Symbiotic 3: New Slicer
and Error-Witness Generation

(Competition Contribution)

Marek Chalupa®), Martin Jonas, Jiri Slaby, Jan Strejéek,
and Martina Vitovska

Faculty of Informatics, Masaryk University, Brno, Czech Republic
xchalup4@fi.muni.cz

Abstract. SYMBIOTIC 3 is a new generation of a bug-detection tool for
C programs. The tool sticks to the combination of program instrumenta-
tion, slicing, and symbolic execution. Large parts of the tool are rewrit-
ten, in particular the managing and instrumentation scripts and slicer
(including points-to analysis). Further, the symbolic executor KLEE has
been modified to produce error-witnesses. The changes are commented
in the description of the tool workflow.

1 Verification Approach and Software Architecture

As the previous versions of SYMBIOTIC [7,9], the new version also follows the
approach suggested in [8]: an analyzed program is (i) instrumented with code
that tracks a finite-state machine describing erroneous behaviors, (i¢) reduced
by slicing [10] that removes code not influencing the state machine moves, and
(#it) symbolically executed [6] to find erroneous runs in the program.

The workflow of SYMBIOTIC 3 (together with indication of chosen program-
ming languages and employed external tools with their respective versions) is
provided in Fig. 1. Our tool currently focuses on the Error Function Unreacha-
bility property (however, the approach can handle the other properties as well
and we plan to support them in near future). The code cleanup modifies the
C source (e.g. to bypass the known bug in CLANG where inlined functions are
omitted). The program is then translated to LLvM, checked for unsupported func-
tionality (e.g. creation of new threads), and instrumented. As we support only
the unreachability property, the instrumentation is trivial. This step makes also
another small modifications of the program, e.g. each allocated variable is initial-
ized to a nondeterministic value (to solve problems with uninitialized variables
appearing in some benchmarks). After linking with 1ib.bc (which contains our
definitions of __VERIFIER_* functions) and some optimization passes, namely
control flow graph optimization and constant propagation, we slice the program.

The slicer in SYMBIOTIC 3 is written from scratch. While the previous slicer
followed the slicing algorithm of [10], the current one implements slicing based

The research was supported by The Czech Science Foundation, grant GA15-17564S.

© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 946-949, 2016.
DOI: 10.1007/978-3-662-49674-9 67

Symbiotic 3: New Slicer and Error-Witness Generation 947

main script (in Python 2.7)

unreachability

Property)W » unknown
|

v

”””””” { code cleanup]‘ ************* LLVM 3.4

clang
unknown s el { translation to LLVM j
= 1lvm-1link
[instrumentation]——)[hnklng with 1ib.bc j
|
slicer (in C++11) opt
points-to analysis | CFG optimization
slicing | constant propagation
opt
(U like 02
KLEE 1.0 (patched) I ’Ikoptlrmzatlons ike -0
symbolic execution | interpretation
witness generation of KLEE output |.....oooooooooveveeenn. N }:glf:e + witness
unknown

Fig. 1. Workflow of SymBIOTIC 3. Dashed lines represent C programs, solid lines LLvM
bytecode, and dotted lines text data.

on dependence graphs [3,5]. The slicer relies on field-sensitive, flow-insensitive
points-to analysis (extended with an “unknown offset” value), which has been
also reimplemented. The new slicer is substantially faster than the previous one.

The sliced program is optimized again (with passes similar to -02 optimiza-
tion level) and symbolically executed with our fork of KLEE [1]. We modified it
to stop the computation when assertion violation is detected and to produce the
corresponding error witness. The exact versions of KLEE and the solvers STP [4]
and MINISAT [2] called by KLEE can be found in the SYMBIOTIC 3 distribution.
Finally, the KLEE output is translated into the required form. In particular, a
witness is translated to the GraphML format by a Perl script.

2 Strengths and Weaknesses

The main strengths of the approach are its soundness and universality; the app-
roach can be applied also to the Concurrency benchmarks and these with more
complex properties, which are currently not supported by our implementation
(and thus skipped). Another advantage is the modularity of the tool architecture.

The main disadvantage is the high computational cost of symbolic execu-
tion. Especially programs with loops, recursion, or intensive branching cannot be

948 M. Chalupa et al.

analyzed within reasonable time unless an erroneous execution is detected soon.
The fundamental problem are programs with infinite paths as these cannot be
fully symbolically executed in finite time.

3 Tool Setup and Configuration

Download: https://github.com/staticafi/symbiotic/releases/tag/3.0.1
— Installation: Unpack the archive. Further, gcc 4.9 or higher, GNU utils (sed),
python 2.7, and perl with the XML: :Writer module are required.
— Participation Statement: SYMBIOTIC 3 participates in all categories.
Ezxecution: Run ./symbiotic OPTS <source>, where available OPTS include:
e - -64 sets environment for 64-bit benchmarks
e - —prp=file sets the specification file to use
e - -help shows the full list of possible options

Precise SV-COMP settings and the translation of the output to the competition
results can be found at: http://sv-comp.sosy-lab.org/2016 /systems.php

4 Software Project and Contributors

SYMBIOTIC 3 has been developed by M. Chalupa, J. Slaby, M. Vitovské, and
M. Jonas under supervision of J. Strejéek. The tool is available under the GNU
GPLv2 License. The project is hosted by the Faculty of Informatics, Masaryk
University. LLvM, KLEE, sSTP, and MINISAT are also available under open-source
licenses. The project web page is: https://github.com /staticafi/symbiotic

References

1. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209-224. USENIX
Association (2008)

2. Eén, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004)

3. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. In: Paul, M., Robinet, B. (eds.) International Symposium
on Programming. LNCS, vol. 167, pp. 125-132. Springer, Heidelberg (1984)

4. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519-531. Springer,
Heidelberg (2007)

5. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26-60 (1990)

6. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385-394 (1976)

7. Slaby, J., Strejéek, J.: Symbiotic 2: more precise slicing. In: Abraham, E., Havelund,
K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 415-417. Springer,
Heidelberg (2014)

https://github.com/staticafi/symbiotic/releases/tag/3.0.1
http://sv-comp.sosy-lab.org/2016/systems.php
https://github.com/staticafi/symbiotic

Symbiotic 3: New Slicer and Error-Witness Generation 949

8. Slaby, J., Strejcéek, J., Trtik, M.: Checking properties described by state machines:
on synergy of instrumentation, slicing, and symbolic execution. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 207-221. Springer, Heidelberg
(2012)

9. Slaby, J., Strejcek, J., Trtik, M.: Symbiotic: synergy of instrumentation, slicing, and
symbolic execution. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS
2013). LNCS, vol. 7795, pp. 630-632. Springer, Heidelberg (2013)

10. Weiser, M.: Program slicing. In: Proceedings of ICSE, pp. 439-449. IEEE (1981)

	Symbiotic 3: New Slicer and Error-Witness Generation
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

