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Abstract. Non-interactive arguments enable a prover to convince a
verifier that a statement is true. Recently there has been a lot of
progress both in theory and practice on constructing highly efficient
non-interactive arguments with small size and low verification complex-
ity, so-called succinct non-interactive arguments (SNARGs) and succinct
non-interactive arguments of knowledge (SNARKs).

Many constructions of SNARGs rely on pairing-based cryptography.
In these constructions a proof consists of a number of group elements
and the verification consists of checking a number of pairing product
equations. The question we address in this article is how efficient pairing-
based SNARGs can be.

Our first contribution is a pairing-based (preprocessing) SNARK for
arithmetic circuit satisfiability, which is an NP-complete language. In
our SNARK we work with asymmetric pairings for higher efficiency, a
proof is only 3 group elements, and verification consists of checking a
single pairing product equations using 3 pairings in total. Our SNARK
is zero-knowledge and does not reveal anything about the witness the
prover uses to make the proof.

As our second contribution we answer an open question of Bitansky,
Chiesa, Ishai, Ostrovsky and Paneth (TCC 2013) by showing that linear
interactive proofs cannot have a linear decision procedure. It follows from
this that SNARGs where the prover and verifier use generic asymmet-
ric bilinear group operations cannot consist of a single group element.
This gives the first lower bound for pairing-based SNARGs. It remains
an intriguing open problem whether this lower bound can be extended
to rule out 2 group element SNARGs, which would prove optimality of
our 3 element construction.
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1 Introduction

Goldwasser et al. [GMR89] introduced zero-knowledge proofs that enable a
prover to convince a verifier that a statement is true without revealing anything
else. They have three core properties:

Completeness: Given a statement and a witness, the prover can convince the
verifier.

Soundness: A malicious prover cannot convince the verifier of a false statement.
Zero-knowledge: The proof does not reveal anything but the truth of the

statement, in particular it does not reveal the prover’s witness.

Blum et al. [BFM88] extended the notion to non-interactive zero-knowledge
(NIZK) proofs in the common reference string model. NIZK proofs are useful in
the construction of non-interactive cryptographic schemes, e.g., digital signatures
and CCA-secure public key encryption.

The amount of communication is an important performance parameter for
zero-knowledge proofs. Kilian [Kil92] gave the first sublinear communication
zero-knowledge argument that sends fewer bits than the size of the statement
to be proved. Micali [Mic00] proposed sublinear size NIZK arguments by letting
the prover in a communication efficient zero-knowledge argument compute the
verifier’s challenges using a cryptographic function.

Groth et al. [GOS12,GOS06,Gro06,GS12] introduced pairing-based NIZK
proofs, yielding the first linear size proofs based on standard assumptions. Groth
[Gro10] combined these techniques with ideas from interactive zero-knowledge
arguments [Gro09] to give the first constant size NIZK arguments. Lipmaa
[Lip12] used an alternative construction based on progression-free sets to reduce
the size of the common reference string.

Groth’s constant size NIZK argument is based on constructing a set of poly-
nomial equations and using pairings to efficiently verify these equations. Gennaro
et al. [GGPR13] found an insightful construction of polynomial equations based
on Lagrange interpolation polynomials yielding a pairing-based NIZK argument
with a common reference string size proportional to the size of the statement
and witness. They gave two types of polynomial equations: quadratic span pro-
grams for proving boolean circuit satisfiability and quadratic arithmetic pro-
grams for proving arithmetic circuit satisfiability. Lipmaa [Lip13] suggested more
efficient quadratic span programs using error correcting codes, and Danezis et al.
[DFGK14] refined quadratic span programs to square span programs that give
NIZK arguments consisting of 4 group elements for boolean circuit satisfiability.

Following these theoretical advances there has been exciting work on building
concrete implementations. Most efficient implementations refine the quadratic
arithmetic program approach of Gennaro et al. [GGPR13] and combine it with
a compiler producing a suitable quadratic arithmetic program that is equivalent
to the statement to be proven [PHGR13,BCG+13,BCTV14b,CTV15,CFH+15].

One powerful motivation for building efficient non-interactive arguments is
verifiable computation. A client can outsource a complicated computational task
to a server in the cloud and get back the results. To convince the client that
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the computation is correct the server may include a non-interactive argument
of correctness with the result. However, since the verifier does not have many
computational resources this only makes sense if the argument is compact and
computationally light to verify, i.e., it is a succinct non-interactive argument
(SNARG) or a succinct non-interactive argument of knowledge (SNARK). While
pairing-based SNARGs are efficient for the verifier, the computational overhead
for the prover is still orders of magnitude too high to warrant use in outsourced
computation [Wal15] and further efficiency improvements are needed. In their
current state, SNARKs that are zero-knowledge already have uses when proving
statements about private data though. Zero-knowledge SNARKs are for instance
key ingredients in the virtual currency proposals Pinnocchio coin [DFKP13] and
Zerocash [BCG+14].

In parallel with developments in pairing-based NIZK arguments there has
been interesting work on understanding SNARKs. Gentry and Wichs [GW11]
showed that SNARGs must necessarily rely on non-falsifiable assumptions, and
Bitansky et al. [BCCT12] proved designated verifier SNARKs exist if and only if
extractable collision-resistant hash functions exist. Of particular interest in terms
of efficiency is a series of works studying how SNARKs compose [Val08,BCCT13,
BCTV14a]. They show among other things that a preprocessing SNARK with a
long common reference string can be used to build a fully succinct SNARK with
a short common reference string.

Bitansky et al. [BCI+13] give an abstract model of SNARKs that rely on lin-
ear encodings of field elements. Their information theoretic framework called lin-
ear interactive proofs (LIPs) capture proof systems where the prover is restricted
to using linear operations in computing her messages. Given a LIP it can be
converted to a publicly verifiable SNARK using pairing-based techniques or to
a designated verifier using additively homomorphic encryption techniques.

1.1 Our Contribution

Succinct NIZK. We construct a NIZK argument for arithmetic circuit satisfia-
bility where a proof consists of only 3 group elements. In addition to being small,
the proof is also easy to verify. The verifier just needs to compute a number of
exponentiations proportional to the statement size and check a single pairing
product equation, which only has 3 pairings. Our construction can be instanti-
ated with any type of pairings including Type III pairings, which are the most
efficient pairings.

The argument has perfect completeness and perfect zero-knowledge. For
soundness we take an aggressive stance and rely on a security proof in the generic
bilinear group model in order to get optimal performance. This stance is partly
justified by Gentry and Wichs [GW11] that rule out SNARGs based on standard
falsifiable assumptions. However, following Abe et al. [AGOT14] we do provide a
hedge against cryptanalysis by proving our construction secure in the symmetric
pairing setting. For optimal efficiency it makes sense to use our NIZK argument
in the asymmetric setting, however, by providing a security proof in the sym-
metric setting we get additional security: even if cryptanalytic advances yield a
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Table 1. Comparison for boolean circuit satisfiability with �-bit statement, m wires
and n fan-in 2 logic gates. Notation: G means group elements, M means multiplications,
E means exponentiations and P means pairings with subscripts indicating the relevant
group. It is possible to get a CRS size of m + 2n elements in G1 and n elements in
G2 but we have chosen to include some precomputed values in the CRS to reduce the
prover’s computation, see Sect. 3.2.

CRS size Proof size Prover comp. Verifier comp. PPE

[DFGK14] 2m + n − 2� G1, m + n − � G2 3 G1, 1 G2 m + n − � E1 � M1, 6 P 3

This work 3m + n G1, m G2 2 G1, 1 G2 n E1 � M1, 3 P 1

Table 2. Comparison for arithmetic circuit satisfiability with �-element statement, m
wires, n multiplication gates. Notation: G means group elements, E means exponen-
tiations and P means pairings. We compare symmetric pairings in the first two rows
and asymmetric pairings in the last two rows.

CRS size Proof size Prover comp. Verifier comp. PPE

[PHGR13] 7m + n − 2� G 8 G 7m + n − 2� E � E, 11 P 5

This work m + 2n G 3 G m + 3n − � E � E, 3 P 1

[SVdV15] 6m + n − 2� G1, m G2 7 G1, 1 G2 6m + n − 6� E1, m − � E2 2� E1, �E2, 12 P 5

This work m + 2n G1, n G2 2 G1, 1 G2 m + 3n − � E1, n E2 � E1, 3 P 1

hitherto unknown efficiently computable isomorphism between the source groups
this does not necessarily lead to a break of our scheme. We therefore have a uni-
fied NIZK argument that can be instantiated with any type of pairing, yielding
both optimal efficiency and optimal generic bilinear group resilience.

We give a performance comparison for boolean circuit satisfiability in Table 1
and for arithmetic circuit satisfiability in Table 2 of the size of the common refer-
ence string (CRS), the size of the proof, the prover’s computation, the verifier’s
computation, and the number of pairing product equations used to verify a proof.
We perform better than the state of the art on all efficiency parameters.

In both comparisons the number of wires exceeds the number of gates, m ≥ n,
since each gate has an output wire. We expect for typical cases that the statement
size � will be small compared to m and n. In both tables, we have excluded
the size of representing the relation for which we give proofs. In the boolean
circuit satisfiability case, we are considering arbitrary fan-in 2 logic gates. In the
arithmetic circuit satisfiability case we work with fan-in 2 multiplication gates
where each input factor can be a weigthed sum of other wires. We assume each
multiplication gate input depends on a constant number of wires; otherwise the
cost of evaluating the relation itself may exceed the cost of the subsequent proof
generation.

We note that [PHGR13] uses symmetric bilinear groups where G1 = G2 and
we are therefore comparing with a symmetric bilinear group instantiation of our
scheme, which saves n elements in the common reference string. However, in
the implementation of their system, called Pinocchio, asymmetric pairings are
used for better efficiency. The switch to asymmetric pairings only requires minor
modifications, see e.g. [SVdV15].
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Size matters. While the reduction in proof size to 3 group elements and the
reduction in verification time is nice in itself, we would like to highlight that it
is particularly important when composing SNARKs. [BCCT13,BCTV14a] show
that preprocessing SNARKs with a long CRS can be composed to yield fully
succinct SNARKs with a short CRS. The transformations split the statement
into smaller pieces, prove each piece is correct by itself, and recursively construct
proofs of knowledge of other proofs that jointly show the pieces are correct and
fit together. In the recursive construction of proofs, it is extra beneficial when
the proofs are small and easy to verify since the resulting statements “there
exists a proof satisfying the verification equation. . . ” become small themselves.
So we gain both from the prover’s lower computation and from the fact that
the statements in the recursive composition are smaller since we have a more
efficient verification procedure for our SNARK. We estimate that in the scalable
and fully succinct zero-knowledge SNARKs by Ben-Sasson et al. [BCTV14a]
that use two related elliptic curves to prove statements about each other, the
prover’s computation will be reduced by up to an order of magnitude.

Technique. All pairing-based SNARKs in the literature follow a common para-
digm where the prover computes a number of group elements using generic group
operations and the verifier checks the proof using a number of pairing product
equations. Bitansky et al. [BCI+13] formalize this paradigm through the defi-
nition of linear interactive proofs (LIPs). A linear interactive proof works over
a finite field and the prover’s and verifier’s messages consist of vectors of field
elements. It furthermore requires that the prover computes her messages using
only linear operations. Once we have the LIP, it can then be compiled into a
SNARK by executing the equations “in the exponent” using pairing-based cryp-
tography. One source of our efficiency gain is that we design a LIP system for
arithmetic circuits where the prover only sends 3 field elements. In comparison,
the quadratic arithmetic programs by [GGPR13,PHGR13] correspond to LIPs
where the prover sends 4 field elements.

A second source of efficiency gain compared to previous work is a more aggres-
sive compilation of the LIP. Bitansky et al. [BCI+13] propose a transformation
in the symmetric bilinear group setting, where each field element gets compiled
into two group elements. They then use a knowledge of exponent assumption
to argue that the prover knows the relevant field elements. A less conserva-
tive choice would be to compile each field element into a single group element.
This improves efficiency but security requires stronger assumptions since we the
scheme may be secure in the generic group model but we can no longer use the
knowledge of exponent assumption. It is also possible to make a choice between
these two extremes, Parno et al. [PHGR13] for instance have a LIP with 4 field
elements, which gets compiled into 7 group elements. In this paper we have opted
for maximal efficiency and compile each field element in the LIP into a single
group element and argue security in the generic group model.

We prefer to work with asymmetric bilinear groups for their higher efficiency
than symmetric bilinear groups. This means that there is more to the story than
the number of field elements the prover sends in the LIP and the choice of how
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aggressive a compilation we use. When working with asymmetric bilinear groups,
a field element can appear as an exponent in the first source group, the second
source group, or both. Our LIP is carefully designed such that each field element
gets compiled into a single source group element in order to minimize the proof
size to 3 group elements in total.

Lower Bounds. Working towards ever more efficient non-interactive argu-
ments, it is natural to ask what the minimal proof size is. We will show that
pairing-based SNARGs with a single group element proof cannot exist. This
result relates to an open question raised by Bitansky et al. [BCI+13], whether
there are LIPs with a linear decision procedure for the verifier. Such a linear
decision procedure would be quite useful; it could for instance enable the con-
struction of SNARGs based on ElGamal encryption.

We answer this open problem negatively by proving that LIPs with a linear
decision procedure do not exist. A consequence of this is that any pairing-based
SNARG must pair group elements from the proof together to make the decision
procedure quadratic instead of linear. Working over asymmetric bilinear groups
we must therefore have elements in both source groups in order to do such a
pairing. This rules out the existence of 1 group element SNARGs, regardless of
whether it is zero-knowledge or not, and shows our NIZK argument has close to
optimal proof size. It remains an intriguing open problem to completely close the
gap by either constructing a SNARG with exactly one element from each source
group G1 and G2, or alternatively rule out the existence of such a SNARG.

2 Preliminaries

Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| =
λ−ω(1). We say that f is negligible when f(λ) ≈ 0 and that f is overwhelming
when f(λ) ≈ 1. We will use λ to denote a security parameter, with the intuition
that as λ grows we would like to have stronger security.

We write y = A(x; r) when algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and
setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume it is possible to sample uniformly at random
from sets such as Zp.

Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on
input x outputs y and XA on the same input (including random coins) outputs z.

2.1 Bilinear Groups

We work with bilinear groups (p,G1,G2,GT , e) with the following properties:

– G1,G2,GT are groups of prime order p
– e : G1 × G2 → GT is a bilinear map, i.e., e(Ua, V b) = e(U, V )ab
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– If G is a generator for G1 and H is a generator for G2 then e(G,H) is a
generator for GT

– There are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, deciding equality of group
elements and sampling generators of the groups. We refer to these as the
generic bilinear group operations.

There are many ways to set up bilinear groups both as symmetric bilinear
groups where G1 = G2 and as asymmetric bilinear groups where G1 �= G2.
Galbraith et al. [GPS08] classify bilinear groups as Type I where G1 = G2,
Type II where there is an efficiently computable non-trivial homomorphism Ψ :
G2 → G1, and Type III where no such efficiently computable homomorphism
exists in either direction between G1 and G2. Type III bilinear groups are the
most efficient type of bilinear groups and hence the most relevant for practical
applications. We give the lower bound for Type III bilinear groups and but our
construction works without change for all 3 types of bilinear groups.

2.2 Non-interactive Zero-Knowledge Arguments of Knowledge

Let R be a relation generator that given a security parameter λ in unary returns
a polynomial time decidable binary relation R. For pairs (φ,w) ∈ R we call
φ the statement and w the witness. We define Rλ to be the set of possible
relation R may output given 1λ. The relation generator may also output some
side information, an auxiliary input z, which will be given to the adversary. An
efficient prover publicly verifiable non-interactive argument for R is a quadruple
of probabilistic polynomial algorithms (Setup,Prove,Vfy,Sim) such that

(σ, τ) ← Setup(R): The setup takes as input a security parameter λ and a relation
R ∈ Rλ and returns a common reference string σ and a simulation trapdoor
τ for the relation R.

π ← Prove(R, σ, φ,w): The prover algorithm takes as input a common reference
string σ and (φ,w) ∈ R and returns an argument π.

0/1 ← Vfy(R, σ, φ, π): The verification algorithm takes as input a common ref-
erence string σ, a statement φ and an argument π and returns 0 (reject) or
1 (accept).

π ← Sim(R, τ, φ): The simulator takes as input a simulation trapdoor and state-
ment φ and returns an argument π.

Definition 1. We say (Setup,Prove,Vfy) is a non-interactive argument for R
if it has perfect completeness and computational soundness as defined below.

Definition 2. We say (Setup,Prove,Vfy,Sim) is a perfect non-interactive zero-
knowledge argument of knowledge for R if it has perfect completeness, perfect
zero-knowledge and computational knowledge soundness as defined below.

Perfect completeness. Completeness says that, given any true statement,
an honest prover should be able to convince an honest verifier. For all λ ∈ N,
R ∈ Rλ, (φ,w) ∈ R
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Pr
[
(σ, τ) ← Setup(R);π ← Prove(R, σ, φ,w) : Vfy(R, σ, φ, π) = 1

]
= 1.

Perfect zero-knowledge. An argument is zero-knowledge if it does
not leak any information besides the truth of the statement. We say
(Setup,Prove,Vfy,Sim) is perfect zero-knowledge if for all λ ∈ N, (R, z) ←
R(1λ), (φ,w) ∈ R and all adversaries A

Pr
[
(σ, τ) ← Setup(R);π ← Prove(R, σ, φ,w) : A(R, z, σ, τ, π) = 1

]

= Pr
[
(σ, τ) ← Setup(R);π ← Sim(R, τ, φ) : A(R, z, σ, τ, π) = 1

]
.

Computational soundness. We say (Setup,Prove,Vfy,Sim) is sound if it is not
possible to prove a false statement, i.e., convince the verifier if no witness exists.
Let LR be the language consisting of statements for which there exist matching
witnesses in R. Formally, we require that for all non-uniform polynomial time
adversaries A

Pr
[

(R, z) ← R(1λ); (σ, τ) ← Setup(R); (φ, π) ← A(R, z, σ) :
φ /∈ LR and Vfy(R, σ, φ, π) = 1

]
≈ 0.

Computational knowledge soundness. Strengthening the notion of sound-
ness, we call (Setup,Prove,Vfy,Sim) an argument of knowledge if there is an
extractor that can compute a witness whenever the adversary produces a valid
argument. The extractor gets full access to the adversary’s state, including any
random coins. Formally, we require that for all non-uniform polynomial time
adversaries A there exists a non-uniform polynomial time extractor XA such that

Pr
[

(R, z) ← R(1λ); (σ, τ) ← Setup(R); ((φ, π);w) ← (A ‖ XA)(R, z, σ) :
(φ,w) /∈ R and Vfy(R, σ, φ, π) = 1

]
≈ 0.

Public verifiability and designated verifier proofs. We can naturally
generalize the definition of a non-interactive argument by splitting σ into two
parts σP and σV used by the prover and verifier respectively. We say the non-
interactive argument is publicly verifiable when σV can be deduced from σP .
Otherwise we refer to it as a designated verifier argument. For designated verifier
arguments it is possible to relax soundness and knowledge soundness such that
the adversary only sees σP but not σV .

SNARGs and SNARKs. A non-interactive argument where the verifier runs
in polynomial time in λ + |φ| and the proof size is polynomial in λ is called
a preprocessing succinct non-interactive argument (SNARG) if it sound, and a
preprocessing succinct argument of knowledge (SNARK) if it is knowledge sound.
If we also restrict the common reference string to be polynomial in λ we say the
non-interactive argument is a fully succinct SNARG or SNARK. Bitansky et al.
[BCCT13] show that preprocessing SNARKs can be composed to yield fully
succinct SNARKs. The focus of this paper is on preprocessing SNARKs.

Benign relation generators. Bitansky et al. [BCPR14] show that indis-
tinguishability obfuscation implies that for every candidate SNARK there are
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auxiliary output distributions that enable the adversary to create a valid proof
without it being possible to extract the witness. Assuming also public coin dif-
fering input obfuscation and other cryptographic assumptions, Boyle and Pass
[BP15] strengthen this impossibility to show that there is an auxiliary output
distribution that defeats witness extraction for all candidate SNARKs. These
counter examples, however, rely on specific auxiliary input distributions. We
will therefore in the following assume the relationship generator is benign in the
sense that the relation and the auxiliary input are distributed in such a way that
SNARKs can exist.

2.3 Quadratic Arithmetic Programs

Consider an arithmetic circuit consisting of addition and multiplication gates
over a finite field F. We may designate some of the input/output wires as speci-
fying a statement and use the rest of the wires in the circuit to define a witness.
This gives us a binary relation R consisting of statement wires and witness wires
that satisfy the arithmetic circuit, i.e., make it consistent with the designated
input/output wires.

Generalizing arithmetic circuits, we may be interested in relations described
by equations over a set of variables. Some of the variables correspond to the
statement; the remaining variables correspond to the witness. The relation con-
sists of statements and witnesses that satisfy all the equations. The equations
will be over a0 = 1 and variables a1, . . . , am ∈ F and be of the form

∑
aiui,q ·

∑
aivi,q =

∑
aiwi,q,

where ui,q, vi,q, wi,q are constants in F specifying the qth equation.
We observe that addition and multiplication gates are special cases of such

equations so such systems of arithmetic constraints do indeed generalize arith-
metic circuits. A multiplication gate can for instance be described as ai ·aj = ak

(using ui = 1, vj = 1 and wk = 1 and setting the remaining constants for this
gate to 0). Addition gates are handled for free in the sums defining the equations,
i.e., if ai + aj = ak and ak is multiplied by a�, we may simply write (ai + aj) · a�

and skip the calculation of ak.
Following Gennaro et al. [GGPR13] we can reformulate the set of arithmetic

constraints as a quadratic arithmetic program assuming F is large enough. Given
n equations we pick arbitrary distinct r1, . . . , rn ∈ F and define t(x) =

∏n
q=1(x−

rq). Furthermore, let ui(x), vi(x), wi(x) be degree n − 1 polynomials such that

ui(rq) = ui,q vi(rq) = vi,q wi(rq) = wi,q for i = 0, . . . , m, q = 1, . . . , n.

We now have that a0 = 1 and the variables a1, . . . , am ∈ F satisfy the n equations
if and only if in each point r1, . . . , rq

m∑
i=0

aiui(rq) ·
m∑

i=0

aivi(rq) =
m∑

i=0

aiwi(rq).
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Since t(X) is the lowest degree monomial with t(rq) = 0 in each point, we can
reformulate this condition as

m∑
i=0

aiui(X) ·
m∑

i=0

aivi(X) ≡
m∑

i=0

aiwi(X) mod t(X).

Formally, we will be working with quadratic arithmetic programs R that have
the following description

R = (F, aux, �, {ui(X), vi(X), wi(X)}m
i=0, t(X)) ,

where F describes a finite field, aux is some auxiliary information, 1 ≤ � ≤ m,
ui(X), vi(X), wi(X), t(X) ∈ F[X] and ui(X), vi(X), wi(X) have strictly lower
degree than n, the degree of t(X). A quadratic arithmetic program with such a
description defines the following binary relation, where we define a0 = 1,

R =

⎧
⎪⎪⎨
⎪⎪⎩

(φ,w)

∣∣∣∣∣∣∣∣

φ = (a1, . . . , a�) ∈ F
�

w = (a�+1, . . . , am) ∈ F
m−�

∑m
i=0 aiui(X) · ∑m

i=0 aivi(X) ≡ ∑m
i=0 aiwi(X) mod t(X)

⎫
⎪⎪⎬
⎪⎪⎭

.

We say R is a quadratic arithmetic program generator if it generates relations
of the form given above with fields of size larger than 2λ−1.

Relations can arise in many different ways in practice. It may be that the
relationship generator is deterministic or it may be that it is randomized. It
may be that first the field F is generated and then the rest of the relation is
built on top of the field. Or it may be that the polynomials are specified first
and then a random field is chosen. To get maximal flexibility we have chosen our
definitions to be agnostic with respect to the exact way the field and the relation
is generated, the different options can all be modelled by appropriate choices of
relation generators.

Looking ahead, we will in our pairing-based NIZK arguments let the auxiliary
information aux specify a bilinear group. It may seem a bit surprising to make
the choice of bilinear group part of the relation generator but this provides a
better model of settings where the relation is built on top of an already existing
bilinear group. Again, there is no loss of generality in this choice, one can think of
a traditional setting where the relation is chosen first and then the bilinear group
is chosen at random as the special case where the relation generator works in
two steps, first choosing the relation and then picking a random bilinear group.
Of course letting the relation generator pick the bilinear group is another good
reason that we need to assume it is benign; an appropriate choice of bilinear
group is essential for security.

2.4 Linear Interactive Proofs

Bitansky et al. [BCI+13] give a useful characterization of the information theo-
retic underpinning of recent SNARK constructions. A two-move algebraic linear
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interactive proof (LIP) of degree (dQ, dD) for a relation generator R, where we
assume the relations specify a finite field F, is a non-interactive argument system
where the algorithms work as follows:

(σ, τ ) ← Setup(R): It creates an arithmetic circuit of multiplicative depth dQ

that takes as input randomness r ∈ F
μ and returns vectors σ ∈ F

m and
τ ∈ F

n. We will for notational simplicity assume that σ always contains 1 as
an entry such that there is no distinction between affine and linear functions
of σ.

π ← Prove(R,σ, φ, w): The prover operates in two stages:
– First it runs Π ← ProofMatrix(R,φ,w), where ProofMatrix is a proba-

bilistic polynomial time algorithm that generates a matrix Π ∈ F
k×m.

– Then it computes the proof as π = Πσ.
0/1 ← Vfy(R,σ, φ,π): The verifier runs in two stages:

– First it runs a deterministic polynomial time algorithm t ← Test(R,φ) to
get an arithmetic circuit t : Fm+k → F

η of multiplicative depth dD.
– It then accepts the proof if and only if t(σ,π) = 0.

The degrees and dimensions dQ, dD, μ,m, n, k, η may be constants or polynomials
in the security parameter λ.

Definition 3 (Linear Interactive Proof). The tuple (Setup,Prove,Vfy) is
a linear interactive proof for R if it has perfect completeness and statistical
knowledge soundness against affine prover strategies as defined below.

Statistical knowledge soundness against affine prover strategies.

An LIP has knowledge soundness against affine prover strategies if a witness
can be extracted from a successful proof matrix Π. More precisely, there is a
polynomial time extractor X such that for all adversaries A

Pr

[
(R, z) ← R(1λ); (σ, τ ) ← Setup(R); (φ, Π) ← A(R, z); w ← X (R, φ, Π) :

Π ∈ F
m×k ∧ Vfy(R, σ, φ, Πσ) = 0 ∧ (φ, w) /∈ R

]
≈ 0.

Non-interactive arguments from linear interactive proofs. LIPs
are useful concepts because they can be compiled into publicly verifiable non-
interactive arguments using pairings and designated verifier non-interactive argu-
ments using Paillier encryption [BCI+13]. If we work in the pairing setting, the
intuition is that an algebraic LIP of degree (dQ, 2) can be executed “in the
exponents”: The common reference string contains exponentiations of the field
elements in σ. The prover computes the proof as multi-exponentiations of group
elements, corresponding to linear operations on the field elements in σ. The
verifier checks the argument by verifying a number of pairing product equa-
tions (equations formed by multiplying together the results of pairings), which
corresponds to checking quadratic equations in the exponents. We will see this
methodology applied in the following section.
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3 Constructions of Non-interactive Arguments

We will construct a pairing-based NIZK argument for quadratic arithmetic pro-
grams where proofs consist of only 3 group elements. We give the construction in
two steps, first we construct a LIP, and then we convert the LIP into a pairing-
based NIZK argument.

3.1 Linear Interactive Proofs for Quadratic Arithmetic Programs

We will now construct a LIP for quadratic arithmetic program generators that
outputs relations of the form

R = (F, aux, �, {ui(X), vi(X), wi(X)}m
i=0, t(X)) .

The relation defines a language of statements (a1, . . . , a�) ∈ F
� and witnesses

(a�+1, . . . , am) ∈ F
m−� such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑

i=0

aivi(X) =
m∑

i=0

aiwi(X) + h(X)t(X),

for some degree n − 2 quotient polynomial h(X), where n is the degree of t(X).

(σ, τ ) ← Setup(R): Pick α, β, γ, δ, x ← F
∗. Set τ = (α, β, γ, δ, x) and

σ =

(
α, β, γ, δ,

{
xi

}n−1

i=0
,

{
βui(x) + αvi(x) + wi(x)

γ

}�

i=0

,

{
βui(x) + αvi(x) + wi(x)

δ

}m

i=�+1

,

{
xit(x)

δ

}n−2

i=0

)
.

π ← Prove(R,σ, a1, . . . , am): Pick r, s ← F and compute a 3 × (m + 2n + 4)
matrix Π such that π = Πσ = (A,B,C) where

A = α +
m∑

i=0

aiui(x) + rδ B = β +
m∑

i=0

aivi(x) + sδ

C =
∑m

i=�+1 ai (βui(x) + αvi(x) + wi(x)) + h(x)t(x)
δ

+ As + rB − rsδ.

0/1 ← Vfy(R,σ, a1, . . . , a�): Compute a quadratic multi-variate polynomial t
such that t(σ,π) = 0 corresponds to the test

A · B = α · β +
∑�

i=0 ai (βui(x) + αvi(x) + wi(x))
γ

· γ + C · δ.

Accept the proof if the test passes.
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π ← Sim(R, τ , a1, . . . , a�): Pick A,B ← F and compute

C = AB−αβ−∑�
i=0 ai(βui(x)+αvi(x)+wi(x))

δ . Return π = (A,B,C).

Before formally proving this is a LIP, let us give a little intuition behind the
different components. The role of α and β is to ensure A,B and C are consistent
with each other in the choice of a0, . . . , am. The product α · β in the verification
equation guarantees that A and B involve non-trivial α and β components. This
means the product A · B involves a linear dependence on α and β, and we will
later prove that this linear dependence can only be balanced out by C with a
consistent choice of a0, . . . , am in all three of A,B and C. The role of γ and
δ is to make the two latter products of the verification equation independent
from the first product, by dividing the left factors with γ and δ respectively.
This prevents mixing and matching of elements intended for different products
in the verification equation. Finally, we use r and s to randomize the proof to
get zero-knowledge.

Theorem 1. The construction above yields a LIP with perfect completeness,
perfect zero-knowledge and statistical knowledge soundness against affine prover
strategies.

Proof. Perfect completeness is straightforward to verify. Perfect zero-knowledge
follows from both real proofs and simulated proofs having uniformly random
field elements A,B. These elements uniquely determine C through the verifi-
cation equation, so real proofs and simulated proofs have identical probability
distributions.

What remains is to demonstrate that for any affine prover strategy with non-
negligible success probability we can extract a witness. When using an affine
prover strategy we have

A = Aαα + Aββ + Aγγ + Aδδ + A(x) +
�∑

i=0

Ai
βui(x) + αvi(x) + wi(x)

γ

+
m∑

i=�+1

Ai
βui(x) + αvi(x) + wi(x)

δ
+ Ah(x)

t(x)
δ

,

for known field elements Aα, Aβ , Aγ , Aδ, Ai and polynomials A(x), Ah(x) of
degrees n − 1 and n − 2, respectively that correspond to the first row of the
matrix Π. We can write out B and C in a similar fashion from the second and
third rows of Π.

We now view the verification equation as an equality of multi-variate Laurent
polynomials. By the Schwartz-Zippel lemma the prover has negligible success
probability unless the verification equation holds when viewing A,B and C as
formal polynomials in indeterminates α, β, γ, δ, x.

The terms with indeterminate α2 are AαBαα2 = 0, which means Aα = 0 or
Bα = 0. Since AB = BA we can without loss of generality assume Bα = 0. The
terms with indeterminate αβ give us AαBβ + AβBα = AαBβ = 1. This means
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AB = (ABβ)(AαB) so we can without loss of generality after rescaling assume
Aα = Bβ = 1. The terms with indeterminate β2 now give us AβBβ = Aβ = 0.
We have now simplified A and B constructed by the adversary to be of the form

A = α + Aγγ + Aδδ + A(x) + · · · B = β + Bγγ + Bδδ + B(x) + · · · .

Next, let us consider the terms involving 1
δ2 . We have

(
m∑

i=�+1

Ai (βui(x) + αvi(x) + wi(x)) + Ah(x)t(x)

)
·

(
m∑

i=�+1

Bi (βui(x) + αvi(x) + wi(x)) + Bh(x)t(x)

)
= 0,

showing either the left factor is 0 or the right factor is 0. By symmetry, let
us without loss of generality assume

∑m
i=�+1 Ai (βui(x) + αvi(x) + wi(x)) +

t(x)At(x) = 0. The terms in α
∑m

i=�+1 Bi(βui(x)+αvi(x)+wi(x))+Bh(x)t(x)

δ = 0 now
show us that also

∑m
i=�+1 Bi (βui(x) + αvi(x) + wi(x)) + Bh(x)t(x) = 0.

The terms involving 1
γ2 give us

�∑
i=0

Ai (βui(x) + αvi(x) + wi(x)) ·
�∑

i=0

Bi (βui(x) + αvi(x) + wi(x)) = 0,

showing either the left factor is 0 or the right factor is 0. By symmetry,
let us without loss of generality assume

∑�
i=0 Ai (βui(x) + αvi(x) + wi(x)) =

0. The terms in α
∑m

i=0 Bi(βui(x)+αvi(x)+wi(x))

γ = 0 now show us∑�
i=0 Bi (βui(x) + αvi(x) + wi(x)) = 0 as well.
The terms Aγβγ = 0 and Bγαγ = 0 show us that Aγ = 0 and Bγ = 0. We

now have

A = α + A(x) + Aδδ B = β + B(x) + Bδδ.

The remaining terms in the verification equation that involve α give us
αB(x) =

∑�
i=0 aiαvi(x) +

∑m
i=�+1 Ciαvi(x). The terms involving β give us

βA(x) =
∑�

i=0 aiβui(x)+
∑m

i=�+1 Ciβui(x). Defining ai = Ci for i = �+1, . . . , m
we now have

A(x) =
m∑

i=0

aiui(x) B(x) =
m∑

i=0

aivi(x).

Finally, we look at the terms involving powers of x to get
m∑

i=0

aiui(x) ·
m∑

i=0

aivi(x) =
m∑

i=0

aiwi(x) + Ch(x)t(x).

This shows that (a�+1, . . . , am) = (C�+1, . . . , Cm) is a witness for the statement
(a1, . . . , a�). ��
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2 field element LIPs. It is natural to ask whether the number of field elements
the prover sends in the LIP can be reduced further. The square span programs
of Danezis et al. [DFGK14] give rise to 2 field element LIPs for boolean circuit
satisfiability. It is also possible to get a 2-element LIP for arithmetic circuit
satisfiability by rewriting the circuit into one that only uses squaring gates, each
multiplication gate a · b = c can be rewritten as a (a+ b)2 − (a− b)2 = 4c. When
an arithmetic circuit only has squaring gates we get ui(x) = vi(x) for all i. By
choosing r = s in the LIP, we now have that B = A + β − α, so the prover only
needs to send two elements A and C to make a convincing proof. Rewriting the
arithmetic circuit to only use squaring gates may double the number of gates
and also requires some additional wires for the subtraction of the squares, so
the reduction of the size of the LIP comes at a significant computational cost
though.

3.2 NIZK Arguments for Quadratic Arithmetic Programs

We will now give a pairing-based NIZK argument for quadratic arithmetic pro-
grams. We consider relation generators R that return relations of the form

R = (p,G1,G2,GT , e, �, {ui(X), vi(X), wi(X)}m
i=0, t(X)) ,

with |p| = λ. The relation defines a field Zp and a language of statements
(a1, . . . , a�) ∈ Z

�
p and witnesses (a�+1, . . . , am) ∈ Z

m−�
p such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑

i=0

aivi(X) =
m∑

i=0

aiwi(X) + h(X)t(X),

for some degree n − 2 quotient polynomial h(X).
We will construct the pairing-based argument by using the LIP from the

previous section “in the exponents”. An important design feature of the LIP is
that the elements A,B and C are only used once in the verification equation
and therefore it is easy to assign them to different source groups such that the
verification equation can be carried out using a pairing product equation. Since
pairing-friendly elliptic curves can be constructed such that the group element
representations are smaller in G1 than in G2 [GPS08] we choose to assign A
and C to the first source group and B to the second source group for maximal
efficiency. This gives us the following NIZK argument.

(σ, τ) ← Setup(R): Pick arbitrary generators G and H for G1 and G2. Pick
α, β, γ, δ, x ← Z

∗
p. Define τ = (α, β, γ, δ, x) and compute

σ =

⎛
⎜⎝

Gα, Gβ , Hβ , Hγ , Gδ, Hδ,
{

Gxi
}n−1

i=0
,
{

Hxi
}n−1

i=0{
G

βui(x)+αvi(x)+wi(x)
γ

}�

i=0

,
{

G
βui(x)+αvi(x)+wi(x)

δ

}m

i=�+1
,

{
G

xit(x)
δ

}n−2

i=0

⎞
⎟⎠ .
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π ← Prove(R, σ, a1, . . . , am): Pick r, s ← Zp and compute π = (A,B,C), where

A = Gα+
∑m

i=0 aiui(x)+rδ B = Hβ+
∑m

i=0 aivi(x)+sδ

C = G

∑m
i=�+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)

δ
+s(α+

∑m
i=0 aiui(x))+r(β+

∑m
i=0 aivi(x))+rsδ.

0/1 ← Vfy(R, σ, a1, . . . , a�, π): Parse π = (A,B,C) ∈ G1 × G2 × G1. Accept the
proof if and only if

e(A,B) = e(Gα,Hβ)e(G
∑�

i=0 ai(βui(x)+αvi(x)+wi(x))
γ ,Hγ)e(C,Hδ).

π ← Sim(R, τ, a1, . . . , a�): Pick r, s ← Zp and compute a simulated proof π =
(A,B,C) as

A = Gr B = Hs C = G
rs−αβ−∑�

i=0 ai(βui(x)+αvi(x)+wi(x))
δ .

Theorem 2. The protocol given above is a non-interactive zero-knowledge argu-
ment with perfect completeness and perfect zero-knowledge. It has statistical
knowledge soundness against adversaries that only use a polynomial number of
generic bilinear group operations.

Proof. Perfect completeness follows by direct verification. Perfect zero-
knowledge follows from the fact that both in real proofs and simulated proofs
A,B are uniformly random group elements and through the verification equation
uniquely determine C.

To see that we have statistical knowledge soundness against generic adver-
saries first note that any test the adversary can do on the common reference
string corresponds to an equality test of Laurent polynomials. Either the poly-
nomials match formally, or by the Schwartz-Zippel lemma there is negligible
probability of them matching up over the random choices of α, β, γ, δ, x. The
adversary therefore has negligible probability of learning anything it did not
already know about the common reference string using only generic group oper-
ations. What remains is the possibility that the adversary computes A,B and C
as exponentiations of group elements to known field elements. This corresponds
exactly to an affine prover strategy on the LIP “in the exponents” and by the
knowledge soundness of the LIP we can extract a witness from these known field
elements. ��

Efficiency. The proof size is 2 elements in G1 and 1 element in G2. The common
reference string contains a description of the relation R, n elements in Zp, m +
2n + 3 elements in G1, and n + 3 elements in G2.

The verifier does not need to know the entire common reference string, it
suffices to know

σV =
(

p,G1,G2,GT , e,Hγ ,Hδ,
{

G
βui(x)+αvi(x)+wi(x)

γ

}�

i=0
, e(Gα,Hβ)

)
.
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The verifier’s reference string only contains a description of the bilinear group,
� + 1 elements in G1, 2 elements in G2, and 1 element in GT .

The verification consists of checking that the proof consists of three appropri-
ate group elements and checking a single pairing product equation. The verifier
computes � exponentiations in G1, a small number of group multiplications, and
3 pairings (assuming e(Gα,Hβ) is precomputed in the verifier’s reference string).

The prover has to compute the polynomial h(X). The prover can compute
the polynomial evaluations

m∑
i=0

aiui(rq) =

m∑
i=0

aiui,q

m∑
i=0

aivi(rq) =

m∑
i=0

aivi,q

m∑
i=0

aiwi(rq) =

m∑
i=0

aiwi,q

for q = 1, . . . , n. It depends on the relation how long time this computation takes;
if it arises from an arithmetic circuit where each multiplication gate connects
to a constant number of wires, the relation will be sparse and the computation
will be linear in n. Since the polynomials have degree n − 1 they are com-
pletely determined by these evaluation points. If r1, . . . , rn are roots of unity for
a suitable prime p she can compute h(X) using standard Fast Fourier Trans-
form techniques in O(n log n) operations in Zp. The prover can also compute the
coefficients of

∑m
i=0 aiui(X) and

∑m
i=0 aivi(X) using FFT techniques. Having

all the coefficients, the prover does m + 3n − � + 3 exponentiations in G1 and
n + 1 exponentiations in G2.

Asymptotically the exponentiations are the dominant cost as the security
parameter grows. However, in practice the multiplications that go into the FFT
computations may be more costly for moderate security parameters and large
statements. In that case, it may be worth to use a larger common reference
string that contains precomputed Gui(x), Gvi(x),Hvi(x) elements for i = 0, . . . ,m
such that A and B can be constructed directly instead of the prover having to
compute the coefficients of

∑m
i=0 aiui(X) and

∑m
i=0 aivi(X) and then do the

exponentiations. In the case of boolean circuits we have ai ∈ {0, 1} and the
prover can with such precomputed elements just do m group multiplications for
each when computing A and B. We have for this reason let the CRS be longer
in Table 1 to get a low computational cost for the prover.

4 Lower Bounds for Non-interactive Arguments

It is an intriguing question how efficient non-interactive arguments can be. We
will now give a lower bound showing that pairing-based non-interactive argu-
ments must have proofs with at least 2 group elements if one-way functions exist.
More precisely, we look at pairing-based arguments where the common reference
string contains a description of a bilinear group and a number of group elements,
the proof consists of a number of group elements computed by the prover using
generic group operations, and the verifier checks the proof using generic bilinear
group operations. We will show that for such pairing-based argument systems,
the proof needs to have elements from both G1 and G2 if the language includes
hard decisional problems as defined below.
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Let us consider sampleable decisional problems for a relation R, where there
are two sampling algorithms Yes and No. Yes samples statements and witnesses
in the relation. No samples statements outside the language LR defined by the
relation. We are interested in relations where it is hard to tell whether a state-
ment φ has been sampled by Yes or No.

Definition 4. We say the relation generator R has hard decisional problems if
there are two efficient algorithms Yes and No such that for (R, z) ← R(1λ) we
have Yes(R) → (φ,w) ∈ R and No(R) → φ /∈ LR with overwhelming probability,
and for all non-uniform polynomial time distinguishers A

Pr
[
(R, z) ← R(1λ); φ0 ← No(R); (φ1, w1) ← Yes(R); b ← {0, 1} : A(R, z, φb) = b

]
≈ 1

2
.

If one-way functions exist, we can construct pseudorandom generators. A
pseudorandom generator can be used to generate a pseudorandom string, a Yes-
instance, with the seed being the witness. To get a No-instance we sample a
uniform random string, which with overwhelming probability is not pseudoran-
dom. If the relation R is NP-complete, or just expressive enough to capture
pseudorandom generators, then it has a hard decisional problem.

4.1 Linear Interactive Proofs Cannot Have Linear Decision
Procedures

We will now prove that LIPs cannot have a linear decision procedure. This
answers an open question raised by Bitansky et al. [BCI+13]. The result holds
even if we consider designated verifier LIPs and instead of knowledge soundness
only consider the weaker notion of soundness that we now define.

Definition 5 (Statistical Soundness Against Affine Prover Strategies).
We say a LIP is (adaptively) sound against affine prover strategies if for all
adversaries A

Pr
[

(R, z) ← R(1λ); (σP ,σV , τ ) ← Setup(R); (φ,Π) ← A(R, z)
π = ΠσP ; t ← Test(R,φ) : φ /∈ LR ∧ t(σV ,π) = 0

]
≈ 0.

Theorem 3. There are no 2-move algebraic linear interactive proofs with a lin-
ear decision procedure for relation generators with hard decisional problems.

Proof. When the decision procedure is linear, the test t(σV ,π) = 0 can be
rewritten as TΠσP = T ′σV , where the matrices T ∈ F

η×k and T ′ ∈ F
η×mV can

be efficiently computed from t.
Let us now construct an adversary A that given R and φ has a good chance

of determining whether φ is sampled as a Yes-instance or a No-instance. First,
A repeatedly runs (φi, wi) ← Yes(R) and computes the matching proof and test
matrices Πi and (Ti, T

′
i ). Let V be the vector space generated by the tuples

(TiΠi, T
′
i ). The adversary keeps sampling tuples until there is more than 50 %

chance that a new tuple (TiΠi, T
′
i ) already belongs to V . We will in polynomial
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time with overwhelming probability sample such a vector space V since there
are at most η(mP + mV ) linearly independent tuples.

Now the adversary looks at the statement φ that it is trying to classify as
a Yes-instance or a No-instance. It computes the test matrices T and T ′ for φ
and then tries to solve (TΠ, T ′) =

∑
i ri(TiΠi, T

′
i ) for Π ∈ F

k×mP and ri ∈ F.
This is a system of linear equations and can therefore be solved efficiently. If a
solution is found it guesses φ ∈ LR and if no solution is found it guesses φ /∈ LR.

Let us first analyze the case where φ ∈ LR. Since this is a Yes-instance there
is more than 50 % chance that there is a solution Π such that (TΠ, T ′) belongs
to the vector space V , so the adversary has 50 % chance of guessing φ ∈ LR.

Next, let us analyze the case where φ /∈ LR. If we run the setup algo-
rithm (σP ,σV , τ ) ← Setup(R) and φ /∈ LR we have negligible probability for
TΠσP = T ′σV . However, by completeness we have for all tuples in V that
TiΠiσP = T ′

iσV . If there were a matrix Π such that (TΠ, T ′) =
∑

i ri(TiΠ,T ′
i )

we would have TΠσP =
∑

i riTiΠiσP =
∑

i riT
′
iσV = T ′σV , so soundness

implies this probability is negligible. The adversary guesses φ /∈ LR with over-
whelming probability. ��

4.2 Lower Bound for the Size of Generic Pairing-Based
Non-interactive Arguments

We will now show that a generic pairing-based non-interactive argument over
Type III groups must have elements in both G1 and G2. The intuition behind
this argument is that if we have a unilateral argument with only elements in G1

or only elements in G2, then the verification equations become linear and the
impossibility result for LIPs apply.

Before we get started with the proof, let us define some useful notation.
Define for a vector v = (v1, . . . , vn) that Gv = (Gv1 , . . . , Gvn). Define for a
vector of group elements Gv and a matrix A that (Gv)A = GvA. Also, define for
two vectors of group elements e(Gv,Hw) =

∏n
i=1 e(Gvi ,Hwi).

We will consider pairing-based argument systems (Setup,Prove,Vfy) where
the proofs consist of group elements and where the algorithms only use generic
group operations. Let us be explicit about how such a system operates and the
consequences of using generic group operations.

(σ, τ) ← Setup(R): The relation contains a description of a bilinear group
(p,G1,G2,GT , e) and the common reference string contains group elements
in G1,G2,GT . Let us fix generators G and H for G1 and G2 and write the
vectors of group elements in G1,G2 and GT as Σ1 = Gσ1 , Σ2 = Hσ2 and
ΣT = e(G,H)σT . We want to avoid that the prover can learn non-trivial
information about the discrete logarithms σ1,σ2,σT using generic bilinear
group operations. An example of such a pathological case is a common ref-
erence string with group elements G,Gb, where b is a bit. The prover can
easily recover the bit b by guessing it and verifying the guess with generic
group operations. We say the common reference string is disclosure-free if
for any pairing product equation on the group elements in Σ1,Σ2 and ΣT
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it is possible with overwhelming probability to predict whether the equation
holds or not, when we know the distribution of the common reference string
but where we do not know the actual group elements.

π ← Prove(R, σ, φ,w): A prover using generic group operations and working on a
disclosure-free common reference string has negligible chance of learning any
non-trivial information about the common reference string group elements.
This means her only viable mode of operation is to pick matrices Π1,Π2 and
ΠT and compute the proof by setting π = (ψ1,ψ2,ψT ), where

ψ1 = ΣΠ1
1 ψ2 = ΣΠ2

2 ψT = ΣΠT

T .

0/1 ← Vfy(R, σ, φ, π): A verifier using generic group operations can only verify
a proof by mapping φ to matrices and vectors {Aq, Bq, Cq,Dq,eq,f q}Q

q=1 of
elements in Zp and checking pairing product equations of the form

e(ΣAq

1 ,Σ2)e(ψ
Bq

1 ,Σ2)e(Σ
Cq

1 ,ψ2)e(ψ
Dq

1 ,ψ2) = Σ
eq

T · ψT
fq .

We note that there is no loss of generality in excluding multi-exponentiation
equations in G1 or G2; such equations can be translated to pairing product
equations by pairing them with G or H.

We now get the following corollary to Theorem3.

Corollary 1. A pairing-based non-interactive argument with a disclosure-free
common reference string and algorithms using generic group operations cannot
exist for relation generators with hard decisional problems unless the proofs have
elements both in G1 and G2.

Proof. When the common reference string is disclosure free and the algorithms
use generic operations they must work as outlined above. Taking discrete loga-
rithms we get verification equations of the form

σ1Aqσ2 + π1Bqσ2 + σ1Cqπ2 + π1Dqπ2 = σT eq + πT f q,

where ψ1 = Gπ1 and ψ2 = Hπ2 and ψT = e(G,H)πT . If either π1 or π2 are
empty, there are no π1Dqπ2 parts in the verification equations. Observe also that
without loss of generality we can assume all the entries in the outer product of
σ1 and σ2 are given in σT (this does not affect disclosure-freeness) so we can set
Aq = 0 in every equation. This means all the verification equations are linear.
Since the verification equations correspond to verifying a LIP “in the exponents”
it follows from the impossibility of having LIPs with a linear decision procedure
that the proof must have that both π1 and π2 are non-trivial and therefore that
the proof has elements both in G1 and G2. ��
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