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Abstract. In a t-out-of-n robust secret sharing scheme, a secret message
is shared among n parties who can reconstruct the message by combining
their shares. An adversary can adaptively corrupt up to t of the parties,
get their shares, and modify them arbitrarily. The scheme should sat-
isfy privacy, meaning that the adversary cannot learn anything about
the shared message, and robustness, meaning that the adversary cannot
cause the reconstruction procedure to output an incorrect message. Such
schemes are only possible in the case of an honest majority, and here we
focus on unconditional security in the maximal corruption setting where
n = 2t + 1.

In this scenario, to share an m-bit message with a reconstruction fail-
ure probability of at most 2−k, a known lower-bound shows that the share
size must be at least m+k bits. On the other hand, all prior constructions
have share size that scales linearly with the number of parties n, and the
prior state-of-the-art scheme due to Cevallos et al. (EUROCRYPT ’12)

achieves m + ˜O(k + n).
In this work, we construct the first robust secret sharing scheme in

the maximal corruption setting with n = 2t + 1, that avoids the linear
dependence between share size and the number of parties n. In particular,
we get a share size of only m+ ˜O(k) bits. Our scheme is computationally
efficient and relies on approximation algorithms for the minimum graph
bisection problem.

1 Introduction

Secret sharing, originally introduced by Shamir [Sha79] and Blakely [Bla79], is
a central cryptographic primitive at the heart of a wide variety of applications,
including secure multiparty computation, secure storage, secure message trans-
mission, and threshold cryptography. The functionality of secret sharing allows a
dealer to split a secret message into shares that are then distributed to n parties.
Any authorized subset of parties can reconstruct the secret reliably from their
shares, while unauthorized subsets of parties cannot learn anything about the
secret from their joint shares. In particular, a t-out-of-n threshold secret sharing
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scheme requires that any t shares reveal no information about the secret, while
any subset of t + 1 shares can be used to reconstruct the secret.

Many works (e.g. [RB89,CSV93,BS97,CDF01,CFOR12,LP14,CDD+15,
Che15]) consider a stronger notion of secret sharing called robust secret sharing
(RSS). Robustness requires that, even if an adversary can replace shares of cor-
rupted parties by maliciously chosen values, the parties can still reconstruct the
true secret. (with high probability). secure storage and message transmission. In
particular, we consider a computationally unbounded adversary who maliciously
(and adaptively) corrupts t out of n of the parties and learns their shares. After
corrupting the t parties, the adversary can adaptively modify their shares and
replace them with arbitrary values. The reconstruction algorithm is given the
shares of all n parties and we require that it recovers the original secret. Note
that robustness requires the reconstruction to work given all n shares of which
t contain “errors” while threshold reconstruction is given t + 1 correct shares,
meaning that n − t − 1 shares are “erasures”. When n = 2t + 1, robustness is
therefore a strictly stronger requirement than threshold reconstruction (but in
other settings this is not the case).

Known Lower Bounds. It is known that robust secret sharing can only be
achieved with an honest majority, meaning t < n/2. Moreover, for t in the range
n/3 ≤ t < n/2, we cannot achieve perfect robustness, meaning that we must
allow at least a small (negligible) failure probability for reconstruction [Cev11].
Furthermore, in the maximal corruption setting with n = 2t + 1 parties, any
robust secret sharing scheme for m-bit messages with failure probability 2−k

must have a share size that exceeds m + k bits [CSV93,LP14].

Prior Constructions. On the positive side, several prior works show how to
construct robust sharing schemes in the maximal corruption setting with n =
2t + 1 parties. The first such scheme was described in the work of Rabin and
Ben-Or [RB89] with a share size of m + ˜O(nk) bits. Cramer, Damg̊ard and Fehr
[CDF01] showed how to improve this to m + ˜O(k + n) bits, using what later
became known as algebraic-manipulation detection (AMD) codes [CDF+08],
but at the cost of having an inefficient reconstruction procedure. Cevallos et al.
[CFOR12] then presented an efficient scheme with share size m + ˜O(k + n).

Other Related Work. Two recent works [CDD+15,Che15] study robust secret
sharing in the setting where the number of corruptions is below the maximal
threshold by some constant fraction; i.e., t = (1/2−δ)n for some constant δ > 0.
In this setting, robustness does not necessarily imply threshold reconstructability
from t+1 correct shares (but only from (1/2+ δ)n correct shares). This is often
called a ramp setting, where there is a gap between the privacy threshold t
and the reconstructability threshold. The above works show that it is possible
to achieve robustness in this setting with share size of only O(1) bits, when n
is sufficiently large in relation to k,m. The work of [Che15] also considers a
setting that separately requires robustness and threshold reconstruction from
t + 1 correct shares, and gives a scheme with share size m + ˜O(k). However,
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we notice that security in this setting could always be achieved with a generic
construction, by adding a standard (non-robust) threshold secret sharing scheme
on top of a robust scheme – when given exactly t + 1 shares, the reconstruction
uses the threshold scheme, and otherwise it uses the robust scheme. This adds
m additional bits to the share size of the robust scheme and, in particular, when
n is sufficiently large, the share size would be m + O(1) bits1.

The main technique used to get robustness in [CDD+15,Che15] is to compose
list-decodable codes with a special privacy property together with AMD codes
from [CDF+08]. Unfortunately, this technique appears to crucially fail in the
setting of n = 2t+1 parties. In this setting, the parameters of the list-decodable
codes either force a large alphabet or an exponential list size. The latter in turn
forces us to use an AMD code with large overhead. In either case the overhead
on the share size appears to be at least O(n) bits.

Another related work of [LP14] considers a relaxation of robustness to a
setting of local adversaries, where each corrupted party’s modified share can only
depend on its own received share, but not on the shares received by the other
corrupted parties. They construct a robust scheme in this setting for n = 2t + 1
parties with share size of m+ ˜O(k) bits. Unfortunately, the construction is clearly
insecure in the traditional robustness setting where a monolithic adversary gets
to see the shares received by all of the corrupted parties before deciding how to
modify each such share.

Finally, the work of [JS13] proposes a robust secret sharing scheme with t
corruptions out of n ≥ 2t + 2. Unfortunately, we found a flaw in the security
proof and an attack showing that the proposed scheme is insecure (which we
communicated to the authors).

In summary, despite the intense study of robust secret sharing since the late
80 s and early 90 s, in the maximal corruption setting with n = 2t + 1 parties
there is a large gap between the lower bound of m+k bits and the best previously
known upper bound of m+ ˜O(n+k) bits on the share size. In particular, prior to
this work, it was not known if the linear dependence between the share size and
n is necessary in this setting, or whether there exist (even inefficient) schemes
that beat this bound.

Our Result. We present an efficient robust secret sharing scheme in the max-
imal corruption setting with n = 2t + 1 parties, where the share size of only
m+ ˜O(k) bits (see Sect. 6 for detailed parameters including poly-logarithmic fac-
tors). This is the first such scheme which removes the linear dependence between
the share size and the number of parties n. A comparison between our work and
previous results is given in Table 1.

1 Yet another intermediate variant is to separately require robustness with t = (1/2−
δ)n corruptions and ramp reconstruction from t+ρn = (1/2− δ +ρ)n correct shares
for some constants δ, ρ > 0. This could always be achieved by adding a good (non-
robust) ramp secret sharing scheme on top of a robust scheme while maintaining the
O(1) share size when n is sufficiently large.
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Table 1. Comparison of robust secret sharing schemes and lower bounds with n parties,
t corruptions, m-bit message, and 2−k reconstruction error. Robust reconstruction is
given n shares with t errors, while threshold reconstruction is given just t + 1 correct
shares (n− t−1 erasures). The ˜O(·) notation hides factors that are poly-logarithmic in
k, n and m. This is justified if we think of n, m as some arbitrarily large polynomials in
the security parameter k. The † requires that n is sufficiently large in relation to m, k.

Setting: t = (1/2 − Ω(1))n

Reconstruction Construction Share Size Lower bound

Robust Only [CDD+15,Che15] O(1) †

Robust + Threshold [Che15] (1 + o(1))m + O(k) m

Generic construction m + O(1) †

Setting: n = 2t + 1

Reconstruction Construction Share Size Lower bound

Robust ⇒ Threshold [RB89] m + ˜O(kn) m + k

[CDF01,CDF+08,CFOR12] m + ˜O(k + n)

Our work m + ˜O(k)

1.1 Our Techniques

Using MACs. We begin with the same high-level idea as the schemes of
[RB89,CFOR12], which use information-theoretic message authentication codes
(MACs) to help the reconstruction procedure identify illegitimate shares. The
basic premise is to start with a standard (non-robust) t-out-of-n scheme, such
as Shamir’s scheme, and have parties authenticate each others’ Shamir shares
using MACs. Intuitively, this should make it more difficult for an adversary to
present compelling false shares for corrupted parties as it would have to forge
the MACs under unknown keys held by the honest parties.

The original implementation of this idea by Rabin and Ben-Or [RB89]
required each party to authenticate the share of every other party with a MAC
having unforgeability security 2−k and the reconstruction procedure simply
checked that the majority of the tags verified. Therefore, the keys and tags
added an extra ˜O(nk) overhead to the share of each party. The work of Cevallos
et al. [CFOR12] showed that one can also make this idea work using a MAC
with a weaker unforgeability security of only 1

Ω(n) , by relying on a more com-

plex reconstruction procedure. This reduced the overhead to ˜O(k + n) bits.

Random Authentication Graph. Our core insight is to have each party only
authenticate a relatively small but randomly chosen subset of other parties’
shares. This will result in a much smaller overhead in the share size, essentially
independent of the number of parties n.
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More precisely, for each party we choose a random subset of d = ˜O(k) other
parties whose shares to authenticate. We can think of this as a random “authen-
tication graph” G = ([n], E) with out-degree d, having directed edges (i, j) ∈ E
if party i authenticates party j. This graph is stored in a distributed manner
where each party i is responsible for storing the information about its d outgoing
edges. It is important that this graph is not known to the attacker when choosing
which parties to corrupt. In fact, as the attacker adaptively corrupts parties, he
should not learn anything about the outgoing edges of uncorrupted parties2.

Requirements and Inefficient Reconstruction. As a first step, let’s start by
considering an inefficient reconstruction procedure, as this will already highlight
several challenges. The reconstruction procedure does not get to see the original
graph G but a possibly modified graph G′ = ([n], E′) where the corrupted parties
can modify their set of outgoing edges. However, the edges that originate from
uncorrupted parties are the same in G and G′. The reconstruction procedure
labels each edge e ∈ E′ as either good or bad depending on whether the MAC
corresponding to that edge verifies.

Let’s denote the subset of uncorrupted honest parties by H ⊆ [n]. Let’s also
distinguish between corrupted parties where the adversary does not modify the
share, which we call passive corruptions and denote by P ⊆ [n], and the rest
which we call active corruptions and denote by A ⊆ [n]. Assume that we can
ensure that the following requirements are met:

(I) All edges between honest/passive parties, (i, j) ∈ E′ : i, j ∈ H ∪ P , are
labeled good.

(II) All edges from honest to active parties, (i, j) ∈ E′ : i ∈ H, j ∈ A are
labeled bad.

In this case, the reconstruction procedure can (inefficiently) identify the set
H ∪ P by simply finding the maximum self-consistent set of vertices C ⊆ [n],
i.e. the largest subset of vertices such that all of the tags corresponding to edges
(i, j) ∈ E′ with i, j ∈ C are labeled good. We show that C = H ∪P is the unique
maximum self-consistent set with overwhelming probability (see Sect. 7). Once
we identify the set H ∪P we can simply reconstruct the secret message from the
Shamir shares of the parties in H ∪ P since these have not been modified.

Implementation: Private MAC and Robust Storage of Tags. Let’s now
see how to implement the authentication process to satisfy requirements I and
II defined above. A naive implementation of this idea would be for each party i
to have a MAC key keyi for a d-time MAC (i.e., given the authentication tags

2 If the graph were chosen at random but known to the attacker in advance, then
the attacker could always choose some honest party i and corrupt a set of t parties
none of which are being authenticated by i. Then the t + 1 shares corresponding
to the t corrupted parties along with honest party i would be consistent and the
reconstruction would not be able to distinguish it from the set of t+1 honest parties.
However, with an unknown graph, there is a high probability that every honest party
i authenticates many corrupted parties.
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of d messages one cannot forge the tag of a new message) and, for each edge
(i, j) ∈ E, to create a tag σi→j = MACkeyi

(s̃j) where s̃j is the Shamir share of
party j. The tags σi→j would then be stored with party j. In particular, the full
share of party i would be

si = (s̃i, Ei, keyi, {σj→i}(j,i)∈E)

where Ei = {j ∈ [n] : (i, j) ∈ E} are the outgoing edges for party i.
Unfortunately, there are several problems with this. Firstly, if the adversary

corrupts party i, it might modify the values keyi, Ei in the share of party i
but keep the Shamir share s̃i intact. This will keep the edges going from honest
parties to party i labeled good but some of the edges going from party i to
honest parties might now be labeled bad. Therefore we cannot define such party
as either passive (this would violate requirement I) or active (this would violate
requirement II). Indeed, this would break our reconstruction procedure.

To fix this, when party i authenticates another party j, we compute σi→j =
MACkeyi

((s̃j , Ej , keyj)) where we authenticate the values Ej , keyj along with the
Shamir share s̃j . This prevents party j from being able to modify these compo-
nents without being detected. Therefore we can define a party as active if any
of the components s̃j , Ej , keyj are modified and passive otherwise.

Unfortunately, there is still a problem. An adversary corrupting party j might
keep the components s̃j , Ej , keyj intact but modify some subset of the tags σi→j .
This will make some of edges going from honest parties to party j become bad
while others remain good, which violates the requirements.

To fix this, we don’t store tags σi→j with party j but rather we store all
the tags in a distributed manner among the n parties in a way that guarantees
recoverability even if t parties are corrupted. However, we do not provide any
privacy guarantees for these tags and the adversary may be able to learn all of
them in full. We call this robust distributed storage (without privacy), and show
that we can use it to store the tags without additional asymptotic overhead. The
fact that the tags are not stored privately requires us to use a special type of
private (randomized) MAC where the tags σi→j do not reveal anything about the
authenticated messages even given the secret key keyi. With this implementation,
we can guarantee that requirements I, II are satisfied.

Efficient Reconstruction Using Graph Bisection. To get an efficient recon-
struction procedure, we need to solve the following graph identification problem.
An adversary partitions vertices V = [n] into three sets H,P,A corresponding
to honest, active and passive parties respectively. We know that the out-going
edges from H are chosen randomly and that the edges are labeled as either good
or bad subject to requirements I, II above. The goal is to identify H ∪ P . We
know that, with overwhelming probability, H ∪ P is the unique maximum self-
consistent set having no bad edges between its vertices, but its not clear how to
identify it efficiently.

Let’s consider two cases of the above problem depending on whether the size
of the passive set P is |P | ≥ εn or |P | < εn for some ε = 1/Θ(log n). If P
is larger than εn, then we can distinguish between vertices in A and H ∪ P
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by essentially counting the number of incoming bad edges of each vertex. In
particular, the vertices in H ∪P only have incoming bad edges from the set A of
size |A| = (1/2−ε)n while the vertices in A which have incoming bad edged from
H of size |H| = n/2. Therefore, at least on average, the vertices in A will have
more incoming bad edges than those in H ∪P . This turns out to be sufficient to
then identify all of H ∪ P .

On the other hand, if |P | < εn then the graph has a “bisection” consisting
of H and A ∪ P (whose sizes only differ by 1 vertex) with only approximately
εnd good edges crossing from H to A ∪ P , corresponding to the edges from H
to P . We then rely on the existence of efficient approximation algorithms for
the minimum graph bisection problem. This is a classic NP-hard optimization
problem [GJS76,FK02], and the best known polynomial-time algorithm is an
O(log n)-approximation algorithm due to [Räc08]. In particular, this allows us to
bisect the graph it into two components X0,X1 with only very few edges crossing
from X0 to X1. This must mean that one of X0 or X1 contains the vast majority
of the vertices in H as otherwise, if the H vertices were split more evenly, there
would be many more edges crossing. Having such components X0,X1 turns out
to be sufficient to then identify all of H ∪ P .

There are many details to fill in for the above high-level description, but
one major issue is that we only have efficient approximations for the graph
bisection problem in undirected graphs. However, in the above scenario, we are
only guaranteed that there are few good edges from H to A ∪ P but there may
be many good edges in the reverse direction. To solve this problem, we need
to make sure that our graph problem satisfies one additional requirement (in
addition to requirements I, II above):
(III) All edges from active to honest parties, (i, j) ∈ E′ : i ∈ A, j ∈ H are

labeled bad.

To ensure that this holds, we need to modify the scheme so that, for any edge
(i, j) ∈ E corresponding to party i using its key to authenticate the share of
party j with a tag σi→j , we also add a “reverse-authentication” tag σi←j where
we authenticate the share of party i under the key of party j. This ensures that
edges from active parties to honest parties are labeled bad. Therefore, when P
is small, there are very few good edges between H and A ∪ P in either direction
and we can use an algorithm for the undirected version of the graph bisection
problem.

Parallel Repetition and Parameters. A naive instantiation of the above
scheme would require a share size of m + ˜O(k2) since we need O(k) tags per
party and each tag needs to have length O(k). To reduce the share size further,
we first instantiate our scheme with much smaller parameters which only provide
weak security and ensure that the correct message is recovered with probability
3/4. We then use O(k) parallel copies of this scheme to amplify security, where
the reconstruction outputs the majority value. One subtlety is that all of the
copies need to use the same underlying Shamir shares since we don’t want a
multiplicative blowup in the message size m. We show that this does not hurt
security. Altogether, this results in a share size of only m + ˜O(k).
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2 Notation and Preliminaries

For n ∈ N, we let [n] := {1, . . . , n}. If X is a distribution or a random variable, we
let x ← X denote the process of sampling a value x according to the distribution
X. If A is a set, we let a ← A denote the process of sampling a uniformly at
random from A. If f is a randomized algorithm, we let f(x; r) denote the output
of f on input x with randomness r. We let f(x) be a random variable for f(x; r)
with random r.

Sub-Vector Notation. For a vector s = (s1, . . . , sn) and a set I ⊆ [n], we let
sI denote the vector consisting only of values in indices i ∈ I; we will represent
this as sI = (s′

1, . . . , s
′
n) with s′

i = si for i ∈ I and s′
i = ⊥ for i 	∈ I.

Graph Notation. For a (directed) graph G = (V,E), and sets X,Y ⊆ V ,
define EX→Y as the set of edges from X to Y ; i.e. EX→Y = {(v1, v2) ∈ E | v1 ∈
X, v2 ∈ Y }.

2.1 Hash Functions, Polynomial Evaluation

Definition 1 (Universal Hashing). Let H = {Hk : U → V}k∈K be family
of hash functions. We say that H is ε-universal if for all x, x′ ∈ U with x 	= x′

we have Prk←K[Hk(x) = Hk(x′)] ≤ ε.

Polynomial Evaluation. Let F be a finite field. Define the polynomial evalu-
ation function PEval : F

d × F → F as PEval(a, x) =
∑d

i=1 aix
i. See the full

version [BPRW15] for the properties of the polynomial evaluation we rely on.

2.2 Graph Bisection

Let G = (V,E) be an undirected graph. Let (V1, V2) be a partition of its edges.
The cross edges of (V1, V2) are the edges in EV1→V2 . Given an undirected graph
G = (V,E) with an even number of vertices |V | = n = 2t a graph bisection for G
is a partition (V1, V2) of V such that |V1| = t = |V2|. We also extend the notion
of a graph bisection to graphs with an odd number of vertices |V | = n = 2t + 1
by defining a bisection to be a partition with |V1| = t, |V2| = t + 1.

Definition 2 (Approximate Graph Bisection Algorithm). Let G = (V,E)
be an undirected graph with n vertices. Assume that G has a graph bisection V1, V2

with |EV1→V2 | = m cross edges. An algorithm Bisect that takes as input G and
outputs a bisection U1, U2 with at most |EU1→U2 | ≤ δm cross edges is called a
δ-approximate graph bisection algorithm.

We remark that standard definitions of graphs bisection only consider the
case where n = 2t is even. However, given any δ-approximate graph bisection
algorithm that works in the even case, we can generically adapt it to also work in
the odd case n = 2t+1. In particular, given a graph G = (V,E) with |V | = 2t+1
vertices, we can construct a graph G′ = (V ∪ {⊥}, E) with an added dummy
vertex ⊥ that has no outgoing or incoming edges. We then run the δ-approximate
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graph bisection algorithm that works for an even number of vertices on G′ to get
a bisection U ′

1, U
′
2 where, without loss of generality, we assume that U ′

1 contains
the vertex ⊥. By simply taking U1 to be U ′

1 with ⊥ removed and U2 = U ′
2 we

get a δ-approximate bisection for the graph G.
The work of [FK02] gave an efficient O(log1.5 n)-approximate graph bisec-

tion algorithm, which was then improved to O(log n) by [Räc08] (Sect. 3, “Min
Bisection”).

3 Definition of Robust Secret Sharing

Throughout the rest of the paper, we use the following notation:

– t denotes the number of players that are arbitrarily corrupt.
– n = 2t + 1 denotes the number of players in the scheme.
– M is the message space.

Definition 3 (Robust Secret Sharing). A t-out-of-n, δ-robust secret sharing
scheme over a message space M and share space S is a tuple (Share,Rec) of
algorithms that run as follows:

Share(msg) → (s1, . . . , sn): This is a randomized algorithm that takes as input
a message msg ∈ M and outputs a sequence of shares s1, . . . , sn ∈ S.

Rec(s1, . . . , sn) → msg′: This is a deterministic algorithm that takes as input n
shares (s1, . . . , sn) with si ∈ S ∪ ⊥ and outputs a message msg′ ∈ M.

We require perfect correctness, meaning that for all msg ∈ M: Pr[Rec(Share
(msg)) = msg] = 1. Moreover, the following properties hold:

Perfect Privacy: Any t out of n shares of a secret give no information on
the secret itself. More formally, for any msg,msg′ ∈ M, any I ⊆ [n] of size
|I| = t, the distributions Share(msg)I and Share(msg′)I are identical.

Perfect Threshold Reconstruction (with Erasures): The original secret
can be reconstructed from any t + 1 correct shares. More formally, for any
msg ∈ M and any I ⊆ [n] with |I| = t + 1 we have Pr[Rec(Share(msg)I) =
msg] = 1.

Adaptive δ-Robustness: An adversary that adaptively modifies up to t shares
can cause the wrong secret to be recovered with probability at most δ. More
formally, we define the experiment Exp(msg,Adv) with some secret msg ∈
M and interactive adversary Adv.
Exp(msg,Adv): is defined as follows:

E.1. Sample s = (s1, . . . , sn) ← Share(msg).
E.2. Set I := ∅. Repeat the following while |I| ≤ t.

– Adv chooses i ∈ [n] \ I.
– Update I := I ∪ {i} and give si to Adv.

E.3. Adv outputs modified shares s′
i : i ∈ I and we define s′

i := si for
i 	∈ I.
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E.4. Compute msg′ = Rec(s′
1, . . . , s

′
n).

E.5. If msg′ 	= msg output 1 else 0.
We require that for any (unbounded) adversary Adv and any msg ∈ M we
have

Pr[Exp(msg,Adv) = 1] ≤ δ.

Remarks. We note that since privacy and threshold reconstruction are required
to hold perfectly (rather than statistically) there is no difference between defining
non-adaptive and adaptive variants. In other words, we could also define adap-
tive privacy where the adversary gets to choose which shares to see adaptively,
but this is already implied by our non-adaptive definition of perfect privacy. We
also note that when n = 2t + 1 then robustness implies a statistically secure
threshold reconstruction with erasures. However, since we can even achieve per-
fect threshold reconstruction, we define it as a separate property.

Definition 4 (Non-Robust Secret Sharing). We will say that a scheme is
a non-robust t-out-of-n secret sharing scheme, if it satisfies the above definition
with δ = 1.

Using Shamir secret sharing, we get a non-robust t-out-of-n secret sharing for
any t < n where the share size is the same as the message size.

4 The Building Blocks

In this section we introduce the building blocks of our robust secret sharing
scheme: Robust Distributed Storage, Private MACs, and the Graph Identification
problem.

4.1 Robust Distributed Storage

A robust distributed storage scheme allows us to store a public value among
n parties, t of which may be corrupted. There is no secrecy requirement on
the shared value. However, we require robustness: if the adversary adaptively
corrupts t of the parties and modifies their shares, the reconstruction procedure
should recover the correct value with overwhelming probability. We can think of
this primitive as a relaxation of an error-correcting code where shares correspond
to codeword symbols. The main difference is that the encoding procedure can be
randomized and the adversary only gets to see a set of t (adaptively) corrupted
positions of the codeword before deciding on the errors in those positions. These
restrictions allow us to achieve better parameters than what is possible with
standard error-correcting codes.

Definition 5. A t-out-of-n, δ-robust distributed storage over a message space
M is a tuple of algorithms (Share,Rec) having the same syntax as robust secret
sharing, and satisfying the δ-robustness property. However, it need not satisfy
the privacy or perfect reconstruction with erasures properties.
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We would like to construct such schemes for n = 2t + 1 and for a message
of size m so that the share of each party is only O(m/n) bits. These parameters
are already beyond the reach of error-correcting codes for worst-case errors. We
construct a simple robust distributed storage scheme by combining list-decoding
and universal hashing.

List Decoding. In list-decoding, the requirement to decode to a unique code-
word is relaxed, and it is only required to obtain a polynomially sized list of
potential candidates that is guaranteed to include the correct codeword. We can
simply use Reed-Solomon codes and the list-decoding algorithm provided by
Sudan [Sud97] (better parameters are known but this suffices for our needs):

Theorem 1 [Sud97]. A Reed-Solomon code formed by evaluating a degree d
polynomial on n points can be efficiently list-decoded to recover from e < n−

√
2dn

errors with a list of size L ≤
√

2n/d.

Setting d = �n/8
, we can then therefore recover from t out of n = 2t + 1
errors and obtain a list of size L ≤

√

2n/d = O(1).

Construction of Robust Distributed Storage. Let t be some parameter,
let n = 2t + 1, and let F be a field of size |F| = 2u with |F| > n. Let H =
{Hk : F

d+1 → F}k∈F be an ε-universal hash function. For concreteness, we
can use the polynomial evaluation hash Hk(a) = PEval(a, k), which achieves
ε = (d + 1)/2u (see ‘XOR-universality’ in the full version [BPRW15]). We use
list-decoding for the Reed Solomon code with degree d = �n/8
 = Ω(n) which
allows us to recover from t out of n errors with a list size L = O(1). We construct
a δ-robust t-out-of-n distributed storage scheme with message space M = F

d+1,
meaning that the messages have bit-size m = u(d + 1) = Ω(un), share size
3u = O(u), and robustness δ = nLε = O(n2)/2u. The scheme works as follows:

– (s1, . . . , sn) ← Share(msg). Encode msg ∈ F
d+1 using the Reed-Solomon code

by interpreting it as a degree d polynomial and evaluating it on n points
to get the Reed-Solomon codeword (ŝ1, . . . , ŝn) ∈ F

n. Choose random values
k1, . . . , kn ← F and define the shares si = (ŝi, ki,Hki

(msg)) ∈ F
3.

– msg′ ← Rec(s′
1, . . . , s

′
n). Parse s′

i = (ŝ′
i, k

′
i, y

′
i). Use list-decoding on the mod-

ified codeword (ŝ′
1, . . . , ŝ

′
n) ∈ F

n to recover a list of L = O(1) possible candi-
dates msg(1), . . . ,msg(L) ∈ F

d+1 for the message. Output the first value msg(j)

that agrees with the majority of the hashes:

|{i ∈ [n] : Hk′
i
(msg(j)) = y′

i}| ≥ t + 1.

Theorem 2. For any n = 2t+1 and any u ≥ log n, the above scheme is a t-out-
of-n, δ-robust distributed storage scheme for messages of length m = �n/8
u =
Ω(nu) with shares of length 3u = O(u) and robustness δ = O(n2)/2u.

The proof is given in the full version [BPRW15].
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4.2 Private Labeled MAC

As a tool in our construction of robust secret sharing schemes, we will use a new
notion of an information-theoretic message-authentication code (MAC) that has
additional privacy guarantees.

The message authentication code σ = MACkey(lab,msg, r) takes as input a
label lab, a message msg, and some additional randomness r. The randomness
is there to ensure privacy for the message msg even given key, σ.

Definition 6 (Private Labeled MAC). An (�, ε) private MAC is a family of
functions {MACkey : L × M × R → T }key∈K with key-space K, message space
M, label space L, randomness space R, and tag space T . It has the following
properties:

Authentication: For any � values (labi,msgi, ri, σi) ∈ L × M × R × T : i =
1, . . . , � such that the labels labi are distinct, and for any (lab′,msg′, r′, σ′) ∈
L × M × R × T such that (lab′,msg′, r′) 	∈ {(labi,msgi, ri)}i∈[�] we have:

Pr
key←K

[MACkey(lab′,msg′, r′) = σ′ | {MACkey(labi,msgi, ri) = σi}i∈[�]] ≤ ε.

This implies that even after seeing the authentication tags σi for � tuples
(labi,msgi, ri) with distinct labels labi, an adversary cannot come up with a
valid tag σ′ for any new tuple (lab′,msg′, r′).

Privacy Over Randomness: For any � distinct labels lab1, . . . , lab�, any keys
key1, . . . , key� ∈ K, and anymsg ∈ M, the � values σ1 = MACkey1(lab1,msg, r),
. . . , σ� = MACkey�

(lab�,msg, r) are uniformly random and independent in T
over the choice of r ← R.
This says that the tags σi do not reveal any information about the mes-
sage msg, or even about the labels labi and the keys keyi, as long as the
randomness r is unknown.

Privacy Over Keys: Let (labi,msgi, ri) ∈ L × M × R : i = 1, . . . , � be �
values such that the labels labi are distinct. Then the � values σ1 =
MACkey(lab1,msg1, r1), . . . , σ� = MACkey(lab�,msg�, r�) are uniformly ran-
dom and independent in T over a random key ← K.
This says that the tags σi do not reveal any information about the values
(labi,msgi, ri) as long as key is unknown.

Construction. Let F and F
′ be finite fields such that |F′| ≥ |L| and |F| ≥

|F′| · |L|. We assume that we can identify the elements of L as either a subset
of F

′ or F and we can also efficiently identify tuples in F
′ × L as a subset of F.

Let M = F
m, R = F

�, K = F
�+1 × (F′)�+1, T = F. Define MACkey(lab,msg, r) as

follows:

– Parse key = (key1, key2) where key1 ∈ (F′)�+1, key2 ∈ F
�+1.

– Compute keylab
1 := PEval(key1, lab), key

lab
2 := PEval(key2, lab) by identifying

lab ∈ L as an element of F
′ and F respectively.
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– Output σ := PEval( (r,msg) , (lab, keylab
1 ) )+keylab

2 . Here we interpret (r,msg)
∈ R×M = F

�+m as a vector of coefficients in F and we identify (lab, key1lab) ∈
L × F

′ as an element of F.

Theorem 3. The above construction is an (�, ε) private MAC, where ε = m+�
|F′| .

The proof is given in the full version [BPRW15].

4.3 Graph Identification

Here, we define an algorithmic problem called the graph identification problem.
This abstracts out the core algorithmic problem that we face in designing our
reconstruction algorithm.

Definition 7 (Graph Identification Challenge). A graph identification
challenge GenAdv(n, t, d) is a randomized process that outputs a directed graph
G = (V = [n], E), where each vertex v ∈ V has out-degree d, along with a label-
ing L : E → {good, bad}. The process is parameterized by an adversary Adv and
proceeds as follows.

Adversarial Components. The adversary Adv(n, t, d) does the following:
1. It partitions V = [n] into three disjoint sets H,A,P (honest, active and

passive) such that V = H ∪ A ∪ P and |A ∪ P | = t.
2. It chooses the set of edges EA∪P→V that originate from A∪P arbitrarily

subject to each v ∈ A ∪ P having out-degree d and no self-loops.
3. It chooses the labels L(e) arbitrarily for each edge e ∈ EA→(A∪P ) ∪

E(A∪P )→A.
Honest Components. The procedure Gen chooses the remaining edges and

labels as follows:
1. It chooses the edges EH→V that originate from H uniformly at random

subject to each vertex having out-degree d and no self-loops. In particu-
lar, for each v ∈ H it randomly selects d outgoing edges (without replace-
ment) to vertices in V \ {v}.

2. It sets L(e) := bad for all e ∈ EH→A ∪ EA→H .
3. It sets L(e) := good for all e ∈ E(H∪P )→(H∪P ).

Output. Output (G = (V,E), L,H,A, P ).

The graph identification challenge is intended to model the authentication
graph in our eventual robust secret sharing scheme where the labels will be
assigned by verifying MAC tags. It allows us to abstract out a problem about
graphs without needing to talk about MACs, secret shares, etc. We will need
to show that any adversary on our full robust secret sharing scheme can be
translated into an adversary in the graph identification challenge game above.

Note that, in the graph challenge game, we allow the adversary to choose the
outgoing edges for both active and passive parties. This might seem unnecessary
since the adversary in our eventual robust secret sharing scheme cannot modify
the outgoing edges from passive parties in the authentication graph. However,
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it can choose which parties are active and which are passive after seeing the
outgoing edges from all corrupted parties and therefore the adversary has some
(limited) control over the outgoing edges of passive parties. In the definition
of the graph challenge game, we therefore simply give the adversary complete
control over all such outgoing edges.

As our main result for this problem, we show that there is an efficient algo-
rithm that identifies the set H ∪ P given only the graph G and the labeling L.
Note that, for our application, we do not crucially need to identify all of H ∪ P ;
any subset of H ∪ P of size t + 1 would be sufficient to reconstruct the message
from the Shamir shares. However, this does not appear to make the task easier.

Theorem 4. There exists a polynomial time algorithm GraphID, called the graph
identification algorithm, that takes as input a directed graph G = (V = [n], E) a
labeling L : V → {good, bad} and outputs a set B ⊆ V , such that for any Adv,
we have:

Pr

[

B = H ∪ P :
(G, L, H, A, P ) ← GenAdv(n = 2t + 1, t, d),

B ← GraphID(G, L)

]

≥ 1 − 2−Ω(d/ log2 n−log n)

In Sect. 7 we give a simple inefficient algorithm for the graph identifica-
tion problem. Then, in Sect. 8, we prove Theorem 4 by providing an efficient
algorithm.

5 Construction of Robust Secret Sharing

In this section we construct our robust secret sharing scheme using the tools
outlined above. We analyze its security by translating an adversary on the scheme
into an adversary in the graph identification game.

5.1 The Construction

Let t, n = 2t + 1 be parameters that are given to us, and let M be a message
space.

Let d be a graph out-degree parameter and let GraphID be the graph identi-
fication algorithm from Theorem4 with success probability 1 − δgi where δgi =
2−Ω(d/ log2 n).

Let (Sharenr,Recnr) be a t-out-of-n non-robust secret sharing (e.g., Shamir
secret sharing) with message space M and share space Snr.

Let {MACkey : L×Mmac ×R → T }key∈K be an (�, εmac) private MAC with
label space L = [n]2 × {0, 1} and message space Mmac = Snr × [n]d × K, where
� = 3d.

Finally, let (Sharerds,Recrds) be a t-out-of-n robust distributed storage (no
privacy) with message space Mrds = T 2dn, share space Srds and with robustness
δrds.

Our robust secret sharing scheme (Share,Rec) is defined as follows.
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Share(msg). On input a message msg ∈ M, the sharing procedure proceeds as
follows:

S.1. Choose (s̃1, . . . , s̃n) ← Sharenr(msg) to be a non-robust secret sharing of
msg.

S.2. Choose a uniformly random directed graph G = ([n], E) with out-degree d,
in-degree at most 2d and no self-loops as follows:

(a) For each i ∈ [n] choose a random set Ei ⊆ [n] \ {i} of size |Ei| = d. Set

E := {(i, j) : i ∈ [n], j ∈ Ei}.

(b) Check if there is any vertex in G with in-degree >2d. If so, go back to
step (a)3.

S.3. For each i ∈ [n], sample a random MAC key keyi ← K and MAC random-
ness ri ← R.

For each j ∈ Ei define

σi→j := MACkeyi
((i, j, 0), (s̃j , Ej , keyj), rj),

σi←j := MACkeyj
((i, j, 1), (s̃i, Ei, keyi), ri).

where we treat (i, j, 0), (i, j, 1) ∈ L as a label, and we treat (s̃j , Ej , keyj) ∈
Mmac as a message.

S.4. For each i ∈ [n] define tagsi = {(σi→j , σi←j)}j∈Ei
∈ T 2d and define tags =

(tags1, . . . , tagsn) ∈ T 2nd. Choose (p1, . . . , pn) ← Sharerds(tags) using the
robust distributed storage scheme.

S.5. For i ∈ [n], define si = (s̃i, Ei, keyi, ri, pi) to be the share of party i. Output
(s1, . . . , sn).

Rec(s′
1, . . . , s

′
n). On input s′

1, . . . , s
′
n with s′

i = (s̃′
i, E

′
i, key

′
i, r

′
i, p

′
i) do the

following.

R.0. If there is a set of exactly t+1 values W = {i ∈ [n] : s′
i 	= ⊥} then output

Recnr((s̃′
i)i∈W ). Else proceed as follows.

R.1. Reconstruct tags′ = (tags′1, . . . , tags
′
n) = Recrds(p′

1, . . . , p
′
n). Parse tags′i =

{(σ′
i→j , σ

′
i←j)}j∈E′

i
.

R.2. Define a graph G′ = ([n], E′) by setting E′ := {(i, j) : i ∈ [n], j ∈ E′
i}.

R.3. Assign a label L(e) ∈ {good, bad} to each edge e = (i, j) ∈ E′ as follows. If
the following holds:

σ′
i→j = MACkey′

i
((i, j, 1), (s̃′

j , E
′
j , key

′
j), r

′
j) and

σ′
i←j = MACkey′

j
((i, j, 1), (s̃′

i, E
′
i, key

′
i), r

′
i)

then set L(e) := good, else set L(e) := bad.
R.4. Call the graph identification algorithm to compute B ← GraphID(G′, L).
R.5. Choose a subset B′ ⊆ B of size |B′| = t + 1 arbitrarily and output

Recnr((s̃′
i)i∈B′).

3 This happens with negligible probability. However, we include it in the description
of the scheme in order to get perfect rather than statistical privacy.
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5.2 Security Analysis

Theorem 5. The above scheme (Share,Rec) is a t-out-of-n δ-robust secret shar-
ing scheme for n = 2t + 1 with robustness δ = δrds + δgi + dnεmac + n2−d/3.

We prove Theorem 5 by separately proving that the scheme satisfies perfect
privacy, perfect threshold reconstruction with erasures and adaptive δ-robustness
in the following three lemmas.

Lemma 1. The scheme (Share,Rec) satisfies perfect privacy.

Proof. Let I ⊆ [n] be of size |I| = t and let msg,msg′ ∈ M be any two values.
We define a sequence of hybrids as follows:

Hybrid 0: This is Share(msg)I = (si)i∈I . Each si = (s̃i, Ei, keyi, ri, pi).
Hybrid 1: In this hybrid, we change the sharing procedure to simply choose all

tags σi→j and σj←i for any j 	∈ I uniformly and independently at random.
This is identically distributed by the “privacy over randomness” property of
the MAC. In particular, we rely on the fact that the adversary does not see
rj and that there are at most � = 3d tags of the form σi→j and σj←i for any
j 	∈ I corresponding to the total degree of vertex j. These are the only tags
that rely on the randomness rj and they are all created with distinct labels.

Hybrid 2: In this hybrid, we choose (s̃1, . . . , s̃n) ← Sharenr(msg′).
This is identically distributed by the perfect privacy of the non-robust secret
sharing scheme. Note that in this hybrid, the shares si : i ∈ I observed by
the adversary do not contain any information about s̃′

j : j 	∈ I.
Hybrid 3:s This is Share(msg′)I = (si)i∈I . Each si = (s̃i, Ei, keyi, ri, pi).

This is identically distributed by the “privacy over randomness” property of
the MAC, using same argument as going from Hybrid 0 to 1.

Lemma 2. The scheme (Share,Rec) satisfies perfect threshold reconstruction
with erasures.

Proof. This follows directly from the fact that the non-robust scheme (Sharenr,
Recnr) satisfies perfect threshold reconstruction with erasures and therefore step
R.0 of reconstruction is guaranteed to output the correct answer when there are
exactly t erasures.

Lemma 3. The scheme (Share,Rec) is δ-robust for δ = δrds + δgi + dnεmac +
n2−d/3.

Proof Overview. Before giving the formal proof of the lemma, we give a sim-
plified proof intuition. To keep it simple, let’s consider non-adaptive robustness
experiment where the adversary has to choose the set I ⊆ [n], |I| = t of parties
to corrupt at the very beginning of the game (in the full proof, we handle adap-
tive security). Let si = (s̃i, Ei, keyi, ri, pi) be the shares created by the sharing
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procedure and let s′
i = (s̃′

i, E
′
i, key

′
i, r

′
i, p

′
i) be the modified shares submitted by

the adversary (for i 	∈ I, we have s′
i = si). Let us define the set of actively

modified shares as:

A = {i ∈ I : (s̃′
i, E

′
i, key

′
i, r

′
i) 	= (s̃i, Ei, keyi, ri)}.

Define H = [n]\I to be the set of honest shares, and P = I \A to be the passive
shares.

To prove robustness, we show that the choice of H,A,P and the labeling L
created by the reconstruction procedure follow the same distribution as in the
graph identification problem GenAdv′

(n, t, d) with some adversary Adv′. There-
fore the graph identification procedure outputs B = H ∪ P which means that
reconstruction outputs the correct message. Intuitively, we rely on the fact that:
(1) by the privacy properties of the MAC the adversary does not learn anything
about outgoing edges from honest parties and therefore we can think of them as
being chosen randomly after the adversarial corruption stage, (2) by the authen-
tication property of the MAC the edges between honest and active parties (in
either direction) are labeled bad.

More concretely, we define a sequence of “hybrid” distributions to capture
the above intuition as follows:

Hybrid 0. This is the non-adaptive version of the robustness game Exp
(msg,Adv) with a message msg and an adversary Adv as in Definition 3.

Hybrid 1. During reconstruction, instead of recovering tags′ = Recrds(p′
1, . . . , p

′
n)

we just set tags′ = tags to be the correct value chosen by the sharing proce-
dure. This is indistinguishable by the security of the robust-distributed storage
scheme.

Hybrid 2. During the sharing procedure, we can change all of the tags σi→j , σj←i

with j ∈ H to uniformly random values. This is identically distributed by the
“privacy over randomness” property of the MAC since the adversary does
not see rj for any such j ∈ H, and there are at most � = 3d such tags cor-
responding to the total degree of the vertex j. In particular, this means that
such tags do not reveal any (additional) information to the adversary about
Ej , keyj for j ∈ H.

Hybrid 3. During the reconstruction process, when the labeling L is created, we
automatically set L(e) = bad for any edge e = (i, j) or e = (j, i) in E′ such
that i ∈ H, j ∈ A (i.e., one end-point honest and the other active). The only
time this introduces a change is if the adversary manages to forge a MAC tag
under some key keyi for i ∈ H. Each such key was used to create at most � =
3d tags with distinct labels and therefore, we can rely on the authentication
security of the MAC to argue that this change is indistinguishable. Note that,
by the definition of the labeling, we are also ensured that L(e) = good for
any edge (i, j) where i, j ∈ H ∪ P .

Hybrid 4. During the sharing procedure, we can change all of the tags σi→j , σj←i

with i ∈ H to uniformly random values. This is identically distributed by the
“privacy over keys” property of the MAC since the adversary does not see
keyi for any such i ∈ H, and there are at most � = 3d such tags corresponding
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to the total degree of the vertex i. In particular, this means that such tags
do not reveal anything about the outgoing edges Ei for i ∈ H and therefore
the adversary gets no information about these edges throughout the game.

Hybrid 5. When we choose the graph G = ([n], E) during the sharing procedure,
we no longer require that every vertex has in-degree ≤ 2d. Instead, we just
choose each set Ei ⊆ [n] \ {i}, |Ei| = d uniformly at random. Since the
expected in-degree of every vertex is d, this change is indistinguishable by a
simple Chernoff bound.

Hybrid 6. During reconstruction, instead of computing B ← GraphID(G′, L)
we set B = H ∪P . We notice that, in the previous hybrid, the distribution of
G′, L,H,A, P is exactly that of the graph reconstruction game GenAdv′

(n, t, d)
with some adversary Adv′. In particular, the out-going edges from the honest
set H are chosen uniformly at random and the adversary does not see any
information about them throughout the game. Furthermore, the labeling
satisfies the properties of the graph identification game. Therefore, the above
modification is indistinguishable by the correctness of the graph identification
algorithm.

In the last hybrid, the last step of the reconstruction procedure runs msg′ =
Recnr((s̃′

i)i∈B′) where B′ ⊆ H ∪ P is of size |B′| = t + 1. Therefore and s̃′
i = s̃i

for i ∈ B′ and, by the Perfect Reconstruction with Erasures property of the
non-robust secret sharing scheme, we have msg′ = msg. For a formal proof, see
the full version [BPRW15].

5.3 Parameters of Construction

Let M = {0, 1}m and t, n = 2t + 1 be parameters. Furthermore, let λ be a
parameter which we will relate to the security parameter k.

We choose the out-degree parameter d = λ log3 n, which then gives δgi =
2−Ω(d/ log2 n−log n) = 2−Ω(λ log n).

We instantiate the non-robust secret scheme (Sharenr,Recnr) using t-out-
of-n Shamir secret sharing where the share space Snr is a binary field of size
2max{m,�log n	+1} = 2m+O(log n).

We instantiate the MAC using the construction from Sect. 4.2. We choose the
field F

′ to be a binary field of size |F′| = 2
5 log n+log m+λ� which is sufficiently
large to encode a label in L = [n]2 × {0, 1}. We choose the field F to be of size
|F| = |F′|22
log n�+1 which is sufficiently large to encode an element of F

′ × L.
We set � = 3d = O(λ log3 n). This means that the keys and randomness have
length log |K|, log |R| = O(d log |F|) = O(λ log3 n(λ + log n + log m)) and the
tags have length log |T | = log |F| = O(λ + log n + log m). We set the message
space of the MAC to be Mmac = F

mmac which needs to be sufficiently large
to encode the Shamir share, edges, and a key and therefore we set mmac =
�(max{m, �log n
 + 1} + log |K| + d log n)/ log |F|� = O(m + λ log3 n). This gives
security εmac = mmac+�

|F′| ≤ 2log m+log λ+3 log n+O(1)−log |F′| = 2−Ω(λ)−2 log n.
Finally, we instantiate the robust distributed storage scheme using the con-

struction from Sect. 4.1. We need to set the message space Mrds = T 2dn which
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means that the messages are of length mrds = 2dn log |T | = O(nλ log3 n(λ +
log n + log m)). We set u = �8mrds/n� = O(λ log3 n(λ + log n + log m)). This
results in a robust-distributed storage share length 3u = O(λ log3 n(λ + log n +
log m)) and we get security δrds = O(n2)/2u ≤ 2−Ω(λ).

With the above we get security

δ ≤ δrds + δgi + dnεmac + n2−d/3 = 2−Ω(λ) (5.1)

and total share length log |Snr| + d�log n� + log |K| + log |R| + 3u which is

m + O(λ log3 n(λ + log n + log m)) (5.2)

By choosing a sufficiently large λ = O(k) we get security δ ≤ 2−k and share size

m + O(k2polylog(n + m)) = m + ˜O(k2).

6 Improved Parameters via Parallel Repetition

In the previous section, we saw how to achieve robust secret sharing with security
δ = 2−k at the cost of having a share size m + ˜O(k2). We now show how
to improve this to m + ˜O(k). We do so by instantiating the scheme from the
previous section with smaller parameters that only provide weak robustness
δ = 1

4 and share size m + ˜O(1). We then use parallel repetition of q = O(k)
independent copies of this weak scheme. The q copies of the recovery procedure
recover q candidate messages, and we simply output the majority vote. A naive
implementation of this idea, using q completely independent copies of the scheme,
would result in share size O(km) + ˜O(k) sine the (non-robust) Shamir share of
length m is repeated q times. However, we notice that we can reuse the same
Shamir shares across all q copies. This is because the robustness security held
even for a worst-case choice of such shares, only over the randomness of the other
components. Therefore, we only get a total share size of m + ˜O(k).

Construction. In more detail, let (Share,Rec) be our robust secret sharing
scheme construction from above. For some random coins coinsnr of the non-
robust (Shamir) secret sharing scheme, we let (s1, . . . , sn) ← Share(msg; coinsnr)
denote the execution of the sharing procedure Share(msg) where step S.1 uses
the fixed randomness coinsnr to select the non-robust shares (s̃1, . . . , s̃n) ←
Sharenr(msg; coinsnr) but steps S.2 – S.5 use fresh randomness to select the
graph G, the keys keyi and the randomness ri. In particular, Share(msg; coinsnr)
remains a randomized algorithm.

We define the q-wise parallel repetition scheme (Share′,Rec′) as follows:

Share′(msg): The sharing procedure proceeds as follows
– Choose uniformly random coinsnr for the non-robust sharing procedure

Sharenr.
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– For j ∈ [q]: sample (sj
1, . . . , s

j
n) ← Share(msg; coinsnr) where sj

i equals
(s̃i, E

j
i , keyj

i , r
j
i , p

j
i ). Note that the non-robust (Shamir) shares s̃i are the

same in all q iterations but the other components are selected with fresh
randomness in each iteration.

– For i ∈ [n], define the party i share as si = (s̃i, {(Ej
i , keyj

i , r
j
i , p

j
i )}

q
j=1)

and output (s1, . . . , sn).
Rec′(s1, . . . , sn): The reconstruction procedure proceeds as follows

– For i ∈ [n], parse si = (s̃i, {(Ej
i , keyj

i , r
j
i , p

j
i )}

q
j=1).

For j ∈ [q], define sj
i := (s̃i, E

j
i , keyj

i , r
j
i , p

j
i ).

– For j ∈ [q], let msgj := Rec(sj
1, . . . , s

j
n). If there is a majority value msg

such that |{j ∈ [q] : msg = msgj}| > q/2 then output msg, else output
⊥.

Analysis. We prove that the parallel repetition scheme satisfies robustness.
Assume that the parameters of (Share,Rec) are chosen such that the scheme is
δ-robust.

We first claim that the scheme (Share,Rec) remains robust even if we fix
the random coin coinsnr for the non-robust secret sharing scheme (in step S.1
of the Share function) to some worst-case value but use fresh randomness in
all the other steps. The fact that coinsnr are random was essential for privacy
but it does not affect robustness. In particular, let us consider the robust-
ness experiment Exp(msg,Adv) for the scheme (Share,Rec) and let us define
Exp(msg,Adv; coinsnr) to be the experiment when using some fixed choice of
coinsnr but fresh randomness everywhere else. We can strengthen the statement
of Lemma 3 which proves the robustness of (Share,Rec) to show the following.

Lemma 4 (Strengthening of Lemma 3). The scheme (Share,Rec) remains
robust even if coinsnr is fixed to a worst-case value. In particular, for any msg ∈
M, any choice of coinsnr and for all adversaries Adv we have

Pr[Exp(msg,Adv; coinsnr) = 1] ≤ δ.

The proof of the above lemma follows the lines of that of Lemma 3. See the full
version [BPRW15] for more details.

Theorem 6. Assume that the parameters of (Share,Rec) are chosen such that
the scheme is δ-robust for δ ≤ 1

4 . Then the q-wise parallel repetition scheme
(Share′,Rec′) is a δ′-robust secret sharing scheme with δ′ = e− 3

128 q.

The proof of the above theorem is given in the full version [BPRW15].

Parameters. We choose the parameters of the underlying scheme (Share,Rec) to
have security δ = 1

4 . This corresponds to choosing a sufficiently large λ = O(1)
and results in a share size of m + O(log4 n + log3 n log m) bits (Eq. 5.2). By
choosing a sufficiently large q = O(k) and setting (Share′,Rec′) to be the q-wise
parallel repetition scheme from above, we get a scheme with robustness δ′ = 2−k

and share size

m + O(k(log4 n + log3 n log m)) = m + ˜O(k).
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We note that part of the reason for the large poly-logarithmic factors comes from
the parameters of our efficient graph identification algorithm which requires
us to set the graph degree to d = O(log3 n). If we had instead simply relied
on our inefficient graph identification algorithm (Corollary 1) we could set d =
O(log n) and would get an inefficient robust secret sharing scheme with share size
m + O(k(log2 n + log n log m)). It remains an interesting challenge to optimize
the poly-logarithmic factors.

7 Inefficient Graph Identification
via Self-Consistency

We now return to the graph identification problem defined in Sect. 4.3. We begin
by showing a simple inefficient algorithm for the graph identification problem.
In particular, we show that with overwhelming probability the set H ∪ P is the
unique maximum self-consistent set of vertices, meaning that there are no bad
edges between vertices in the set.

Definition 8 (Self-Consistency). Let G = (V,E) be a directed graph and let
L : V → {good, bad} be a labeling. We say that a subset of vertices S ⊆ V is
self-consistent if for all e ∈ ES→S we have L(e) = good. A subset S ⊆ V is max
self-consistent if |S| ≥ |S′| for every self-consistent S′ ⊆ V .

Note that, in general, there may not be a unique max self-consistent set in
G. However, the next lemma shows that if the components are sampled as in
the graph identification challenge game GenAdv(n, t, d), then with overwhelming
probability there is a unique max self-consistent set in G and it is H ∪ P .

Lemma 5. For any Adv, and for the distribution (G,L,H,A, P ) ← GenAdv

(n, t, d), the set H ∪ P is the unique max self-consistent set in G with proba-
bility at least 1 − 2−Ω(d−log n).

Proof. We know that the set H∪P is self-consistent by the definition of the graph
identification challenge. Assume that it is not the unique max self-consistent set
in G, which we denote by the event BAD. Then there exists some set S 	= H ∪P
of size |S| = |H ∪ P | such that S is self consistent. This means that S must
contain at least q ≥ 1 elements from A and at least t + 1 − q elements from
H. In other words there exists some value q ∈ {1, . . . , t} and some subsets
A′ ⊆ S ∩ A ⊆ A ⊆ A ∪ P of size |A′| = q and H ′ ⊆ S ∩ H ⊆ H of size t + 1 − q
such that EH′→A′ = ∅. This is because, by the definition of the graph challenge
game, every edge in EH′→A′ ⊆ EH→A is labeled bad and so it must be empty if
S is consistent. For any fixed q,A′,H ′ as above, if we take the probability over
the random choice of d outgoing edges for each v ∈ H ′, we get:

Pr[EH′→A′ = ∅] =

(

(

n−1−q
d

)

(

n−1
d

)

)t+1−q

≤
(

1 − q

n − 1

)d(t+1−q)

≤ e− d(t+1−q)q
n .
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By taking a union bound, we get

Pr[BAD] ≤ Pr

⎡

⎣∃
⎧

⎨

⎩

q ∈ {1, . . . , t}
A′ ⊆ A ∪ P : |A|′ = q

H′ ⊆ H, |H′| = t + 1 − q

⎫

⎬

⎭

: EH′→A′ = ∅

⎤

⎦

≤
t
∑

q=1

( t + 1

t + 1 − q

)

·
(t

q

)

· e− d(t+1−q)q
n ≤

t
∑

q=1

( t + 1

t + 1 − q

)

·
(t + 1

q

)

· e− d(t+1−q)q
n

≤ 2

(t+1)/2
∑

q=1

(t + 1

q

)2

· e− d(t+1−q)q
n (symmetry between q and t + 1 − q)

≤ 2

(t+1)/2
∑

q=1

(t + 1)2q · e− d(t+1−q)q
n

≤ 2

(t+1)/2
∑

q=1

e
q
(
2 loge(t+1)− d(t+1−q)

n

)

≤ 2

(t+1)/2
∑

q=1

e
q
(
2 loge(t+1)− (t+1)d

2n

)
(since q ≤ (t + 1)/2)

≤ 2

(t+1)/2
∑

q=1

eq(2 loge(t+1)−d/4) (since t + 1 > n/2)

≤ (t + 1)e(2 loge(t+1)−d/4) ≤ 2−Ω(d−log n)

As a corollary of the above lemma, we get an inefficient algorithm for the
graph identification problem, that simply tries every subset of vertices S ⊆ V
and outputs the max self-consistent set.

Corollary 1. There exists an inefficient algorithm GraphIDineff such that for any
Adv:

Pr

[

B = H ∪ P :
(G, L, H, A, P ) ← GenAdv(n = 2t + 1, t, d),

B ← GraphIDineff(G, L)

]

≥ 1 − 2−Ω(d−log n)

Remark. Note that for the analysis of the inefficient graph reconstruction pro-
cedure in Lemma 5 and Corollary 1, we did not rely on the fact that edges from
active to honest parties e = (i, j) : i ∈ A, j ∈ H are labeled bad. Therefore,
if we only wanted an inefficient graph identification procedure, we could relax
the requirements in the graph challenge game and allow the adversary to choose
arbitrary labels for such edges e. This would also allow us to simplify our robust
secret sharing scheme and omit the “reverse-authentication” tags σi←j .

8 Efficient Graph Identification

In this section, we prove Theorem 4 and given an efficient graph identifica-
tion algorithm. We begin with an intuitive overview before giving the technical
details.
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8.1 Overview and Intuition

A Simpler Problem. We will reduce the problem of identifying the full set
H ∪ P to the simpler problem of only identifying a small set Y ⊆ H ∪ P such
that Y ∩ H is of size at least εn for some ε = 1/Θ(log n). If we are given such a
Y , we can use it to identify a larger set S defined as all vertices in [n] with no
bad incoming edge originating in Y . We observe that every vertex in H ∪ P is
included in S, as there are no bad edges from H∪P to H∪P . On the other hand,
since Y ∩ H is big enough, it is unlikely that a vertex in A could be included
in S, as every vertex in A likely has an incoming edge from |Y ∩ H| that is
labeled as bad. Therefore, with high probability S = H ∪ P . There is a bit of
subtlety involved in applying this intuition, as it is potentially complicated by
dependencies between the formation of the set Y and the distribution of the
edges from Y to A. We avoid dealing with such dependencies by “splitting” the
graph into multiple independent graphs and building Y from one of these graphs
while constructing S in another.

Now the task becomes obtaining such a set Y in the first place. We consider
two cases depending on whether the set P is small (|P | ≤ εn) or large (|P | > εn).

Small P. In this case, there is only a small number of good edges crossing
between H and A ∪ P (only edges between H and P ). Therefore there exists a
bisection of the graph into sets H and A∪P of size t+1 and t respectively, where
the number of good edges crossing this bisection is approximately εdn. By using
an efficient O(log n)-approximation algorithm for the graph bisection problem
(on the good edges in G) we can get a bisection X0,X1 with very few edges
crossing between X0 and X1. This means that, with overwhelming probability,
one of X0 or X1 contains the vast majority of the honest vertices, say !.9|H|, as
otherwise if the honest vertices were split more evenly, we’d expect more edges
crossing this partition. We can then refine such an X to get a suitable smaller
subset Y which is fully contained in H ∪P , by taking all vertices that don’t have
too many incoming bad edges from X.

Large P. In this case, the intuition is that every vertex in A is likely to have
at least d/2 in-coming bad edges (from the honest vertices), but honest/passive
vertices will only have d(1/2 − ε) in-coming bad edges on average from the
active vertices. So we can differentiate the two cases just by counting. This isn’t
precise since many active vertices can point bad edges at a single honest vertex
to make it “look bad”. However, intuitively, this cannot happen too often.

To make this work, we first start with the full set of vertices [n] and disqualify
any vertices that have more than d/2 out-going bad edges (all honest vertices
remain since they only have d(1/2−ε) outgoing bad edges on expectation). This
potentially eliminates some active vertices. Let’s call the remaining smaller set
of vertices X. We then further refine X into a subset Y of vertices that do not
have too many incoming bad edges (more than d(1/2 − ε/2)) originating in X.
The active vertices are likely to all get kicked out in this step since we expect d/2
incoming bad edges from honest vertices. On the other hand, we claim that not
too many honest vertices get kicked out. The adversary has at most (1/2−ε)dn/2
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out-going bad edges in total under his control in the set X ∩A and has to spend
d(1/2 − ε/2) edges to kick out any honest party. Therefore there is a set of at
least εn/2 of the honest parties that must survive. This means that Y ⊆ H ∪ P
and that Y contains Θ(n/ log n) honest parties as we wanted.

Unknown P. Of course, our reconstruction procedure will not know a priori
whether P is relatively large or small or, in the case that P is small, which one
of the bisection sets X1 or X2 to use. So it simply tries all of these possibilities and
obtains three candidate sets Y0, Y1, Y2, one of which has the properties we need
but we do not know which one. To address this, we construct the corresponding
sets Si for each Yi as described above, and we know that one of these sets Si is
H ∪ P . From the previous section (Lemma 5), we also know that H ∪ P is the
unique max self-consistent set in G. Therefore, we can simply output the largest
one of the sets S0, S1, S2 which is self-consistent in G and we are guaranteed
that this is H ∪ P .

8.2 Tool: Graph Splitting

As mentioned above, we will need to split the graph G into three sub-graphs
G1, G2, G3 such that the outgoing edges from honest parties are distributed
randomly and independently in G1, G2, G3. Different parts of our algorithm will
use different sub-graphs and it will be essential that we maintain independence
between them for our analysis.

In particular, we describe a procedure (G1, G2, G3) ← GraphSplit(G) that
takes as input a directed graph G = (V = [n], E) produced by GenAdv(n, t, d)
and outputs three directed graphs (Gi = (V,Ei))i=1,2,3 such that Ei ⊂ E and
the out-degree of each vertex in each graph is d′ := �d/3
. Furthermore, we
require that the three sets Ei

H→V are random and independent subject to each
vertex having out-degree d′ and no self-loops. Note that forming the sets Ei by
simply partitioning the outgoing edges of each vertex into three sets is not a
good solution, since in that case the sets will always be disjoint and therefore
not random and independent. On the other hand, sub-sampling three random
subsets of d′ outgoing edges from the set of d outgoing edges in E is also not a
good solution since in the case the overlap between the sets is likely to be higher
than it would be if we sampled random subsets of d′ outgoing edges from all
possible edges.

Our algorithm proceeds as follows.

(G1, G2, G3) ← GraphSplit(G): On input a directed graph G = (V,E) with
out-degree d.
1. Define d′ = �d/3
.
2. For each vertex, for each v ∈ V :

(a) Define Nv := {w ∈ V | (v, w) ∈ E}, the set of neighbors of v in G
(b) Sample three uniform and independent sets {N i

v}i=1,2,3 with N i
v ⊆

V \ {v} and |N i
v| = d′.
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(c) Sample a uniformly random injective function πv :
⋃

i=1,2,3

N i
v → Nv.

(d) Define N̂ i
v = πv(N i

v) ⊆ Nv.
3. Define Ei := {(v, w) ∈ E | w ∈ N̂ i

v} and output Gi = (V,Ei) for
i = 1, 2, 3.

Intuitively, for each vertex v, we first sample the three sets of outgoing neigh-
bors N i

v independently at random from all of V \ {v}, but then we apply an
injective function πv(N i

v) to map them into a the original neighbors Nv. The
last step ensures that Ei ⊆ E.

Lemma 6. Let (G = (V,E), L,H,A, P ) ← GenAdv(n, t, d) for some adversary
Adv. Let (Gi = (V,Ei))i=1,2,3 ← GraphSplit(G). Then the joint distribution of
(Ei

H→V )i=1,2,3 is identical to choosing each set Ei
H→V randomly and indepen-

dently subject to each vertex having out-degree d′ and no self-loops; i.e., for each
i = 1, 2, 3 form the set Ei

H→V by taking each v ∈ H and choosing a set of d′

outgoing edges uniformly at random (without replacement) to vertices in V \{v′}.

Proof. For each v ∈ H, define c{1,2} = |N1
v ∩ N2

v |, c{1,3} = |N1
v ∩ N3

v |, c{2,3} =
|N2

v ∩N3
v | and c{1,2,3} = |N1

v ∩N2
v ∩N3

v |. We call these numbers the intersection
pattern of {N i

v}i=1,2,3 and denote it by C. Analogously, we define the intersection
pattern of {N̂ i

v}i=1,2,3 and denote it by Ĉ.
It’s easy to see that, for any fixed choice of {N i

v}i=1,2,3 with intersection
pattern C, the sets {N̂ i

v}i=1,2,3 are uniformly random and independent subject
to their intersection pattern being Ĉ = C. This follows from the random choice
of Nv and the injective function πv.

Furthermore, since the distribution of the intersection pattern Ĉ = C is
the same for {N i

v}i=1,2,3 and for {N̂ i
v}i=1,2,3, the distribution of {N̂ i

v}i=1,2,3 is
identical to that of {N i

v}i=1,2,3. In other words, for each v ∈ H the three sets of
outgoing neighbors of v in G1, G2, G3 are random and independent as we wanted
to show.

8.3 The Graph Identification Algorithm

We now define the efficient graph identification algorithm B ← GraphID(G,L).

Usage. Our procedure GraphID(G,L) first runs an initialization phase Initial-
ize , and then runs two procedures Small P and Large P sequentially. It
uses the data generated in these two procedures to then run the output phase
Output.

Initialize.
1. Let b be a constant such that there exists a polynomial-time b log n-

approximate graph bisection algorithm Bisect, such as the one provided
in [Räc08]. Let c = 800

9 b, and let ε = 1/(c · log(n)).
2. Run (G1, G2, G3) ← GraphSplit(G) as defined in Sect. 8.2. This produces

three graphs Gi = (V,Ei) such that Ei ⊆ E and the out-degree of each
vertex in Gi is d′ = �d/3
.

Small P .
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1. Run (X0,X1) ← Bisect(G∗), where G∗ = (V,E∗) is the undirected graph
induced by the good edges of G1:

E∗ =
{

{i, j} :
(e = (i, j) ∈ E1 and L(e) = good) or
(e = (j, i) ∈ E1 and L(e) = good)

}

2. For i = 0, 1: contract Xi to a set of candidate good vertices Yi that have
fewer than 0.4d′ incoming bad edges in the graph G2.

Yi :=
{

v ∈ Xi :
∣

∣

∣{e ∈ E2
Xi→{v} : L(e) = bad}

∣

∣

∣ < 0.4d′
}

.

Large P .
1. Define a set of candidate legal vertices X2 as the set of vertices having

fewer than d′/2 outgoing bad edges in G1.

X2 :=
{

v ∈ V :
∣

∣

∣{e ∈ E1
{v}→V : L(e) = bad}

∣

∣

∣ < d′/2
}

.

2. Contract X2 to a set of candidate good vertices Y2, defined as the set of
vertices in X2 having fewer than d′ (1/2 − ε/2) incoming bad edges from
legal vertices in the graph G1.

Y2 :=
{

v ∈ X2 :
∣

∣

∣{e ∈ E1
X2→{v} : L(e) = bad}

∣

∣

∣ < d′ (1/2 − ε/2)
}

.

Output. This subprocedure takes as input the sets Y0, Y1 (generated by Small
P ), and Y2 (generated by Large P ) and outputs a single set B, according
to the following algorithm.
1. For i = 0, 1, 2: define Si as the set of vertices that only have incoming

good edges from Yi in G3. Formally,

Si :=
{

v ∈ V : ∀e ∈ E3
Yi→v L(e) = good

}

2. For i = 0, 1, 2: if L(e) = good for all e ∈ ESi→Si
, define Bi := Si;

otherwise, define Bi = ∅. This ensures that each Bi is self-consistent
(Definition 8) in G.

3. Output a set B defined as any of the largest sets among B0, B1, B2.

8.4 Analysis of Correctness – Overview

In this section, we give an intuition for why the algorithm GraphID outlined
above satisfies Theorem 4.

We first fix an arbitrary adversary Adv in the graph challenge game. We
consider the distribution induced by running the randomized processes (G,L,H,
A, P ) ← GenAdv(n = 2t+1, t, d) and B ← GraphID(G,L). Note that without loss
of generality we can assume Adv is deterministic and therefore the sets H,A,P
are fixed. The only randomness in experiment consists of the choice of edges
EH→V in the execution of GenAdv(n = 2t + 1, t, d) and the randomness of the
graph splitting procedure (G1, G2, G3) ← GraphSplit(G) during the execution of



84 A. Bishop et al.

GraphID(G,L). By the property of graph splitting (Lemma6) we can think of this
as choosing three independent sets (Ei

H→V )i=1,2,3. This induces a distribution on
the sets Xi, Yi, Si, Bi and B defined during the course of the GraphID algorithm
and we analyze the probability of various events over this distribution.

We define a sufficient event :

O := “there exists i ∈ {0, 1, 2} such that |Yi ∩ H| ≥ ε · n/2 and Yi ⊆ H ∪ P”

In the full version [BPRW15], we prove the following technical lemmas that
allow us to prove Theorem 4.

Lemma 7. The conditional probability of B = H ∪ P , given the occurrence of
event O, is 1 − 2−Ω(d/ log n).

Lemma 8. If |P | < ε · n, then the probability that O occurs is at least 1 −
2−Ω(d/ log n).

Lemma 9. If |P | ≥ ε · n, then the probability that O occurs is at least 1 −
2−Ω(d/ log2 n−log n).

In Lemma 7, the probability is over the random edges E3
H→V in G3, while

in Lemmas 8 and 9, the probability is over the random edges Ei
H→V in Gi for

i = 1, 2. Therefore, conditioning on the event O in Lemma 7 does not effect the
probability distribution.

|P | ≤ ε · n |P | > ε · n

O

B = H ∪ P

Fig. 1. Structure of our analysis: arrows denote logical implications (happening with
high probability).

Our analysis is summarized in Fig. 1. We now complete the proof of
Theorem 4.

Proof of Theorem 4. By Lemmas 8 and 9, we obtain that the event O occurs
with probability at least 1− 2−Ω(d/ log2 n−log n). Putting together with Lemma 7,
we obtain that the probability that the set B returned by the algorithm equals
H ∪ P is at least 1 − 2−Ω(d/ log2 n−log n) completing the proof of the theorem.
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9 Conclusion

We constructed an efficient robust secret sharing scheme for the maximal corrup-
tion setting with n = 2t+1 parties with nearly optimal share size of m+ ˜O(k) bits,
where m is the length of the message and 2−k is the failure probability of the
reconstruction procedure with adversarial shares.

One open question would be to optimize the poly-logarithmic terms in our
construction. It appears to be an interesting question to attempt to go all the
way down to m + O(k) or perhaps even just m + k bits for the share size, or
to prove a lower bound that (poly)logarithmic factors in n,m are necessary. We
leave this as a challenge for future work.
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