quality of design for document-centric software services. In:
Ghose, A., Zhu, H., Yu, Q., Delis, A., Sheng, Q.Z., Perrin, O., Wang, J., Wang, Y. (eds.)
ICSOC 2012. LNCS, vol. 7759, pp. 356–367. Springer, Heidelberg (2013)

10. Gonzalez, R.R.: A unified metric of software complexity: measuring productivity, quality,
and value. J. Syst. Softw. 29(1), 17–37 (1995)

11. Basci, D., Misra, S.: Entropy as a measure of quality of XML schema document. Int.
Arab J. Inf. Technol. 8(1), 75–83 (2011)

12. Sindhgatta, R., Sengupta, B., Ponnalagu, K.: Measuring the quality of service oriented
design. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 485–499. Springer, Heidelberg (2009)

13. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion metrics for predicting maintainability
of service-oriented software. In: QSIC, pp. 328–335 (2007)

14. Vinoski, S.: Old measures for new services. IEEE Internet Comput. 9(6), 72–74 (2005)
15. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web services:

making the right architectural decision. In: 17th International Conference on World Wide
Web. ACM, Beijing, China (2008)

16. Pautasso, C., Wilde, E.: Why is the web loosely coupled? A multi-faceted metric for service
design. In: 18th International Conference on World Wide Web. ACM, Madrid, Spain (2009)

17. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J. 38(2&3),
115–139 (1999)

18. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented
Modeling and Design. Prentice Hall, New Jersey (1991)

19. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Trans. Softw.
Eng. 20(6), 476–493 (2002)

22 G. Feuerlicht and D. Hartman

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


20. OTA: OTA Specifications (2010). http://www.opentravel.org/Specifications/Default.aspx.
Accessed 6 May 2010

21. Necaský, M.: Conceptual modeling for XML. Dissertations in Database and Information
Systems Series. IOS Press/AKA Verlag (2009)

22. Pichler, C., Strommer, M., Huemer, C.: Size matters!? Measuring the complexity of xml
schema mapping models. In: 2010 6th World Congress on Services (SERVICES-1). IEEE
(2010)

23. OTA: Open Travel Aliance Specification (2014). http://www.opentravel.org/Specifications/
Default.aspx. (cited 6 May 2014)

24. OASIS Universal Business Language (2014). https://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=ubl

25. Glushko, R., McGrath, T.: Document Engineering: Analyzing and Designing Documents for
Business Informatics and Web Services. MIT Press Books, Cambridge (2008)

26. Glushko, R. McGrath, T.: Patterns and reuse in document engineering. In: XML 2002
Proceedings (2002)

27. Glushko, R.J. McGrath. T.: Document engineering for e-Business. In: Proceedings of the
2002 ACM Symposium on Document Engineering (DocEng 2002), McLean, Virginia,
USA. ACM Press, New York (2002)

28. ebXML - Enabling A Global Electronic Market (2007). http://www.ebxml.org/. (cited
9 December 2007)

29. Feuerlicht, G., Lozina J.: Understanding service reusability. In: 15th International
Conference on Systems Integration 2007. VSE Prague, Prague, Czech Republic (2007)

30. McDowell, A., Schmidt, C., Yue, K.B.: Analysis and metrics of XML schema (2004)
31. Necaský, M. Mlýnková, I.: A framework for efficient design, maintaining, and evolution of a

system of XML applications. In: Proceedings of the Databases, Texts, Specifications, and
Objects, DATESO 2010, pp. 38–49 (2010)

32. Necaský, M. Mlýnková, I.: Five-level multi-application schema evolution. In: Proceedings
of the Databases, Texts, Specifications, and Objects, DATESO 2009, pp. 213–217 (2009)

33. Visser, J.: Structure metrics for XML Schema. In: Proceedings of XATA (2006)
34. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile

Comput. Commun. Rev. 5(1), 3–55 (2001)
35. Mohanty, S.N.: Entropy metrics for software design evaluation. J. Syst. Softw. 2(1), 39–46

(1981)
36. Bansiya, J., Davis, C., Etzkorn, L.: An entropy-based complexity measure for

object-oriented designs. Theory Pract. Object Syst. 5(2), 111–118 (1999)
37. Olague, H.M., Etzkorn, L.H., Cox, G.W.: An entropy-based approach to assessing

object-oriented software maintainability and degradation-a method and case study. In:
Software Engineering Research and Practice. Citeseer (2006)

38. Ruellan, H.: XML Entropy Study. In: Balisage: The Markup Conference (2012)
39. Thaw, T.Z., Khin, M.M.: Measuring qualities of XML schema documents. J. Softw. Eng.

Appl. 6, 458 (2013)
40. Tang, R., Wu, H., Bressan, S.: Measuring XML structured-ness with entropy. In: Wang, L.,

Jiang, J., Lu, J., Hong, L., Liu, B. (eds.) WAIM 2011. LNCS, vol. 7142, pp. 113–123.
Springer, Heidelberg (2012)

41. Feuerlicht, G., et al.: Measuring complexity of domain standard specifications using XML
schema entropy. In: SOFSEM 2015. CEUR (2015)

42. Alliance, O.T: OpenTravel™ Alliance XML Schema Design Best Practices (2010). http://
www.opentravel.org/Resources/Uploads/PDF/OTA_SchemaDesignBestPracticesV3.06.pdf.
Accessed 1 Sept 2010

Estimating the Complexity of Software Services 23

http://www.opentravel.org/Specifications/Default.aspx
http://www.opentravel.org/Specifications/Default.aspx
http://www.opentravel.org/Specifications/Default.aspx
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
http://www.ebxml.org/
http://www.opentravel.org/Resources/Uploads/PDF/OTA_SchemaDesignBestPracticesV3.06.pdf
http://www.opentravel.org/Resources/Uploads/PDF/OTA_SchemaDesignBestPracticesV3.06.pdf

	Estimating the Complexity of Software Services Using an Entropy Based Metric
	Abstract
	1 Introduction
	2 Related Work
	3 Service Entropy Metric (SEM)
	4 Experimental Results Using the OTA Air Message Schemas
	5 Conclusions and Further Work
	References


