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Abstract. Many MAC (Message Authentication Code) algorithms have
security bounds which degrade linearly with the message length. Often
there are attacks that confirm the linear dependence on the message
length, yet PMAC has remained without attacks. Our results show that
PMAC’s message length dependence in security bounds is non-trivial.
We start by studying a generalization of PMAC in order to focus on
PMAC’s basic structure. By abstracting away details, we are able to
show that there are two possibilities: either there are infinitely many
instantiations of generic PMAC with security bounds independent of the
message length, or finding an attack against generic PMAC which estab-
lishes message length dependence is computationally hard. The latter
statement relies on a conjecture on the difficulty of finding subsets of a
finite field summing to zero or satisfying a binary quadratic form. Using
the insights gained from studying PMAC’s basic structure, we then shift
our attention to the original instantiation of PMAC, namely, with Gray
codes. Despite the initial results on generic PMAC, we show that PMAC
with Gray codes is one of the more insecure instantiations of PMAC, by
illustrating an attack which roughly establishes a linear dependence on
the message length.

Keywords: Unforgeability · Integrity · Verification · Birthday bound ·
Tag · PMAC · Message length

1 Introduction

When searching for optimal cryptographic schemes, security bounds provide an
important tool for selecting the right parameters. Security bounds, as formalized
by Bellare et al. [1], capture the concept of explicitly measuring the effect of an
adversary’s resources on its success probability in breaking the scheme. They
enable one to determine how intensively a scheme can be used in a session.
Therefore, provably reducing the impact of an adversary’s resources from, say, a
quadratic to a linear term, can mean an order of magnitude increase in a scheme’s
lifetime. Conversely, finding attacks which confirm an adversary’s success rate,
relative to its allotted resources, prove claims of security bound optimality.
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MAC algorithms provide a good example of schemes which have been studied
extensively to determine optimal bounds. A MAC’s longevity is defined as the
number of times the MAC can be used under a single key: it can be measured as
a function of the number of tagging queries, q, and the largest message length,
�, used before a first forgery attempt is successful. The impact of an adversary’s
resources, q and �, on its success probability in breaking a MAC is then described
via an upper bound of the form f(q, �) · ε, where f is a function, often a polyno-
mial, and ε is a quantity dependent on the MAC’s parameters. The maximum
number of queries qmax with length �max one can make under a key is computed
by determining when f(qmax, �max) · ε is less than some threshold success proba-
bility. For example, if one is comfortable with adversaries which have a one in a
million chance of breaking the scheme, but no more, then one would determine
qmax and �max via

f(qmax, �max) · ε ≤ 10−6 . (1)

Given that qmax and �max depend only on f , it becomes important to find the f
which establishes the tightest upper bound on the success probability.

The optimality of f depends on the environment in which the MAC oper-
ates, or in other words, the assumptions made on the MAC. For instance, stateful
MACs, such as the Wegman-Carter construction [21], can achieve bounds inde-
pendent of q and �. In this case, an adversary’s success remains negligible regard-
less of q and �, as long as the construction receives nonces, that is, additional
unique input. Therefore, determining qmax and �max for Wegman-Carter MACs
amounts to solving ε � 1, which is true under the assumption that nonces are
unique. Similarly, XOR MAC [3] with nonces achieves a security upper bound
of ε = 1/2τ , with τ the tag length in bits, which is the optimal bound for any
MAC. Randomized, but stateless MACs can achieve bounds similar to stateful
MACs, as shown by Minematsu [14].

In contrast, deterministic and stateless MACs necessarily have a lower bound
of q2/2n, where n is the inner state size, due to a generic attack by Preneel and
van Oorschot [18]. This means that for any f ,

f(q, �) · ε ≥ q2

2n
, (2)

hence any deterministic, stateless MAC must use fewer than 2n/2 tagging queries
per key.

Given this lower limit on f , one would perhaps expect to find schemes for
which the proven upper bound is q2/2n. Yet many deterministic, stateless MACs
have upper bounds including an �-factor. Block cipher based MACs, such as
CBC-MAC [4], OMAC [12], and PMAC [7], were originally proven with an upper
bound on the order of q2�2/2n, growing quadratically as a function of �. Much
effort has been placed in improving the bounds to a linear dependence on �,
resulting in bounds of the form q2�/2n [5,11,15,16].

For certain deterministic, stateless schemes the dependence on � has been
proven to be necessary. Dodis and Pietrzak [9] point out that this is the case
for polynomial based MACs, and try to avoid the dependence by introducing
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randomness. Pietrzak [17] notes that the EMAC bound must depend on �. Gazi,
Pietrzak, and Rybár [10] give an attack on NMAC showing its dependence on �.
Nevertheless, there are no known generic attacks establishing a lower bound of
the form �ε/2n for any ε > 0.

PMAC, introduced by Black and Rogaway [7], stands out as a construction for
which little analysis has been performed showing the necessity of � in the bound.
It significantly differs in structure from other MACs (see Fig. 1 and Definition 3),
which gives it many advantages:

1. it is efficient, since nearly all block cipher calls can be made in parallel,
2. it is simple, which in turn enables simple analysis,
3. and its basic structure lends itself to high-security extensions, such as PMAC-

Plus [22], PMAC-with-Parity [23], and PMACX [24].

The disadvantage of having such a different structure is that no known attacks
can help to establish �-dependency.

Contributions. We start by abstracting away some details of PMAC in order
to focus on its basic structure. We do so by considering generic PMAC, which is a
generalized version of PMAC accepting an arbitrary block cipher and constants,
and with an additional independent key. We prove that one of the following two
statements is true:

1. either there are infinitely many instances of generic PMAC for which there
are no attacks with success probability greater than 2q2/2n,

2. or finding an attack against generic PMAC with success probability greater
than 2q2/2n is computationally hard.

The second statement relies on a conjecture which we explain below.
Then we focus on an instantiation of generic PMAC, namely PMAC with

Gray codes, introduced by Black and Rogaway [7]. We show that PMAC with
Gray codes is an instantiation which does not meet the optimal bound of 2q2/2n,
by finding an attack with success probability (2k−1 − 1)/2n with � = 2k, estab-
lishing a dependence on � for every power of two.

Approach. Proving the above results requires viewing the inputs to PMAC’s
block cipher calls in a novel way: as a set of points P lying in a finite affine plane.
Keys are identified as slopes of lines in the affine plane. A collision is guaranteed
to occur under a specific key w if and only if each line with slope w covers an
even number of points in P; in this case we say that w evenly covers P.

Maximizing the collision probability means finding a set of points P for which
there is large set of slopes W evenly covering P. But finding such a set W is non-
trivial: the x-coordinates of the points in P must either contain a subset summing
to zero, or satisfying some quadratic form.

Finding a subset summing to zero is the subset sum (SS) problem, which is
known to be NP-complete. The second problem we call the binary quadratic form
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(BQF) problem (see Definition 9), and there is reason to believe this problem is
NP-complete as well (see Appendix B). As a result, we conjecture that finding
solutions to the union of the two problems is computationally hard.

By reducing SS and the BQF problem to finding slopes W evenly covering
points P, we establish our results.

Related Work. Rogaway [19] has shown that the dependence on � disap-
pears if you consider a version of PMAC with an ideal tweakable block cipher.
PMAC’s basic structure has also been used to design schemes where the impact
of � is reduced by construction: Yasuda’s PMAC-with-Parity [23] and Zhang’s
PMACX [24] get bounds of the form q2�2/22n.

For EMAC, Pietrzak [17] proved that if � ≤ 2n/8 and q ≥ �2, then the bound’s
order of growth is independent of �. The proven bound is

128 · q2�8

22n
+ 16 · q2

2n
+

q(q − 1)
2n+1

. (3)

Note that the condition on � means that EMAC’s bound is not truly independent
of �. An example of a construction which has a bound which is truly independent
of � is a variant of PMAC described by Yasuda [23, Sect. 1]. This construction
achieves a bound that does not grow as a function of �, with the limitation
that � ≤ 2n/2 and at a rate of two block cipher calls per block of message. The
construction works by splitting the message into half blocks, and then appending
a counter to each half-block, to create a full block. Each full block is input into
a block cipher, and all the block cipher outputs are XORed together, and finally
input into a last, independent block cipher.

2 Preliminaries

2.1 Notation

If X is a set then X is its complement, Xq is the Cartesian product of q copies
of X, X≤� =

⋃�
i=1 X

i, and X+ =
⋃∞

i=1 X
i. If x ∈ Xq, then its coordinates are

(x1, x2, . . . , xq). If f : X → Y then define f̃ : X+ → Y+ to be the mapping

f̃(x1, . . . , xq) = (f(x1), . . . , f(xq)) . (4)

If a ∈ X�1 and b ∈ X�2 , then a‖b is the concatenation of a and b, that is,

a‖b := (a1, a2, . . . , a�1 , b1, b2, . . . , b�2) ∈ X�1+�2 . (5)

If a ∈ X� and μ ≤ �, then a≤μ := (a1, a2, . . . , aμ). If X is a field, then for a ∈ X�,
1 · a =

∑�
i=1 ai. Furthermore, when considering elements (x, y) of X2, we call

the left coordinate of the pair the x-coordinate, and the other the y-coordinate.
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2.2 Primitives

A uniformly distributed random function (URF) from M to T is a uniformly
distributed random variable over the set of all functions from M to T. A uniformly
distributed random permutation (URP) on X is a uniformly distributed random
variable over the set of all permutations on X.

A pseudo-random function (PRF) is a function Φ : K × M → T defined on a
set of keys K and messages M with output in T. We write Φk(m) for Φ(k,m).
The PRF-advantage of an adversary A against the PRF Φ is the probability that
A distinguishes Φk from $, where k is a uniformly distributed random variable
over K, and $ is a URF. More formally, the advantage of A can be described as

∣
∣
∣Pr

[
AΦk = 1

] − Pr
[
A$ = 1

]∣
∣
∣ , (6)

where AO = 1 is the event that A outputs 1 given access to oracle O.
A pseudorandom permutation (PRP) is a function E : K×X → X defined on

a set of keys K, where E(k, ·) is a permutation for each k ∈ K. As with PRFs,
we write Ek(x) for E(k, x). The PRP-advantage of an adversary A versus E is
defined similarly to the PRF-advantage, and can be described as follows:

∣
∣Pr

[
AEk = 1

] − Pr [Aπ = 1]
∣
∣ , (7)

where k is uniformly distributed over K, and π is a URP.

2.3 Message Authentication

A MAC consists of a tagging and a verification algorithm. The tagging algorithm
accepts messages from some message set M and produces tags from a tag set
T. The verification algorithm receives message-tag pairs (m, t) as input, and
outputs 1 if the pair (m, t) is valid, and 0 otherwise. The insecurity of a MAC
is measured as follows.

Definition 1. Let A be an adversary with access to a MAC. The advantage of
A in breaking the MAC is the probability that A is able to produce a message-tag
pair (m, t) for which the verification algorithm outputs 1, where m has not been
previously queried to the tagging algorithm.

PRF-based MACs use a PRF Φ : K×M → T to define the tagging algorithm.
The verification algorithm outputs 1 if Φk(m) = t, and 0 otherwise. As shown
by the following theorem, the insecurity of a PRF-based MAC can be reduced
to the insecurity of the PRF, allowing us to focus on Φ.

Theorem 1 ([2]). Let α denote the advantage of adversary A in breaking a
PRF-based MAC with underlying PRF Φ. Say that A makes q tagging queries
and v verification queries. Then there exists a PRF-adversary B making q + v
PRF queries such that

α ≤ v

|T| + β , (8)

where β is the advantage of B.
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Some PRFs are constructed using a smaller PRP Ek : K × X → X. If ΦEk

denotes a PRF using Ek, then one can reduce the PRF-advantage of an adversary
against ΦEk to the PRF-advantage of an adversary against Φπ, where π is a URP
over X. The result is well-known, and used, for example, to prove the security of
PMAC [7].

Theorem 2. Let α denote the PRF-advantage of adversary A against ΦEk . Say
that A makes q queries to the PRF. Then there exists a PRF-adversary B against
Φπ making q queries and a PRP-adversary C against E such that

α ≤ β + γ , (9)

where β is the advantage of B and γ is the advantage of C.

The above theorem lets us focus on PRFs built with URPs instead of PRPs.

3 PMAC

PMAC is a PRF-based MAC, which means we can focus on the underlying PRF.
Throughout this paper we identify PMAC with its PRF. Furthermore, we focus
on PMAC defined with a URP.

The original PMAC specifications [7,19] have as message space the set of
arbitrary length strings. Although our results focus on the dependency of PMAC
on message length, it will suffice to consider strings with length a multiple of
some block size in order to illustrate how the security bounds evolve as a function
of message length. With this in mind, we define PHASH, first introduced by
Minematsu and Matsushima [15]. Figure 1 depicts a diagram of PHASH.

Definition 2 (PHASH). Let X be a finite field of characteristic two with N
elements. Let M := X≤N and let c ∈ XN be a sequence containing all elements
of X. Let π be a URP over X. Let ω = π(0), then PHASH : M → X is defined
to be

PHASH(m) := 1 · π̃ (m + ωc≤�) , (10)

where m has length �.

0 m1 m2 m3 m4

+ + + +

π π π π π

c1ω c2ω c3ω c4ω

ω + + + (m)

Fig. 1. PHASH evaluated on a message m = (m1,m2,m3,m4).
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PHASH maps messages to a single block. PMAC sends this block through
a last transformation, whose output will be the tag. We describe two different
generic versions of PMAC, one in which the last transformation is independent
of PHASH, and one in which it is not.

Definition 3 (PMAC). Consider PHASH : M → X with URP π and let c∗

denote the last element of c. If y is the output of PHASH under message m,
PMAC evaluated on m is π(y + c∗ω).

Definition 4 (PMAC*). Consider PHASH : M → X with URP π. Let φ :
X → X be an independent URF. Then PMAC* is the composition of PHASH
with φ.

Although PMAC* is defined with an independent outer URF instead of a URP,
all the results in the paper hold with slight modifications to the bounds if a URP
is used.

The two specifications of PMAC define the sequence c differently. Our attack
against PMAC applies to the specification with Gray codes [7], which we will
define in Sect. 6.4. As pointed out by Nandi and Mandal [16], in order to get a
PRF-advantage upper bound of the form q2�/N , the only requirement on c is
that each of its components are distinct.

4 PHASH Collision Probability

Definition 5. The collision probability of PHASH is

max
m1,m2∈M,m1 �=m2

Pr
[
PHASH(m1) = PHASH(m2)

]
. (11)

PHASH’s collision probability is closely linked with the security of PMAC and
PMAC*. In particular, if an adversary finds a collision in PHASH, then it is
able to distinguish PMAC and PMAC* from a URF. The converse is true for
PMAC*, which is a well-known result; see for example Dodis and Pietrzak [9].
Concluding that a distinguishing attack against PMAC results in a collision
found for PHASH has not been proven and is outside of the scope of the paper,
although we conjecture that the statement holds. In either case, understanding
the effect of the message length on PHASH’s collision probability will give us a
good understanding of PMAC’s message length dependence.

In this section we compute bounds on the collision probability for PHASH.
Minematsu and Matsushima [15] prove an upper bound for the collision proba-
bility of PHASH. We use their proof techniques and provide a lower bound as
well.

Throughout this section we fix two different messages m1 and m2 in M of
length �1 and �2, respectively, and consider the collision probability over these
messages. Let m = m1‖m2 and d = c≤�1‖c≤�2 .

If there exists i such that m1
i = m2

i , then these blocks will cancel each other
out in Eq. (11) and will not affect the collision probability, hence we remove



On the Influence of Message Length in PMAC’s Security Bounds 603

them. Let i1, i2, . . . , ik denote the indices of the blocks for which m1 equals m2,
then define m∗ to be m with the entries indexed by i1, i2, . . . , ik and i1+�1, i2+
�1, . . . , ik + �1 removed; d∗ is defined similarly and �∗ denotes the length of m∗

and d∗.
Let xw := m∗ + wd∗ for w ∈ X. The vector xw represents the inputs to

the permutation π when π(0) equals w, meaning the equality PHASH(m1) =
PHASH(m2) can be written as

1 · π̃ (xw) = 0 , (12)

given that π(0) = w. If there is a component of xw which does not equal
any of the other components, then Eq. (12) will contain a π-output which is
roughly independent of the other outputs, thereby making a collision unlikely
when π(0) = w. For example, say that xw = (a, b, c, b), then Eq. (12) becomes
π(a)+π(b)+π(c)+π(b) = π(a)+π(c), which equals 0 with negligible probability.

Similarly, if there are an odd number of components of xw which equal each
other, but do not equal any other components, then they will not cancel out,
resulting again in an unlikely collision. For example, if xw = (a, a, a, b, b), then
Eq. (12) becomes π(a). In fact, a collision is only guaranteed under a given key w
when each component of xw is paired with another component so that each pair
cancels each other out in Eq. (12). Bounding the collision probability in Eq. (11)
amounts to determining how many keys w there are for which each component
of xw is paired.

We formalize these “equality classes” of components of xw as follows. Define
I to be the set of integers from 1 to �∗, {1, . . . , �∗}, then the components of xw =
(xw

1 , xw
2 , . . . , xw

�∗), induce the following equivalence relation on I: i is equivalent
to j if and only if xw

i = xw
j . For i ∈ I, let [i] denote i’s equivalence class, and

#[i] the number of elements in [i]. Let Rw denote the set of equivalence class
representatives where each representative is the smallest element of its class. Let
Rw

e be those i ∈ Rw such that #[i] is even, and Rw
o the complement of Rw

e in
Rw. Taking the example xw = (c, c, c, b, b, b, b, a), then Rw would equal {1, 4, 8}
and Rw

e is {4}.
Define W to be the set of w ∈ X such that Rw

o is empty. In other words, the
set W is the set of keys w for which m1 and m2 are guaranteed to collide.

Proposition 1. Let F = PHASH, then

|W|
N

≤ Pr
[
F (m1) = F (m2)

] ≤ |W|
N

+
1

N − �∗ + 1
. (13)

Proof. Let Π be the set of permutations on X. Let δw be the number of distinct
components in 0‖xw and let Sw be the set of y such that 1 · y = 0 and w‖y
matches 0‖xw, where two sequences a and b of the same length match if ai = aj

if and only if bi = bj , for all i, j. We have that

Pr
[
F (m1) + F (m2) = 0

]
= Pr [1 · π̃(xω) = 0] (14)
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=
1

N !
·
∣
∣
∣
{

p ∈ Π | 1 · p̃
(
x p(0)

)
= 0

}∣
∣
∣ (15)

=
1

N !
·
∑

w∈X

∑

y∈Sw

|{p ∈ Π | p̃(0‖xw) = w‖y}| . (16)

Note that for all w and y ∈ Sw,

|{p ∈ Π | p̃(0‖xw) = w‖y}| = (N − δw)! , (17)

hence we get

Pr
[
F (m1) = F (m2)

]
=

1
N !

·
∑

w∈X

(N − δw)! · |Sw| . (18)

Let y be such that w‖y matches 0‖xw. Note that yi = yj if and only if i is
equivalent to j, and for any i ∈ Rw,

∑

j∈[i]

yj =

{
0 if #[i] is even
yi otherwise .

(19)

Then y ∈ Sw if and only if w‖y matches 0‖xw and
∑

i∈Rw
o

yi = 0.
Let w be such that xw

i �= 0 for all i. The number of y such that w‖y matches
0‖xw and

∑
i∈Rw

o
yi = 0 can be counted as follows. Consider y = (y1, . . . , y�∗)

satisfying the requirements, and enumerate the values in Rw
e : i1, i2, . . . , ik. By

fixing yi1 , yi2 , . . . , yik
, we determine all components of y contained in the equiv-

alence classes of Rw
e . Since yi1 , yi2 , . . . , yik

is a sequence of k distinct values, all
different from w, there are (N − 1)!/(N −k − 1)! possibilities for yi1 , yi2 , . . . , yik

.
If Rw

o �= ∅, then we enumerate the elements of Rw
o : j1, j2, . . . , jl. Similar to

Rw
e , by determining yj1 , yj2 , . . . , yjl

we will determine the remaining components
of y . The sequence yj1 , yj2 , . . . , yjl

contains l distinct values, all different from
yi1 , yi2 , . . . , yik

and w, and such that yj1 + yj2 + · · · + yjl
= 0, resulting in at

most (N −k −1)!/(N −k − l)! possibilities. Putting this together, and observing
that k + l = |Rw

e | + |Rw
o | = δw − 1, we get |Sw| ≤ (N−1)!

(N−δw+1)! when Rw
o �= ∅ and

xw
i �= 0 for all i. If Rw

o = ∅, then |Sw| = (N−1)!
(N−δw)! .

By following similar reasoning, we get that if w is such that there exists
xw

i = 0, |Sw| ≤ (N−1)!
(N−δw+1)! when Rw

o �= ∅, and |Sw| = (N−1)!
(N−δw)! otherwise.

Putting the above together, we have

Pr
[
F (m1) = F (m2)

] ≤ |W|
N

+
1
N

∑

w∈W

1
N − δw + 1

, (20)

and since the computation of |Sw| is exact when Rw
o = ∅, we get

|W|
N

≤ Pr
[
F (m1) = F (m2)

]
. (21)


�
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5 Necessary Conditions for a Collision

This section provides a geometric interpretation of the set W which facilitates
finding necessary conditions for W to contain more than two elements.

5.1 Evenly Covered Sets

Recall that an element w of X is in W only if Rw
o = ∅, meaning #[i] is even for

all i ∈ Rw. Two components xw
i and xw

j of xw are equal if and only if

w =
m∗

i − m∗
j

d∗
j − d∗

i

, (22)

since the points such that (di,mi) = (dj ,mj) were removed earlier when forming
m∗ from m . In particular, Eq. (22) says that xw

i equals xw
j if and only if the

points (d∗
i ,m

∗
i ) and (d∗

j ,m
∗
j ) lie on a line with slope w. Since #[i] is even, we

know that there are an even number of points on the line through (d∗
i ,m

∗
i ) with

slope w, which motivates the following definition.

Definition 6. Let P ⊂ X2 be a set of points. A line evenly covers P if it contains
an even number of points from P. A slope w ∈ X evenly covers P if all lines with
slope w evenly cover P. A subset of X evenly covers P if all slopes in the subset
evenly cover P.

We let P denote the set of points (di,mi) for 1 ≤ i ≤ �. Applying the above
definition together with Eq. (22), we get the following proposition.

Proposition 2. An element w ∈ X is in W if and only if w evenly covers P.

Using this geometric interpretation, we obtain the upper bound proved by Mine-
matsu and Matsushima [15] for the collision probability of PHASH.

Proposition 3.

|W| ≤ �∗ − 1 (23)

Proof. Given a point p0 ∈ P, all possible slopes connecting p0 to another point
in P can be generated from the lines connecting the points. This results in
at most |P| − 1 different slopes covering P, hence an upper bound for |W| is
|P| − 1 = �∗ − 1. 
�

It is easy to construct sets evenly covered by two slopes. Consider P :=
{(x1, 0), (x1, 1), (x2, 0), (x2, 1)}, depicted in Fig. 2. The possible slopes are 0 and
(x1 + x2)−1. Throughout the paper we do not consider ∞ to be a slope, since
such a slope would only be possible if d∗

i = d∗
j in Eq. (22), which happens only

if m∗
i = m∗

j . The lines with slope 0, from (x1, 0) to (x2, 0) and from (x1, 1) to
(x2, 1), evenly cover P. Similarly, the lines with slope (x1 + x2)−1, from (x1, 0)
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x1 x2

0

1 (x1 + x2)
−1

0

Fig. 2. A set of four points evenly covered by the slopes 0 and (x1 + x2)
−1. The

x-coordinates of the points are x1 and x2, and the y-coordinates are 0 and 1.

to (x2, 1) and from (x1, 1) to (x2, 0), also evenly cover P. Therefore P is evenly
covered by

{
0, (x1 + x2)−1

}
.

The above set can be converted into two messages: m1 = (0, 0) and m2 =
(1, 1). Setting x1 = c1 and x2 = c2, then we know that the collision probability
of m1 and m2 is at least 2/N .

Proposition 4. There exist messages m1 and m2 such that |W| ≥ 2.

Note that P constructed from m∗ contains at most two points per x-coordinate.

5.2 Properties of Evenly Covered Sets

Although Proposition 3 gives a good upper bound for the collision probability
of PHASH, it does not use any of the structure of evenly covered sets. In this
section we explore various properties of evenly covered sets, allowing us to relate
their discovery to NP-hard problems in Sect. 5.3.

The following lemma shows that removing an evenly covered subset from an
evenly covered set results in an evenly covered set.

Lemma 1. Let P ⊂ X2 and let W ⊂ X be a set evenly covering P. Say that P
contains a subset P′ evenly covered by W as well, then P \ P′ is evenly covered
by W.

Proof. Let Q := P \ P′. The set W evenly covers Q if and only if every line with
slope w ∈ W contains an even number of points in Q. Let p ∈ Q and w ∈ W and
consider the line λ with slope w through point p. By hypothesis, λ evenly covers
P and P′. By removing P′ from P, an even number of points are removed from
λ, resulting in λ evenly covering Q. 
�
If a set P is evenly covered by at least two slopes u and v, then all the points in
the set lie in a loop.

Definition 7. Let P ⊂ X2 be evenly covered by W ⊂ X. A (u, v)-loop in (W,P)
is a sequence of points (p1, p2, . . . , pk) with two different slopes u, v ∈ W such
that pi and pi+1 (mod k) lie on a line with slope u for i odd, and on a line with
slope v otherwise.
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The set from Fig. 2 contains (0, (x1 + x2)−1)-loops. In fact, there are always
at least four points in any (u, v)-loop. Note that there must be at least three
points since there are two distinct slopes. If there are only three points then p1
is connected to p2 via u, p2 is connected to p3 via v, and p3 must be connected
to p1 via u, resulting in all three lying on the same line with slope u, but also p2
lying on a line with slope v with p3, resulting in a contradiction. Figure 3 shows
a set with more complicated loops, including two which loop over all points in
the set.

Lemma 2. Let P ⊂ X2 be evenly covered by W ⊂ X. Let u, v ∈ W, then every
point in P is in a (u, v)-loop starting with slope u and ending with slope v.

Proof. Let p0 ∈ P, then by hypothesis there is another point p1 in P lying on a
line with slope u connecting to p0. Similarly, there is a point p2 different from
p0 and p1 lying on a line with slope v connected to p1. Continuing like this, we
can create a sequence of points p0, p1, . . . , pk until pk+1 = pi for some i ≤ k,
with the property that adjacent points in the sequence are connected by lines
alternating with slope u and v.

If i = 0, then we are done. Otherwise, consider pi−1, pi, pi+1, and pk. Say
that pi−1 is connected to pi via a line with slope u, so that pi is connected to
pi+1 via a line with slope v. If pk is connected to pi via a line with slope v, then
there are three points on the same line with slope v: pi, pi+1, and pk. This means
there is a fourth point p∗ on the same line. Since pk is connected to pi+1 via
v, the sequence pi+1, pi+2, . . . , pk forms a (u, v)-loop. We remove the (u, v)-loop
from P, which is evenly covered by u and v, resulting in a set evenly covered by
u and v, and we continue by induction. Similar reasoning can be applied when
pk is connected to pi via u. 
�
Proposition 5. The sum of the x-coordinates in a (u, v)-loop must be zero.

Proof. Say that (x1, y1), (x2, y2), . . . , (xk, yk) are the points in the loop. Then

yi + yi+1 = δi(xi + xi+1 (mod k)) , (24)

where δi is u if i is odd, and v otherwise. Since

(y1 + y2) + (y2 + y3) + · · · + (yk−1 + yk) + (yk + y1) = 0 , (25)

we have that

u(x1 + x2) + v(x2 + x3) + u(x3 + x4) + · · ·
+ u(xk−1 + xk) + v(xk + x1) = 0 , (26)

therefore

(u + v)(x1 + x2 + · · · + xk) = 0 . (27)

Since u �= v, it must be the case that x1 + x2 + · · · + xk = 0. 
�
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0 a

b c
u

v

w

Fig. 3. A set of points evenly covered by the slopes u, v, and w. Each point is accom-
panied by another point with the same x-coordinate. The x-coordinates of the pairs
are indicated below the lower points.

Adversaries can only construct sets P where there are at most two points
per x-coordinate. Therefore, either all loops only contain points (x, y) for which
there is exactly one other point (x, y′) with the same x-coordinate, or there exists
a loop with a point which is the only one with that x-coordinate. For example,
Figs. 2 and 3 depict evenly covered sets where every loop always contains all
x-coordinate pairs. If we consider the only loop in Fig. 2, then we get

0 · (x1 + x2) + (x1 + x2)−1(x2 + x1) + 0 · (x1 + x2) + (x1 + x2)−1(x2 + x1) , (28)

which trivially equals zero. All loops in Fig. 3 also trivially sum to zero.
In contrast, Fig. 4 depicts an evenly covered set in which we get a non-trivial

sum of the x-coordinates:

u · a + v(a + c) + u(c + b) + v · b = (u + v)(a + b + c) = 0 , (29)

hence such a set only exists if a + b + c = 0.
Therefore, Proposition 5 only poses a non-trivial restriction on the x-

coordinates if there is a loop which contains a point without another point
sharing its x-coordinate. If the loop contains all pairs of points with the same
x-coordinates, then the x-coordinates will trivially sum to zero. This is why in
the case of Fig. 2 there are no restrictions on the x-coordinates, other than the
fact that they must be distinct, resulting in the existence of sets evenly covered
by two slopes.

0 a

b c
u

v

w

Fig. 4. A set of points evenly covered by the slopes u, v, and w. None of the points are
accompanied by another point with the same x-coordinate. The points are labelled by
their x-coordinates.
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0 a

b c

0 a

b c
u

v

w

Fig. 5. Illustration of loops with three slopes.

In the case of Fig. 3 however, there are additional restrictions on the x-
coordinates. Consider the two points at x-coordinate 0. Then there is part of
a (u, v)-loop connecting them, and part of a (u,w)-loop connecting them, and
combining both parts we get a full loop using all three slopes; see the left hand
side of Fig. 5. A similar loop involving all three slopes can be constructed around
the points with x-coordinate b. Using these two loops, we get the following equa-
tions. From the left hand side of Fig. 5 we have

ua + va = wb + u(b + c) + w(a + c) + ua (30)
(u + v)a = (w + u)(a + b + c) . (31)

From the right hand side of Fig. 5 we have

(u + v)(b + c) = wb + ua + w(a + b) (32)
(u + v)(b + c) = (w + u)a . (33)

Combining both, we get the following:

a + b + c

a
=

a

b + c
(34)

a2 + b2 + c2 + ab + ac = 0 . (35)

The last equation above can be described as a so-called quadratic form.
A quadratic form over X is a homogeneous multivariate polynomial of degree
two. In our case, the quadratic form can be written as xT Qx , where x ∈ Xn is
the list of variables, and Q ∈ {0, 1}n×n is a matrix with entries in {0, 1}. We say
that x ∗ is a solution to Q if xT

∗ Qx ∗ = 0, and the quadratic form Q is non-trivial
if there exists x �= 0 such that xT Qx �= 0.

So the evenly covered set from Fig. 3 only exists if the x-coordinates satisfy
some non-trivial quadratic form. The same is true for any evenly covered set
where all loops always contain pairs of points with the same x-coordinate.

Proposition 6. Let P ⊂ X2 be evenly covered by W ⊂ X with W ≥ 3. Say that
all loops in P contain only pairs of points with the same x-coordinates. Then there
exists a subset S of k x-coordinates, and a non-trivial quadratic form described
by a matrix Q ∈ {0, 1}k×k over k variables, such that when the k elements of S
are placed in a vector x∗ ∈ Xk, xT

∗ Qx∗ = 0.
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Proof. Pick three slopes, u, v, w in W. We know that there are at least four
points in P. Pick two pairs of points with the same x-coordinates: (p, p′) and
(q, q′). Consider the (u, v)-loop starting at p. By hypothesis it must contain p′.
We let a = (a1, a2, . . . , aka

) denote the sequence of x-coordinates of the part
of the (u, v)-loop from p to p′. Note that a1 equals aka

since p and p′ have the
same x-coordinates. Similarly, the (u, v)-loop starting at q must contain q′, and
we denote the sequence of x-coordinates of the part of the (u, v)-loop from q to
q′ by b = (b1, b2, . . . , bkb

). The same holds for the (v, w)-loops containing p and
q, and we define the x-coordinate sequences e and f similarly.

Let y denote the difference in the y-coordinates of p and p′. For a we have
the following:

u(a1 + a2) + v(a2 + a3) + · · · + δ(u, v)ka
(aka−1 + aka

) = y , (36)

where δ(u, v)ka
is u if ka is even and v otherwise. Collecting the terms, if ka is

even, we get

u(a1 + a2 + · · · + aka−1 + aka
) + v(a2 + · · · + aka−1) = y , (37)

and since a1 = aka
, we know that

(u + v)(a2 + · · · + aka−1) = y . (38)

If ka is odd, then we get

(u + v)(a1 + a2 + · · · + aka−1) = y . (39)

Note that it cannot be the case that
∑

ai = 0, since y �= 0.
Similar reasoning applied to b gives

(v + w)(b2 + · · · + bkb−1) = y if kb is even
(v + w)(b1 + · · · + bkb−1) = y otherwise .

(40)

Regardless of ka and kb’s parities, setting both equations equal to each other
results in the following equation:

u + v

v + w
=

∑
bi∑
ai

. (41)

Applying the same result to e and f , we get

u + v

v + w
=

∑
fi∑
ei

. (42)

As a result, we have
(∑

bi

) (∑
ei

)
+

(∑
ai

) (∑
fi

)
= 0 , (43)

which is the solution to a quadratic form. 
�
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5.3 Computational Hardness

As shown in Propositions 5 and 6, either there is a loop where the x-coordinates
non-trivally sum to zero, or there is a subset of the x-coordinates which form
the solution to some non-trivial quadratic form. The former is Subset Sum (SS),
whereas the latter we name the binary quadratic form (BQF) problem.

Definition 8 (Subset Sum Problem (SS)). Given a finite field X of char-
acteristic two and a subset S ⊂ X, determine whether there is a subset S0 ⊂ S
such that

∑
x∈S0

x = 0.

Definition 9 (Binary Quadratic Form Problem (BQF)). Given a finite
field X of characteristic two and a subset S ⊂ X, determine whether there is a
non-trivial quadratic form Q ∈ {0, 1}k×k with a solution x∗ made up of distinct
components from S.

SS is know to be NP-complete. In AppendixB we show that BQF-t, a general-
ization of BQF, is NP-complete as well. The problem of finding either a subset
summing to zero or a non-trivial quadratic form we call the SS-or-BQF problem.

Conjecture 1. There do not exist polynomial time algorithms solving SS-or-BQF.

Definition 10 (PHASH Problem). Given a finite field X of characteristic
two and a sequence of masks c, determine whether there is a collision in PHASH
with probability greater than 2/N , where N = |X|.

Given a collision in PHASH one can easily find a solution to SS-or-BQF. The
converse does not necessarily hold, which means SS-or-BQF cannot be reduced
to the PHASH problem in general, although we can conclude the following.

Theorem 3. One of the following two statements holds.

1. There are infinitely many input sizes for which the PHASH problem does not
have a solution, but SS-or-BQF does.

2. For sufficiently large input sizes, SS-or-BQF can be reduced to the PHASH
problem.

Proof. Both the PHASH and SS-or-BQF problems are decision problems, so the
output of the algorithms solving the problems is a yes or a no, indicating whether
the problems have a solution or not. Note that the inputs to both problems are
identical. The reductions consist of simply converting the input to one problem
into the input of the other, and then directly using the output of the algorithm
solving the problem.

We proved that a yes instance for PHASH becomes a yes instance for SS-
or-BQF: if you have an instance of SS-or-BQF, then you can convert it into a
PHASH problem, and if you are able to determine that PHASH has a collision
with sufficient probability, then SS-or-BQF has a solution. Similarly, a no instance
for SS-or-BQF means a no instance for PHASH.
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The issue is when there exists a no instance for PHASH and a yes instance
for SS-or-BQF for a particular input size. If there are finitely many input sizes
for which there is a no instance for PHASH and a yes instance for SS-or-BQF
simultaneously, then there exists an r such that for all input sizes greater than r
a no instance for PHASH occurs if and only if a no instance for SS-or-BQF occurs,
and a yes instance for PHASH occurs if and only if a yes instance for SS-or-BQF
occurs. Therefore, an algorithm which receives a no instance for PHASH can say
that the corresponding SS-or-BQF problem is a no instance, and similarly for the
yes instances, which is our reduction. Otherwise there are infinitely many input
sizes for which PHASH is a no instance, and SS-or-BQF is a yes instance. 
�
If statement 1 holds, then there are infinitely many candidates for an instan-
tiation of PMAC* with security bound independent of the message length. If
statement 2 holds, and we assume that SS-or-BQF is hard to solve, then finding
a collision for generic PHASH is computationally hard.

6 Finding Evenly Covered Sets

The previous section focused on determining necessary conditions for the exis-
tence of evenly covered sets, illustrating the difficulty with which such sets are
found. Nevertheless, finding evenly covered sets becomes feasible in certain sit-
uations. In this section we provide an alternative description of evenly covered
sets in order to find sufficient conditions for their existence.

6.1 Distance Matrices

Let (x1, y1), (x2, y2), . . . , (xn, yn) be an enumeration of the elements of P ⊂ X2.
If w ∈ X covers P evenly, then the line with equation y = w(x − x1) + y1 must
meet P in an even number of points. In particular, there must be an even number
of xi values for which w(xi − x1) + y1 = yi, or in other words, the vector

w · (x1 − x1, x2 − x1, . . . , xn − x1) (44)

must equal
(y1 − y1, y2 − y1, . . . , yn − y1) (45)

in an even number of coordinates. The same must hold for the lines starting
from all other points in P.

Let Δx be the matrix with (i, j) entry equal to xi − xj and Δy the matrix
with (i, j) entry equal to yi − yj . We write A ∼ B if matrix A ∈ Xn×n equals
matrix B ∈ Xn×n in an even number of entries in each row. Then, following the
reasoning from above, we have that w ∈ X covers P evenly only if Δy ∼ wΔx .

The matrices Δx and Δy are so-called distance matrices, that is, symmetric
matrices with zero diagonal. Entry (i, j) in these distance matrices represents
the “distance” between xi and xj , or yi and yj . In fact, starting from distance
matrices M and D such that M ∼ wD we can also recover a set P evenly covered
by w: interpret the matrices M and D as the distances between the points in
the set P. This proves the following lemma.
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Lemma 3. Let k ≤ n − 1 and let W ⊂ X be a set of size k. There exist n by
n distance matrices M and D such that M ∼ wD for all w ∈ W if and only if
there exists P with |P| = n and W evenly covers P.

From the above lemma we can conclude that the existence of P ⊂ X2 evenly
covered by W ⊂ X is not affected by the following transformations:

1. Translating the set P by any vector in X2. This also preserves the set W.
2. Subtracting any element w0 ∈ W from the set W.
3. Scaling the set P in either x or y-direction by a non-zero scalar in X.
4. Scaling the set W by any non-zero element of X.

6.2 Connection with Graphs

Let P ⊂ X2 be evenly covered by W ⊂ P. The pair (P,W) has a natural graph
structure with vertices P and an edge connecting two vertices p1 and p2 if and
only if the line connecting them has slope in W. Figures 2 and 3 provide dia-
grams which can also be viewed as examples of the natural graph structure. In
this section we connect the existence of evenly covered sets with so-called fac-
torizations of a graph. See AppendixA for a review of the basic graph theoretic
definitions used in this section.

Each vertex in the natural graph has at least |W| neighbours, and if there
are two points per line in P, then the graph is |W|-regular. Vertices have more
than |W| neighbours only if they are on a line with more than two points. Since
we are not interested in the redundancy from connecting a point with all points
on the same line, we only consider graphs without the additional edges.

Definition 11. A graph associated to (P,W) is a |W|-regular graph G with P
as its set of vertices and an edge between two vertices p1 and p2 only if the line
connecting p1 with p2 has slope in W.

Any graph associated to (P,W) is a subgraph of the natural graph structure
described above, and there could be multiple associated graphs, depending upon
what edges are chosen to connect multiple points lying on the same line. For
example, Fig. 6 depicts an evenly covered set with twelve points, six of which

u

v

w

Fig. 6. Non-trivial example of a set with 12 points evenly covered by three slopes.
Horizontal points lie on the same y-coordinate, and vertical points on the same x-
coordinate. Since there are six points on a line with slope u, the natural graph is not
regular.
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u

v

w

Fig. 7. The diagram from Fig. 6 converted into an associated graph. The slopes u, v,
and w induce a natural 1-factorization of the graph.

lie on the same line. As depicted in Fig. 7, it can easily be converted into an
associated graph.

The following definition allows us to describe another property that associ-
ated graphs have.

Definition 12. A k-factor of a graph G is a k-regular subgraph with the same
vertex set as G. A k-factorization partitions the edges of a graph in disjoint
k-factors.

Associated graphs have a 1-factorization induced by W, where each 1-factor is
composed of the edges associated to the same slope in W. See Fig. 7 for an
example.

We know that every pair (P,W) has an associated |W|-regular graph with 1-
factorization. In order to determine the existence of evenly covered sets we need
to consider when a k-regular graph with 1-factorization describes the structure
of some pair (P,W) with |W| = k. By first fixing a graph with a 1-factorization, it
is possible to set up a system of equations to determine the existence of distance
matrices M and D, and slopes W such that M ∼ wD for all w ∈ W. Then, by
applying Lemma 3, we will have our desired pair (P,W).

Definition 13. Let G be a regular graph with vertices (v1, . . . , vn) and a 1-
factorization, and let Xn×n denote the set of matrices over X. Define SG ⊂ Xn×n

to be the matrices where entry (i, j) equals entry (k, l) if and only if the edges
(vi, vj) and (vk, vl) are in the same 1-factor of G.

Proposition 7. There exists a set P ⊂ X2 with n elements evenly covered by
W ⊂ X with |W| = k if and only if there exists a k-regular graph G of order n
with a 1-factorization such that there is a solution to

M = S ◦ D , (46)

where S ∈ SG, M,D ∈ Xn×n are distance matrices, and ◦ denotes elementwise
multiplication.

Therefore by picking a regular graph with a 1-factorization and solving a system
of equations, we can determine the existence of pairs (P,W) for various sizes, in
order to determine a lower bound for PHASH’s collision probability.
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6.3 Latin Squares and Abelian Subgroups

In this section we consider what happens when we solve Eq. (46) with a
1-factorization of the complete graph of order n. Since we look at complete
graphs, finding a solution would imply the existence of sets with n points evenly
covered by n − 1 slopes, the optimal number as shown by Proposition 3. We
describe a necessary and sufficient condition on the matrix D from Eq. (46),
which in turn becomes a condition on the x-coordinates of the evenly covered
sets.

As described by Laywine and Mullen [13, Sect. 7.3], 1-factorizations of a
complete graph G of order n, with n even, are in one-to-one correspondence
with reduced, symmetric, and unipotent Latin squares, that is, n by n matrices
with entries in N such that

1. the first row enumerates the numbers from 1 to n,
2. the matrix is symmetric, that is, entry (i, j) equals entry (j, i),
3. the diagonal consists of just ones,
4. and each natural number from 1 to n appears just once in every row and

column.

The correspondence between 1-factorizations of complete graphs and Latin
squares works by identifying row i and column i with a vertex in the graph,
labelling the 1-factor containing edge (1, i) with i, and then setting entry (i, j)
equal to the label of the 1-factor containing edge (i, j). This is exactly the struc-
ture of the matrices in SG.

Let n be a power of two. The abelian 2-group of order n is a commutative
group in which every element has order two, that is, a + a = 0 for all elements a
in the group. The Cayley table of the abelian 2-group of order n can be written
as a reduced, symmetric, and unipotent Latin square.

Definition 14. The (i, j) entry of the Cayley table of the abelian 2-group with
� elements is denoted γ(i, j).

Lemma 4. γ(i, γ(i, j)) = j.

Proposition 8. Let G denote the complete graph of order n, where n is a power
of two, with 1-factorization induced by the Cayley table of the abelian 2-group of
order n. Then Eq. (46) has a solution if and only if the first row of D forms an
additive subgroup of X of order n.

The above proposition shows that the graph structure corresponding to the
abelian 2-group induces the same additive structure on the x-coordinates of
the evenly covered set. This transfer of structure only works with this particular
1-factorization of the complete graph. In general, reduced, symmetric, and unipo-
tent Latin squares do not even correspond to the Cayley table of some group:
associativity is not guaranteed. Furthermore, 1-factorizations of non-complete
graphs do not necessarily even form Latin squares; see for example Fig. 6.
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Proof. Denote the first row of S by s1, s2, . . . , sn, and the first row of D by
d1, . . . , dn. Note that D is entirely determined by its first row, since the (i, j)
entry of D is di + dj , and since S follows the form of γ, it is entirely determined
by its first row as well. In particular, the (i, j) entry of S is sγ(i,j), where γ(i, j)
is the (i, j) entry of the Cayley table.

We need to determine the conditions under which S ◦D is a distance matrix,
as a function of s1, . . . , sn and d1, . . . , dn. This happens if and only if the (i, j)
entry of S ◦ D is equal to sidi + sjdj :

sidi + sjdj = sγ(i,j)(di + dj) . (47)

Furthermore, it must be the case that

sidi + sγ(i,j)dγ(i,j) = sj(di + dγ(i,j)) , (48)

since γ(i, γ(i, j)) = j. Therefore

sjdj + sγ(i,j)dγ(i,j) = sγ(i,j)(di + dj) + sj(di + dγ(i,j)) (49)
(sj + sγ(i,j))(di + dj + dγ(i,j)) = 0 . (50)

Since S must follow the Latin square structure, the first row of S must consist
of n distinct entries, hence sj �= sγ(i,j) and so di + dj + dγ(i,j) = 0. Therefore,
d1, . . . , dn satisfies the equations of the Cayley table, hence they form an additive
subgroup of X.

Continuing, we have the following equations:

sidi + sjdj + sγ(i,j)dγ(i,j) = 0 . (51)

In order for these equations to be satisfied, s1d1, . . . , sndn must form an additive
subgroup of X as well. In particular, there must exist an isomorphism φ mapping
di to sidi, which can be written as d−1

i φ(di) = si for i > 1. The only requirement
for the existence of such an isomorphism is that x−1φ(x) must map to distinct
values. Picking x �→ x2 as the isomorphism, we have our desired result. Note
that the di must be distinct, otherwise the si are not distinct, contradicting the
fact that S follows the Latin square structure. 
�

6.4 Application to PMAC

Before we present an attack, we first need the following lemma.

Lemma 5. Let P and P′ be disjoint subsets of X2 evenly covered by W ⊂ X.
Then P ∪ P′ is evenly covered by W.

A collision in PHASH with probability (� − 1)/N can be found as follows.
Take c and let k be the smallest index such that c≤k contains a subsequence c′

of length � such that the elements {c′
1 + c′

1, c
′
1 + c′

2, . . . , c
′
1 + c′

�} form an additive
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subgroup of X. Let μ be the mapping which maps indices of c′ onto indices of
c, so that c′

i = cμ(i).
Let D be a distance matrix in X�×� such that its first row is equal to (c′

1 +
c′
1, c

′
1 + c′

2, . . . , c
′
1 + c′

�); recall that a distance matrix is completely determined
by its first row. Let G be the complete graph of order � with 1-factorization
determined by the abelian 2-group of order �. Solve Eq. (46), that is, find a
distance matrix M such that there exists S ∈ SG where

M = S ◦ D . (52)

Let m1 denote the first row of M , and let W denote the elements mak-
ing up the first row of S, without the first row element. Then the set P :={
(c′

1,m
1
1), . . . , (c

′
�,m

1
�)

}
is evenly covered by W, which contains � − 1 slopes.

By translating P vertically by some constant, say 1, construct the disjoint
set P′, which is also evenly covered by W. Therefore, by Lemma 5, the union of
P and P′ is evenly covered by W. Let m2 denote the y-coordinates of P′.

Define m1 to be the vector of length k where for all i ≤ �, m1
μ(i) = m1

i , and
for all i not in the range of μ, m1

i = 0. Define m2 similarly. Then m1 and m2

collide with probability (� − 1)/N .
For sufficiently large k, c≤k will always contain additive subgroups. In par-

ticular, one can find such subgroups in PMAC with Gray codes [7], where c is
defined as follows. In this case X := {0, 1}ν is the set of ν-bit strings, identified
in some way with a finite field of size 2ν . We define the following sequence of
vectors λν :

λ1 = (0, 1) (53)

λν+1 = (0‖λν
1 , 0‖λν

2 , . . . , 0‖λν
2ν , 1‖λν

2ν , . . . , 1‖λν
2 , 1‖λν

1) . (54)

Note that λν contains all strings in X. Then c is λν without the first compo-
nent, meaning c contains all strings in X without the zero string. Similarly,
the sequence (c1, . . . , c2κ) contains all strings starting with ν − κ zeros, i.e.
0ν−κ‖ {0, 1}κ, excluding the zero string. Note that c1 = 0ν−11. The sequence
(c1 + c1, c1 + c2, . . . , c1 + c2κ) contains all strings in 0ν−κ‖ {0, 1}κ except for c1,
meaning it contains an additive subgroup of order 2κ−1. This results in an attack
using messages of length k = 2κ with success probability (2κ − 1)/2ν .
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A Basic Graph Theoretic Definitions

1. A neighbour of a vertex v in a graph G is a vertex with an edge connecting
it to v.

2. A graph G is said to be k-regular if every vertex of G has exactly k neighbours.
3. A subgraph of a graph G is a graph with vertex set and edge set subsets of

G’s vertex and edge sets, respectively.
4. A complete graph is a graph in which every vertex is connected to every other

vertex via an edge.

B BQF-t is NP-complete

Definition 15 (BQF-t). Given a finite field X with characteristic 2 and a vector
x∗ ∈ Xk and a target element t ∈ X, determine if there is a non-trivial binary
quadratic form Q ∈ {0, 1}k×k such that xT

∗ Qx∗ = t.

Note. The word ‘binary’ in our use of the term ‘binary quadratic form’ refers
to the coefficients of the quadratic form matrix Q and not to the number of
variables.

Proposition 9. BQF-t ∈ NP

Proof. Given a BQF-t yes-instance (X,x∗, t) of (k + 2) × � bits, there exists a
certificate of k2 × � bits that proves it is a yes-instance, namely the matrix Q
such that xT

∗ Qx∗ = t. Moreover, the validity of this certificate can be verified by
computing xT

∗ Qx∗ and testing if it is indeed equal to t. This evaluation requires
(n + 1) × n multiplications and the same number of additions in the finite field
X. After testing equality, the non-triviality of Q is verified by testing whether
QT +Q �= 0, costing another n2 finite field additions and as many equality tests.
Thus, for every yes-instance of BQF-t, there exists a polynomial-size certificate
whose validity is verifiable in polynomial time. Hence, BQF-t ∈ NP. 
�
Proposition 10. BQF-t is NP-hard.

Proof. We show that BQF-t is NP-hard by reducing the subset-sum problem
SS, another NP-hard problem, to it. In particular, we show that SS≤ BQF-t
under deterministic polynomial-time Karp reductions.

Given an instance (X, S) of SS, the goal is to find a subset S0 ⊂ S such that∑
x∈S0

x = 1. Note the target of SS can be changed without loss of generality.
We transform this problem instance to an instance (X′,x∗, t) of BQF-t as follows.

Let k = #S, the number of elements in S and let each unique element si of
S be indexed by i ∈ {1, . . . , k}. Choose a degree 2k + 1 irreducible polynomial
ψ(z) ∈ X[z] and define the extension field X′ = X[z]/〈ψ(z)〉. Then define the
vector x∗ as follows:
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x∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1s1
z2s2

...
zksk

z−1

z−2

...
z−k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The BQF-t instance is (X′,x∗, 1). It now remains to be shown that (1) this
transformation is computable in polynomial time; (2) if the SS problem instance
is a yes-instance, then the BQF-t problem instance is yes-instance; (3) conversely,
if the SS problem instance is a no-instance, then the BQF-t problem instance is
a no-instance.

1. It is known to be possible to deterministically select an irreducible polyno-
mial over a finite field of small characteristic in polynomial time [20]. After
selecting the polynomials, the inverse of z is computed using the polynomial-
time extended GCD algorithm and all the necessary powers of z and z−1 are
found after two times k multiplications. Lastly, the proper powers of z are
combined with the si elements using k multiplications for the construction of
the first half of the vector x∗; the second half of this vector has already been
computed. So since this transformation consists of a polynomial-number of
polynomial-time steps, its total running time is also polynomial.

2. If the SS instance is a yes-instance, then there exist k binary weights
wi ∈ {0, 1} for all i ∈ {1, . . . , k} such that

∑k
i=1 wisi = 1. The existence

of these weights imply the existence of the matrix Q, as defined below. This
matrix consists of four k × k submatrices and only the diagonal of the upper
right submatrix is nonzero. In fact, this diagonal is where the weights wi

appear.

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1

. . .
wk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(55)

Indeed, the BQF-t instance is guaranteed to be a yes-instance as

xT
∗ Qx∗ =

k∑

i=1

zisiwiz
−i = 1
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if and only if
k∑

i=1

wisi = 1 ,

which is the solution to the SS problem. Also, Q is non-trivial if there exists
at least one nonzero weight wi.

3. If the SS instance is a no-instance, then no set of weights wi such that∑k
i=1 wisi = 1 exists. Consequently, no Q satisfying xT

∗ Qx∗ = 1 can exist.
The reason is that all the elements of the Q-matrix except for the upper right
diagonal are multiplied with higher or lower powers of z, which make them
linearly independent from 1. Hence, neither the upper right diagonal nor any
other set of nonzero elements in Q can make the total quadratic form equal
to one. 
�

Corollary 1. BQF-t is NP-complete.
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