
Safety-Constrained Reinforcement
Learning for MDPs

Sebastian Junges1, Nils Jansen1,2(B), Christian Dehnert1, Ufuk Topcu2,
and Joost-Pieter Katoen1

1 RWTH Aachen University, Aachen, Germany
2 University of Texas at Austin, Austin, USA

njansen@utexas.edu

Abstract. We consider controller synthesis for stochastic and par-
tially unknown environments in which safety is essential. Specifically, we
abstract the problem as a Markov decision process in which the expected
performance is measured using a cost function that is unknown prior to
run-time exploration of the state space. Standard learning approaches
synthesize cost-optimal strategies without guaranteeing safety proper-
ties. To remedy this, we first compute safe, permissive strategies. Then,
exploration is constrained to these strategies and thereby meets the
imposed safety requirements. Exploiting an iterative learning procedure,
the resulting strategy is safety-constrained and optimal. We show cor-
rectness and completeness of the method and discuss the use of several
heuristics to increase its scalability. Finally, we demonstrate the applica-
bility by means of a prototype implementation.

1 Introduction

Probabilistic Model Checking. Many formal system models are inherently sto-
chastic, consider for instance randomized distributed algorithms (where random-
ization breaks the symmetry between processes), security (e.g., key generation
at encryption), systems biology (where species randomly react depending on
their concentration), or embedded systems (interacting with unknown and vary-
ing environments). These various applications made the verification of stochastic
systems such as discrete-time Markov chains (MCs) or Markov decision processes
(MDPs) an important research topic in the last decade, resulting in several tools
like PRISM [1], LiQuoR [2], MRMC [3] or FMurphi [4]. The always growing set
of case studies in the PRISM benchmark suite [5] witnesses the applicability of
MDP and MC model checking.

Controller Synthesis. Contrarily, controller synthesis is a relatively new topic
in this setting. Consider a controllable system like, e. g., a robot or some other

This work is supported by the Excellence Initiative of the German Research Council
and the Sino-German project CAP. UT’s work has been partly funded by the awards
AFRL # FA8650-15-C-2546, ONR # N000141310778, ARO # W911NF-15-1-0592,
NSF # 1550212 and DARPA # W911NF-16-1-0001.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 130–146, 2016.
DOI: 10.1007/978-3-662-49674-9 8

Safety-Constrained Reinforcement Learning for MDPs 131

machine which is embedded into an environment. Having a formal model of
both the controllable entity and the environment, the goal is to synthesize a
controller that satisfies certain requirements. Again, often faithful models are
stochastic, imagine, e. g., sensor imprecisions of a robot, message loss, or unpre-
dictable behavior of the environment. Moreover, it might be the case that certain
information—such as cost caused by energy consumption—is not exactly known
prior to exploring and observation.

Our Problem. Given an MDP with a cost structure, synthesize an optimal strat-
egy subject to safety constraints, where optimality refers to expected perfor-
mance (cost). This multi-objective model checking problem is studied in [6–8].
But what if the cost function is not known? Consider for instance the following
motion planning scenario, placed in a grid-world where a robot wants to move
to a certain position. Acting unpredictably, a janitor moves randomly through
the grid. The robot reaches its goal safely if it moves according to a strategy
that avoids the janitor. Moreover, each movement of the robot occasions cost
depending on the surface. However, the robot only learns the actual costs during
physically executing actions within the environment; this requires the exclusion
of unsafe behavior prior to exploration. Consequently, a safe strategy for the
robot which simultaneously induces minimal cost is to be found.

We model robot behavior by an MDP and the stochastic behavior of the
environment by a MC. We are given a safety condition specified as a probabilistic
reachability objective. Additionally, we have a performance condition bounding
the expected costs for reaching a certain goal. A significant problem we are facing
is that the costs of certain actions are not known before they are executed. This
calls for using reinforcement learning [9] algorithms like Q-learning [10], where
optimal strategies are obtained without prior knowledge about the system. While
this is usually a suitable solution, in this case we have to ensure that no unsafe
actions are taken during exploration to ensure an optimal and safe strategy.

Our Approach. The setting does neither allow for using plain verification nor
direct reinforcement learning. On the one hand, verifying safety and performance
properties—in the formofmulti-objectivemodel checking—is not possible because
the costs of actions are not known. On the other hand, in practice learning means
that the robot will explore parts of the system. Doing that, we need to ensure that
all unsafe behavior is avoided beforehand. Our solution to these problems is to use
the notion of permissive schedulers. In contrast to standard schedulers, where for
each system run the next action to take is fixed, more permissiveness is given in the
sense that several actions are allowed. The first step is to compute a safe permissive
scheduler which allows only safe behavior. The system is then restricted according
to this scheduler (or strategy) and fit for safe exploration.

It would be desirable to compute a permissive scheduler which encompasses the
set of all safe schedulers. Having this would ensure that via reinforcement learn-
ing a safe scheduler inducing optimal cost would obtained. Unfortunately, there
is no efficient representation of such a maximal permissive scheduler. Therefore,
we propose an iterative approach utilizing SMT-solving where a safe permissive

132 S. Junges et al.

scheduler is computed. Out of this, reinforcement learning determines the locally
optimal scheduler. In the next iteration, this scheduler is explicitly excluded and
a new permissive scheduler is obtained. This is iterated until the performance cri-
terion is satisfied or until the solution is determined to be globally optimal which
can be done using known lower bounds on the occurring costs.

Related Work. In [11], the computation of permissive schedulers for stochas-
tic 2-player games is proposed for reward properties without additional safety-
constraints. A dedicated mixed-integer linear programming (MILP) encoding
optimizes w. r. t. certain penalties for actions. In [12], permissive safe scheduling
is investigated for transition systems and LTL properties. Safe or constrained
(e.g., by temporal logic specifications) exploration has also been investigated
in the learning literature. Some recent examples include [13,14]. In [15], safety
guarantees are added via the usage of Gaussian processes. An overview on safe
exploration using reinforcement learning can be found in [16].

Summary of the Contributions. We give the first approach to controller synthe-
sis for stochastic systems regarding safety and performance in a setting where
models are known but costs are not. This encompasses:

– an iterative approach to the computation of safe permissive schedulers based
on SMT-solving;

– exploitation of permissive schedulers for reinforcement learning towards glob-
ally optimal solutions;

– a discussion of several heuristics to both speed up the computations and avoid
too many iterations; and

– a prototype implementation showing promising results on several case studies.

The paper is structured as follows: First, we provide basic notations and for-
mal prerequisites in Sect. 2. In Sect. 3 we introduce our notion of permissive
schedulers, discuss efficient representations, and introduce technicalities that are
needed afterwards. Section 4 presents our main results on computing safe and
optimal schedulers. After presenting several case studies and benchmark results
in Sect. 5, we finally draw a conclusion and point to future work in Sect. 6.

2 Preliminaries

In this section, we introduce the required models and specifications considered
in this paper, and provide a formal problem statement.

Models. For a set X, let 2X denote the power set of X. A probability distribution
over a finite or countably infinite set X is a function μ : X → [0, 1] ⊆ R with∑

x∈X μ(x) = μ(X) = 1. In this paper, all probabilities are taken from Q. Let
the set of all distributions on X be denoted by Distr(X). The set supp(μ) =
{x ∈ X | μ(x) > 0} is the support of μ ∈ Distr(X). If μ(x) = 1 for x ∈ X and
μ(y) = 0 for all y ∈ X \ {x}, μ is called a Dirac distribution.

Safety-Constrained Reinforcement Learning for MDPs 133

Definition 1 (MDP). A Markov decision process (MDP) M = (S, sI ,Act ,P)
is a tuple with a finite set S of states, a unique initial state sI ∈ S, a finite set
Act of actions, and a (partial) probabilistic transition function P : S × Act →
Distr(S).

MDPs operate by means of nondeterministic choices of actions at each state,
whose successors are then determined probabilistically w. r. t. the associated
probability distribution. The set of enabled actions at state s ∈ S is denoted
by Act(s) = {a ∈ Act | ∃μ ∈ Distr(S). μ = P(s, α)}. To avoid deadlock states,
we assume that |Act(s)| ≥ 1 for all s ∈ S. A cost function ρ : S × Act → R≥0

for an MDP M adds a cost to each transition (s, a) ∈ S × Act with a ∈ Act(s).
A path in an M is a finite (or infinite) sequence π = s0a0s1a1 . . . with

P(si, α, si+1) > 0 for all i ≥ 0. The set of all paths in M is denoted by PathsM,
all paths starting in state s ∈ S by PathsM(s). The cost of finite path π is
defined as the sum of the costs of all transitions in π, i.e., ρ(π) =

∑n−1
i=0 ρ(si, ai)

where n is the number of transitions in π.
If |Act(s)| = 1 for all s ∈ S, all actions can be disregarded and the MDP M

reduces to a discrete-time Markov chain (MC), sometimes denoted by D, yielding
a transition probability transition function of the form P : S → Distr(S). The
unique probability measure PrD(Π) for set Π of infinite paths of MC D can be
defined by the usual cylinder set construction, see [17] for details. The expected
cost of the set Π of paths, denoted by ECD(Π), is defined as

∑
π∈Π Pr(π)·ρ(π).

In order to define a probability measure and expected cost on MDPs, the non-
deterministic choices of actions are resolved by so-called schedulers1. As in [11],
for practical reasons we restrict ourselves to memoryless schedulers; more details
about schedulers can be found in [17].

Definition 2 (Scheduler). A scheduler for an MDP M is a function σ : S →
Distr(Act) such that σ(s)(a) > 0 implies a ∈ Act(s). Schedulers using only
Dirac distributions are called deterministic. The set of all schedulers over M is
denoted by SchedM.

Deterministic schedulers are functions of the form σ : S → Act with σ(s) ∈
Act(s). Schedulers that are not deterministic are also called randomized. Apply-
ing a scheduler to an MDP yields a so-called induced Markov chain, as all non-
determinism is resolved.

Definition 3 (Induced MC). Let MDP M = (S, sI ,Act ,P) and scheduler
σ ∈ SchedM. The MC induced by M and σ is Mσ = (S, sI ,Act ,Pσ) where

Pσ(s, s′) =
∑

a∈Act(s)

σ(s)(a) · P(s, a)(s′) for all s, s′ ∈ S .

Intuitively, the transition probabilities in Mσ are obtained w. r. t. the random
choices of action of the scheduler.

1 Also referred to as strategies or policies.

134 S. Junges et al.

Remark 1. Deterministic schedulers pick just one action at each state and the
associated probability distribution determines the probabilities. In this case we
write for all states s ∈ S and a ∈ Act with σ(s)(a) = 1:

Pσ(s, s′) = P(s, a)(s′) .

Specifications. Specifications are given by combining reachability properties and
expected cost properties. A reachability property P≤λ(♦T) with upper probabil-
ity bound λ ∈ [0, 1] ⊆ Q and target set T ⊆ S constrains the probability to
finally reach T from sI in M to be at most λ. Analogously, expected cost prop-
erties E≤κ(♦G) impose an upper bound κ ∈ Q on the expected cost to reach
goal states G ⊆ S. Combining both types of properties, the intuition is that
a set of bad states T shall only be reached with a certain probability λ (safety
specification) while the expected cost for reaching a set of goal states G has to be
below κ (performance specification). This can be verified using multi-objective
model checking [6–8], provided all problem data (i.e., probabilities and costs) are
a-priori known.

We overload the notation ♦T to denote both a reachability property and the
set of all paths that finally reach T from the initial state sI of an MC. The
probability and the expected cost for reaching T from sI are denoted by Pr(♦T)
and EC(♦T), respectively. Hence, PrD(♦T) ≤ λ and ECD(♦G) ≤ κ express that
the properties P≤λ(♦T) and E≤κ(♦G) respectively are satisfied by MC D.

An MDP M satisfies both reachability property ϕ and expected cost property
ψ, iff for all schedulers σ it holds that the induced MC Mσ satisfies the properties
ϕ and ψ, i.e., Mσ |= ϕ and Mσ |= ψ. In our setting, we are rather interested
in the so-called synthesis problem, where the aim is to find a scheduler σ such
that both properties are satisfied (while this does not necessarily hold for all
schedulers). If Mσ |= ϕ, scheduler σ is said to admit the property ϕ; this is
denoted by σ |= ϕ.

Formal Problem Statement. Given an MDP M1 modeling possible controllable
behaviors and an MC D modeling the stochastic behavior of an environment, the
synchronous product (see e. g. [18]) is denoted by M1×D = M = (S, sI ,Act ,P).
Let ρ be a cost function over M that is unknown to the robot prior to exploring
the state space. We assume that for each transition (s, a), the cost is bounded
from below and from above, i. e. l(s,a) ≤ ρ(s, a) ≤ u(s,a) with l(s,a), u(s,a) ∈ Q

for any (s, a) ∈ S × Act . Let safety specification ϕ = P≤λ(♦T) and performance
specification ψ = E≤κ(♦G) for M with T,G ⊆ S.

The synthesis problem is to find a scheduler σ ∈ SchedM such that Mσ |= ϕ
and Mσ |= ψ. The optimal synthesis problem is to find a scheduler σ∗ ∈ SchedM

such that Mσ∗ |= ϕ and σ∗ minimizes the expected cost to reach G.

3 Permissive Schedulers

As mentioned before, we will utilize the notion of permissive schedulers, where
not all nondeterminism is to be resolved. A permissive scheduler may select a

Safety-Constrained Reinforcement Learning for MDPs 135

set of actions at each state, such that at a state there might be several possible
actions or probability distributions over actions left open. In this sense, permis-
sive schedulers can be seen as sets of schedulers. Here, we discuss properties and
efficient representations that are needed later on. Analogously to schedulers, we
consider only memoryless notions.

Definition 4 (Permissive Scheduler). A permissive scheduler of MDP M =
(S, sI ,Act ,P) is a function θ : S → 2Distr(Act) \ ∅ and ∀s ∈ S.∀μ ∈
θ(s). supp(μ) ⊆ Act(s). The set of all permissive schedulers for M is PSchedM.

Intuitively, at each state there is not only one but several distributions over
actions available. Deterministic permissive schedulers are functions of the form
S → 2Act , i. e., there are different choices of action left open. We use the following
notations for connections to (non-permissive) schedulers.

Definition 5 (Compliance). A scheduler σ for the MDP M is compliant with
a permissive scheduler θ, written σ ∈ θ, iff for all s ∈ S it holds that σ(s) ∈ θ(s).

A permissive scheduler θS for M is induced by a set of schedulers S ⊆
SchedM, iff for each state s ∈ S and each distribution μ ∈ θS(s) there is a
scheduler σ ∈ S with σ(s) = μ.

We are interested in sets of schedulers that admit our safety specification.

Definition 6 (Safe and Maximal Permissive Scheduler). A permissive
scheduler θ ∈ PSchedM for the MDP M is safe for a reachability property
ϕ = P≤λ(♦T) iff for all σ ∈ θ it holds that σ |= ϕ, denoted by θ |= ϕ. The
permissive scheduler θ is called maximal, if there exists no scheduler σ ∈ SchedM

with σ
∈ θ and σ |= ϕ.

A safe permissive scheduler contains only schedulers that admit the safety
specification while a maximal safe permissive scheduler contains all such sched-
ulers (and probably more). Note that even for a set of safe schedulers, the induced
permissive scheduler might be unsafe; contradicting choices might evolve, i. e.,
choosing a certain action (or distribution) at one state might rule out certain
memoryless choices at other states; this is illustrated by the following example.

Example 1. Consider the MDP M depicted in Fig. 1, where the only nonde-
terministic choices occur at states s0 and s1. Assume a reachability property
ϕ = P≤0.3(♦{s2}). This property is violated by the deterministic scheduler
σ1 := {s0 �→ a, s1 �→ c} as s2 is reached with probability 0.36 exceeding
the threshold 0.3. This is the only unsafe scheduler; removing either action a
or c from M leads to a safe MDP, i. e. the possible deterministic schedulers
σ2 := {s0 �→ a, s1 �→ d}, σ3 := {s0 �→ b, s1 �→ c}, and σ4 := {s0 �→ b, s1 �→ d} are
all safe. However, consider the induced permissive scheduler θσ2,σ3,σ4 ∈ PSchedM

with θ :=
{
s0 �→ {a, b}, s1 �→ {b, c}}, where in fact all nondeterministic choices

are left open. Unfortunately, it holds that the unsafe scheduler σ1 is compliant
with θσ2,σ3,σ4 , therefore θ is unsafe.

136 S. Junges et al.

s0 s1 s2

s3 s4

a

b

c

d

0.6

0.4
0.4

0.6

0.6

0.4
0.4

0.6

11

1

Fig. 1. Example MDP M illustrating conflicting schedulers

Example 1 shows that in order to form a safe permissive scheduler it is not
sufficient to just consider the set of safe schedulers. Actually, one needs to keep
track that the very same safe scheduler is used in every state. Theoretically,
this can be achieved by adding finite memory to the scheduler in order to avoid
conflicting actions.

A succinct representation of the maximal permissive scheduler can be gained
by enumerating all minimal sets of conflicting action choices (now only consid-
ering deterministic schedulers), and excluding them from all possible schedulers.
We investigate the worst case size of such a set. Assume without loss of generality
that for all s ∈ S the sets Act(s) are pairwise disjoint.

Definition 7 (Conflict Set). C ⊆ Act is a conflict set for MDP M and
property ϕ iff there exists a deterministic scheduler σ ∈ SchedM such that
(∀a ∈ C.∃s ∈ S. σ(s) = a) and σ
|= ϕ. The set of all conflict sets for
M and ϕ is denoted by Conf M

ϕ . C ∈ Conf M
ϕ is a minimal conflict set iff

∀C ′
� C.C ′
∈ Conf M

ϕ .

Lemma 1. The size of the set of all minimal conflict sets for M and ϕ poten-
tially grows exponentially in the number of states of M.

Proof Sketch. Let Mn = (S, sI ,Act ,P) be given by S = {s0, . . . , sn,⊥}, sI = s0,
Act = {a0, . . . , an−1, b0, . . . , bn−1, c, d} and

P(s, α)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 if i < n, α = ai, s = si, t = si+1

0.5 if i < n, α = ai, s = si, t = ⊥
1 if i < n, α = bi, s = si, t = si+1

1 if α = c, s = sn, t = sn

1 if α = d, s = ⊥, t = ⊥
0 otherwise

Figure 2 shows the instance M4 where several copies of the ⊥-states have been
drawn and the d self-loops have been omitted for ease of presentation. Consider
the property ϕ = P≤λ(♦{sn}) with λ = 0.5

n
2 +1. Choosing any combination of n

2

Safety-Constrained Reinforcement Learning for MDPs 137

s0 s1 s2 s3 s4

a0

b0

0.5

1

a1

b1

0.5

1

a2

b2

0.5

1

a3

b3

0.5

1
c 1

Fig. 2. MDP M4 inducing exponentially many (minimal) conflict sets

of the bi actions yields a minimal conflict set. Hence, there are at least
(

n
n
2

)
n:=2m=

(2m)!
2m!

=
(m + 1)

1
· · · 2m

m︸ ︷︷ ︸
m factors ≥ 2

≥ 2m m:=n
2= 2

n
2 ∈ Ω

((√
2
)n)

minimal conflict sets. �

This strongly indicates that an exact representation of the maximal permis-
sive scheduler is not feasible. For algorithmic purposes, we strive for a more
compact representation. It seems natural to investigate the possibilities of using
MDPs as representation of permissive schedulers. Therefore, analogously to
induced MCs for schedulers (cf. Definition 3), we define induced MDPs for per-
missive schedulers. For a permissive scheduler θ ∈ PSchedM, we will uniquely
identify the nondeterministic choices of probability distributions μ ∈ θ(s) at each
state s ∈ S of the MDP by new actions as,μ.

Definition 8 (Induced MDP). For an MDP M = (S, sI ,Act ,P) and
permissive scheduler θ for M, the MDP induced by M and θ is Mθ =
(S, sI ,Actθ,Pθ) with Actθ = {as,μ | s ∈ S, μ ∈ θ(s)} and:

Pθ(s, as,μ)(s′) =
∑

a∈Act(s)

μ(s)(a) · P(s, a)(s′) for s, s′ ∈ S and as,μ ∈ Actθ .

Intuitively, we nondeterministically choose between the distributions over actions
induced by the permissive scheduler θ. Note that if the permissive scheduler
contains only one distribution for each state, i. e., in fact the permissive scheduler
is just a scheduler, the actions can be discarded which yields an induced MC as
in Definition 3, making this definition backward compatible.

Remark 2. Each deterministic scheduler σ ∈ SchedMθ

for the induced MDP
Mθ induces a (randomized) scheduler for the original MDP M. In particular,
σ induces a scheduler σ′ ∈ θ for M which is compliant with the permissive
scheduler θ: For all s ∈ S there exists an action as,μ ∈ Actθ such that σ(s) = as,μ.
The randomized scheduler σ′ is then given by σ′(s) = μ and it holds that

∑

a∈Act(s)

σ′(s)(a) · P(s, a)(s′) = Pθ(s, as,μ)(s′) .

138 S. Junges et al.

s0 s1 s2

s3 s4

a

b d

0.6

0.4
0.4

0.6

0.4

0.6

11

1

Fig. 3. Induced MDP Mθsafe

Remark 3. A deterministic permissive scheduler θdet ∈ PSchedM for the MDP
M simply restricts the nondeterministic choices of the original MDP to the ones
that are chosen with probability one by θdet. The transition probability function
Pθdet of the induced MDP Mθdet can be written as

Pθ(s, as,μ)(s′) = P(s, a)(s′) for all s ∈ S and as,μ ∈ Actθdet with μ(a) = 1 .

The induced MDP Mθ can be seen as a sub-MDP Msub = (S, sI ,Act ,Psub)
of M by omitting all actions that are not chosen. Hence, for all s, s′ ∈ S:

Psub(s, a)(s′) =

{
P(s, a)(s′) if ∃μ ∈ θ(s). μ(a) = 1
0 otherwise .

Example 2. Recall Example 1 with ϕ = P≤0.3(♦{s2}). The MDP Mθ induced by
the permissive scheduler θ is the same as M, as all available choices of actions
are included (see Example 1). Note that we use the simplified notation from
Remark 3. However, consider the safe (but not maximal) permissive scheduler
θsafe formed by {s0 �→ a, s1 �→ d} and {s0 �→ b, s1 �→ d}. The induced MDP is
the sub-MDP Mθsafe of M depicted in Fig. 3. This sub-MDP has no scheduler σ
with σ
|= ϕ.

4 Safety-Constrained Reinforcement Learning

Recall that the synthesis problem amounts to determining a scheduler σ∗ of
the MDP M such that σ∗ admits the safety specification ϕ and minimizes the
expected cost (of reaching G). A naive approach to this problem is to iterate
over all safe schedulers σ1, σ2, σ3, . . . of M and pursue in the j-th iteration as
follows. Deploy the (safe) scheduler σj on the robot. By letting the robot safely
explore the environment (according to σj), one obtains the expected costs cj ,
say, of reaching G (under σj). By doing so for all safe schedulers, one obtains
the minimum cost. After checking all safe schedulers, we have obtained a safe
minimal one whenever some cn is below the threshold κ. The solution to the
synthesis problem is then the scheduler σn for which cn is minimal. Otherwise,
we can conclude that the synthesis problem has no solution. Note that while

Safety-Constrained Reinforcement Learning for MDPs 139

MDP M, minimally initialized cost function ρ,
safety specification ϕ, performance specification ψ

1. Compute safe permissive
scheduler θ ∈ PSchedM;
exclude all previously
computed schedulers

2. Obtain locally cost-
optimal scheduler σ ∈ θ
and refine cost function ρ
via reinforcement learning

4. Check if σ |= ψ
or if σ is optimal

3. Compute scheduler σl ∈
SchedM on the original

MDP M inducing a lower
bound on the expected cost

Return σ

Induced MDP Mθ

Scheduler σ

Cost function ρ

Scheduler σl

yes

no

Fig. 4. Overview of safety-constrained reinforcement learning

deploying the safe schedulers, the robot explores more and more possible tra-
jectories, thus becoming more knowledgeable about the (a-priori) unknown cost
structure of the MDP.

Although this approach is evidently sound and complete, the number of
deployments is excessive. Our approach avoids this by:

1. Testing permissive (i. e. sets of) schedulers rather than one scheduler at a
time. This is done by employing reinforcement learning.

2. Using that the expected costs c∗ under σ∗ cannot be smaller than the minimal
expected cost c in the MDP M (possibly achieved by some unsafe scheduler).
This allows for deciding minimality of scheduler σj by checking cj = c, pos-
sibly avoiding exploration of any further schedulers.

3. Preventing the deployment of safe scheduler σj whenever the minimal
expected cost ci of all schedulers checked so far (i < j) is smaller than the
expected cost under σj .

Let us now briefly explain our approach to synthesize a safe and optimal
scheduler; further details are given in the rest of this section. Figure 4 surveys
the approach. We initialize the cost function of the MDP by setting the cost of
transition (s, a) to its lower bound l(s,a). The synthesis of a safe and optimal
scheduler is done by iteratively considering permissive schedulers θ1, θ2, θ3, . . .

140 S. Junges et al.

according to which the MDP M is explored. This yields a scheduler σ whose
expected cost is minimal among the schedulers deployed so far. This search is
finished whenever either the expected costs under σ is below κ, σ is globally
optimal, or no further permissive schedulers can be found. In the j-th iteration,
the following four steps are carried out:

1. Determine the j-th safe permissive scheduler θj (if it exists) such that θj |= ϕ.
All previously considered schedulers are excluded from θ. This ensures that
θj is a fresh permissive scheduler; see Sect. 4.1 for details.

2. Check all compliant schedulers of θj by reinforcement learning. This yields
scheduler σj ∈ θj that minimizes the expected cost of reaching G. By
Remark 2 on Page 8, σj induces a (randomized) scheduler σ for M. The
scheduler σ is safe w. r. t. ϕ and cost-minimal among all compliant schedulers
to θ. During the learning process, the cost function ρ is refined with the actual
costs for the (newly) explored actions. See Sect. 4.2 for details.

3. Using the refined cost function, a scheduler σl inducing minimal expected cost
cl is computed for the original MDP M (neglecting being safe or not). As
this is computed using lower bounds on local costs and potentially using an
unsafe scheduler, the expected cost forms a lower bound on the cost obtained
using full knowledge of the cost function and only safe schedulers.

4. After learning the scheduler σ, we check whether ECMσ

(♦G) ≤ κ. More-
over, if the expected cost equals the lower bound computed in Step 3, i. e.,
ECMσ

(♦G) = cl, the scheduler σ is globally optimal (and safe).

Furthermore, the best scheduler found so far induces an upper bound on the
performance as it is optimal for the already learned parts of the MDP. After
computing a new candidate (permissive) scheduler, we can re-compute its per-
formance using the lower bounds on actions on the original MDP. If it does not
(potentially) admit a better performance, it does not need to be deployed at all.

Note that in the worst case, we actually enumerate all possible safe sched-
ulers, i. e. the maximal permissive scheduler. However, the iterative nature of
the procedure together with the optimizations allows for earlier termination as
soon as the optimum is reached or the gap between the lower and upper bounds
for the minimal expected cost is sufficiently small.

Theorem 1. Safety-constrained reinforcement learning is sound and complete.

The method is sound and complete because finally we iterate over all safe per-
missive schedulers and thereby over all possible safe schedulers.

4.1 Computing Permissive Schedulers

In the following, we discuss how to compute a safe deterministic permissive
scheduler that induces a safe sub-MDP such as illustrated in Example 2. More-
over, we indicate how a safe permissive scheduler can be computed in general
(for randomized schedulers). Recall that according to our setting we are given
an MDP M = (S, sI ,Act ,P) and a safety specification ϕ = P≤λ(♦T) for T ⊆ S.

Safety-Constrained Reinforcement Learning for MDPs 141

The computation will be performed by means of an SMT encoding. This is
similar to the mixed linear integer programming (MILP) approach used in [11].
The intuition is that a satisfying assignment for the encoding induces a safe
permissive scheduler according to Definition 6. We use the following variables.

ys,a ∈ B = {true, false} for each state s ∈ S and each action a ∈ Act(s) is
assigned true iff action a is allowed to be taken in state s by the permissive
scheduler. These variables form the permissive scheduler.

ps ∈ [0, 1] ⊆ R for each state s ∈ S captures the maximal probability to reach
the set of target states T ⊆ S under each possible scheduler that is compliant
to the permissive scheduler.

The SMT encoding reads as follows.

psI
≤ λ (1)

∀s ∈ S.
∨

a∈Act(s)

ys,a (2)

∀s ∈ T. ps = 1 (3)

∀s ∈ S.∀a ∈ Act(s). ys,a → ps ≥
∑

s′∈S

P(s, a)(s′) · ps′ (4)

First, Constraint 1 ensures that the maximal probability at the initial state
sI achieved by any scheduler that can be constructed according to the valuation
of the ys,a-variables does not exceed the given safety threshold λ. Due to Con-
straint 2, at least one action a ∈ Act(s) is chosen by the permissive scheduler
for every state s ∈ S as at least one ys,a-variable needs to be assigned true.
The probability of target states is set to 1 by Constraint 3. Finally, Constraint 4
puts (multiple) lower bounds on each state’s probability: For all s ∈ S and
a ∈ Act with ys,a = true, the probability to reach the target states is computed
according to this particular choice and set as a lower bound. Therefore, only
combinations of ys,a-variables that induce safe schedulers can be assigned true.

Theorem 2. The SMT encoding given by Constraints 1–4 is sound and complete.

Proof Sketch. Soundness refers to the fact that each satisfying assignment for
the encoding induces a safe deterministic permissive scheduler for MDP M
and safety specification ϕ. This is shown by constructing a permissive sched-
uler according to an arbitrary assignment of ys,a-variables. Applying the other
(satisfied) constraints ensures that this scheduler is safe. Completeness means
that for each safe deterministic permissive scheduler, a corresponding satisfying
assignment of the constraints exists. This is done by assuming a safe determinis-
tic permissive scheduler and constructing a corresponding assignment. Checking
all the constraints ensures that this assignment is satisfying.

Now, consider a deterministic scheduler σ ∈ SchedM which we want to
explicitly exclude from the computation. It needs to be ensured that for a satisfy-
ing assignment at least for one state the corresponding ys,σ(s) variable is assigned

142 S. Junges et al.

false in order to at least make one different decision. This can be achieved by
adding the disjunction

∨
s∈S ¬ys,σ(s) to the encoding.

Using an SMT solver like Z3, this encoding does not ensure a certain grade
of permissiveness, i. e., that as many ys,a-variables as possible are assigned true.
While this is a typical setting for MAX-SMT [19], in the current stable version of
Z3 this feature is not available yet. Certain schedulers inducing high probabilities
or desired behavior can be included using the assumptions of the SMT solver. An
alternative would be to use an MILP encoding like, e. g., in [11,20], and optimize
towards a maximal number of available nondeterministic choices. However, in our
setting it is crucial to ensure incrementality in the sense that if certain changes
to the constraints are necessary this does not trigger a complete restart of the
solving process.

Finally, there might be safe randomized schedulers that induce better optimal
costs than all deterministic schedulers [7,8]. To compute randomized permissive
schedulers, the difficulty is that there are arbitrarily (or even infinitely) many
probability distributions over actions. A reasonable approach is to bound the
number of possible distributions by a fixed number n and introduce for each
state s, distribution μi, and action a a real-valued variable ys,μi,a for 1 ≤ i ≤ n.
Constraint 2 is modified such that for all states and actions the ys,μi,a-variables
sum up to one and the probability computation in Constraint 4 has to take proba-
bilities over actions into account. Note that the MILP approach from [11] cannot
be adapted to randomized schedulers as non-linear constraints are involved.

4.2 Learning

In the learning phase, the main goal of this learning phase is the exploration of
this MDP, as we thereby learn the cost function. In a more practical setting, we
should balance this with exploitation, i. e., performing close to optimal—within
the bounds of the permissive scheduler—during the learning. The algorithm we
use for the reinforcement learning is Q-learning [10]. To favor the exploration,
we initialize the learning with overly-optimistic expected rewards. Thereby, we
explore large portions of the MDP while favoring promising regions of the MDP.

Proper balancing of exploration vs. exploitation depends on the exact
scenario [21]. Here, the balance is heavily affected by the construction of per-
missive schedulers. For instance, if we try to find permissive schedulers which do
not exclude the currently best known scheduler, then the exploitation during the
learning phase might be higher, while we might severely restrict the exploration.

5 Experiments

We implemented a prototype of the aforementioned synthesis loop in C++ and
conducted experiments using case studies motivated by robotic motion planning.
Our prototype uses the SMT-based permissive scheduler computation described
in Sect. 4.1 and seeks a locally maximal permissive scheduler by successively
adding as many actions as possible.

Safety-Constrained Reinforcement Learning for MDPs 143

Every MDP considered in the case studies has a set of bad states (that
may only be reached with a certain probability) and a set of goal states that
the system tries to reach. All case studies feature a relatively large number
of nondeterministic choices in each state and a high amount of probabilistic
branching to illustrate the applicability of our method to practically relevant
models with a high number of schedulers that achieve various performances.

Janitor. This benchmark is loosely based on the grid world robot from [5]. It
features a grid world with a controllable robot. In each step, the robot either
changes its direction (while remaining on the same tile) or moves forward in
the currently selected direction. Doing so, the robot consumes fuel depending on
the surface it currently occupies. The goal is to minimize the fuel consumption
for reaching the opposite corner of the grid world while simultaneously avoiding
collision with a janitor that moves randomly across the board.

Following a Line Fragment. We consider a (discretized) variant of a machine that
is bound to follow a straight line, e. g. a sawmill. In each step, there is a certain
probability to deviate from the line depending on the speed the machine currently
operates at. That is, higher speeds come at the price of an increased probability to
deviate from the center. Given a fixed tolerable distance d, the system must avoid
to reach states in which the distance from the center exceeds d. Also, the required
time to complete the task or the required energy are to be minimized, both of which
depend on the currently selected speed mode of the system.

Communicating Explorer. Finally, we use the model of a semi-autonomous
explorer as described in e. g. [22]. Moving through a grid-like environment,
the system communicates with its controller via two lossy channels for which
the probability of a message loss depends on the location of the explorer. The
explorer can choose between performing a limited number of attempts to commu-
nicate or moving in any direction in each time step. Similarly to the janitor case
study, the system tries to reach the opposite corner of the grid while avoiding
states in which the explorer moved too far without any (successful) intermediate
communication. For this model, the cost to be optimized is the energy consump-
tion of the electronic circuit, which induces cost for movement, e. g. by utilizing
sensors, and (significantly higher) cost for utilizing the communcation channels.

Benchmark Results. Table 1 summarizes the results we obtained using our proto-
type on a MacBook Pro with an 2.67 GHz Intel Core i5 processor and a memory
limit of 2 GB. As SMT-backend, we used Z3 [23] in version 4.4.0. For several
instances of each case study, we list the number of states, transitions, and prob-
abilistic branches (i. e., the size of the support set of the distributions). Fur-
thermore, we give the bound λ used in the safety property and the optimal
performance over all safe schedulers. The following columns provide information
about the progress of the synthesis procedure over several selected iterations.
The first of these columns (i) shows the number of iterations performed thus
far, i. e., the number of permissive schedulers on which we applied learning.

144 S. Junges et al.

Table 1. Benchmark results

Benchmark States Trans. Branch. λ Opt. i t Lower Upper

Janitor 5,5 625 1125 3545 0.1 88.6 1 813 84 88.6

2 2578 84 88.6

FolLine 30,15 455 1265 3693 0.01 716.0 1 41 715.4 717.1

3 85 715.62 716.83

13 306 715.9 716.5

40,15 625 1775 5223 0.12 966.0 1 304 964.8 968.2

3 420 965.4 967.2

8 738 965.6 966.7

ComExp 6,6,6 823 2603 3726 0.08 54.5 1 5 0.3 113.3

2 26 0.3 74.9

3 105 0.3 57.3

8,8,6 1495 4859 6953 0.12 72.9 1 15 0.42 163.1

2 80 0.42 122.0

3 112 0.42 90.1

7 1319 0.42 78.2

For iteration i, we give the cumulative time t in seconds required for the com-
putation of the permissive scheduler as well as the current lower and upper
bound on the cost (w. r. t. the performance measure). The computation time for
simulating deployment and reinforcement learning are negligible.

Discussion of the Results. For the Janitor and FolLine case studies, we observe
that the investment of computing a locally maximal permissive scheduler pays
off, meaning that we get very tight lower and upper bounds already after the
first deployment. This investment comes at the cost of a higher computational
effort (per iteration). This could be reduced by more elaborate heuristics which
limit our search for (local) maximal permissiveness.

For the communicating explorer, the situation is more difficult. Since a sched-
uler that does not communicate at all has very low expected costs, a loose
lower bound has been obtained. This bound could be severely improved upon
by obtaining tighter lower bounds via multi-objective model checking.

Lessons Learned. Based on our experiments, we learned that quantifying per-
missiveness via the enabled number of actions yields counterintuitive results.
Observe that for unreachable states literally all actions can be included in the
scheduler without affecting the satisfaction of a property. This leads to the effect
that—in order to achieve a high permissiveness—it is best to have only few reach-
able states and allow all actions for unreachable states. This effect is unmentioned
by prior work in [11]. It thus follows that quantifying permissiveness should only
consider actually reachable states. This observation is related to the general

Safety-Constrained Reinforcement Learning for MDPs 145

problem of forcing a solver to ensure reachability of certain states, which would
also be beneficial for ensuring the reachability of, e. g., goal states. However, any
guidance towards this proved to drastically decrease the solver performance.

6 Conclusion and Future Work

We presented the—to the best of our knowledge—first approach on iteratively
computing safe and optimal strategies in a setting subject to random choices,
unknown cost, and safety hazards. Our method was shown to work on practical
benchmarks involving a high degree of nondeterminism. Future work will concern
improving the scalability by employing multi-objective model checking in order
to prove optimality at earlier iterations of the process. Moreover, extensions to
stochastic 2-player games for modeling adversarial environment behavior or the
investigation of unknown probability distributions seem very interesting.

Acknowledgements. We want to thank Benjamin Lucien Kaminski for the valuable
discussion on the worst case size of conflicting sets.

References

1. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

2. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proceedings of QEST, pp. 131–132 (2006)

3. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

4. Penna, G.D., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Finite horizon analysis
of Markov chains with the Murphi verifier. Softw. Tools Technol. Transf. 8(4–5),
397–409 (2006)

5. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Pro-
ceedings of QEST, pp. 203–204. IEEE CS (2012)

6. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 317–332. Springer, Heidelberg (2012)

7. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logical Methods Comput. Sci. 4(4),
1–21 (2008)

8. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: Proceedings of CSL-LICS, pp. 1:1–1:10. ACM (2014)

9. Sutton, R., Barto, A.: Reinforcement Learning - An Introduction. MIT Press,
Cambridge (1998)

10. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Proceedings of ICML, pp. 157–163. Morgan Kaufmann (1994)

146 S. Junges et al.

11. Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 531–546. Springer, Heidelberg (2014)

12. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with
temporal logic constraints. CoRR (2015)

13. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. In:
Proceedings of ICML. icml.cc/Omnipress (2012)

14. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. In: Proceedings of RSS (2014)

15. Akametalu, A., Fisac, J., Gillula, J., Kaynama, S., Zeilinger, M., Tomlin, C.:
Reachability-based safe learning with Gaussian processes. In: Proceedings of CDC,
pp. 1424–1431 (2014)

16. Pecka, M., Svoboda, T.: Safe exploration techniques for reinforcement learning –
an overview. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906, pp. 357–375.
Springer, Heidelberg (2014)

17. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

18. Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel com-
position and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen,
J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43.
Springer, Heidelberg (2004)

19. Bjørner, N., Phan, A.: νZ - maximal satisfaction with Z3. In: Proceedings of SCSS.
EPiC Series, vol. 30, pp. 1–9. EasyChair (2014)

20. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. Theor. Comput. Sci. 549,
61–100 (2014)

21. Brafman, R.I., Tennenholtz, M.: R-MAX - a general polynomial time algorithm
for near-optimal reinforcement learning. J. Mach. Learn. Res. 3, 213–231 (2002)

22. Stückler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., Behnke, S.:
Nimbro explorer: semiautonomous exploration and mobile manipulation in rough
terrain. J. Field Robot. (2015, to appear)

23. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

	Safety-Constrained Reinforcement Learning for MDPs
	1 Introduction
	2 Preliminaries
	3 Permissive Schedulers
	4 Safety-Constrained Reinforcement Learning
	4.1 Computing Permissive Schedulers
	4.2 Learning

	5 Experiments
	6 Conclusion and Future Work
	References

