
Optimized PredatorHP and the SV-COMP
Heap and Memory Safety Benchmark

(Competition Contribution)

Michal Kotoun, Petr Peringer, Veronika Šoková, and Tomáš Vojnar(B)

FIT, IT4Innovations Centre of Excellence,
Brno University of Technology, Brno, Czech Republic

vojnar@fit.vutbr.cz

Abstract. This paper describes shortly the PredatorHP (Predator
Hunting Party) analyzer and its participation in the SV-COMP’16 soft-
ware verification competition. The paper starts by a brief sketch of the
Predator shape analyzer on which PredatorHP is built, using multi-
ple, concurrently running, specialised instances of Predator. The paper
explains why the concrete mix of the different Predators was used, based
on some characteristics of the SV-COMP benchmark.

1 Verification Approach

Predator Hunting Party (PredatorHP) uses the Predator shape analyzer, and so
we first give a brief overview of Predator. Next, we discuss how Predator is used
in the concurrent setting of PredatorHP, stressing changes from PredatorHP used
in SV-COMP’15 together with a short analysis of the SV-COMP benchmark that
motivated these changes.

1.1 The Predator Shape Analyzer

Predator aims at sound shape analysis of sequential, non-recursive C programs
that use various kinds of lists implemented using low-level C pointer statements.
Predator can soundly deal with various forms of pointer arithmetics, address
alignment, block operations, memory contents reinterpretation, etc.

The shape analysis implemented in Predator is a form of abstract interpreta-
tion which uses a domain of the so-called symbolic memory graphs (SMGs) [1].
SMGs are oriented graphs with two main kinds of nodes and two main kinds of
edges. Nodes can be divided into objects and values. Objects are further divided
into regions (representing concrete blocks of memory allocated on the stack, on
the heap, or statically) and singly- or doubly-linked list segments, which rep-
resent in an abstract way uninterrupted sequences of singly- or doubly-linked
regions. Edges can be divided into has-value and points-to edges. The former

The work was supported by the Czech Science Foundation project 14-11384S.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 942–945, 2016.
DOI: 10.1007/978-3-662-49674-9 66



Optimized PredatorHP and the SV-COMP Heap 943

represent values stored in allocated memory (which are either pointers or other
kinds of data), the latter represent targets of pointer values.

Both nodes and edges are annotated by a number of labels that carry infor-
mation such as the size of objects, offsets at which values are stored in objects,
offsets with which pointers point to target objects, the type of values, offsets at
which linking fields of lists are stored, the nesting level of objects (to be able
to represent nested lists), or a constraint on the number of linked regions that
a list segment represents. In particular, a list segment can either represent n
or more regions for n ≥ 0, or 0 or 1 regions. Further, SMGs can also contain
optional regions where a pointer to such a region either points to some allocated
memory or to NULL. Sizes of blocks and offsets can have the form of intervals
with constant bounds which allows Predator to deal with operations such as
address alignment. A special kind of edges are then disequality edges allowing
one to express that two values are for sure different (while equality of objects is
expressed by representing these objects by a single node of an SMG).

Symbolic execution of C statements on SMGs uses a concept of reinterpre-
tation that is able to synthesize values of previously not explicitly written fields
from the known values of other fields. Currently, this concept is instantiated
for dealing with blocks of nullified memory, which is quite needed for analyzing
low-level programs. Another key operation on SMGs is the join operation that is
implemented via a synchronous graph traversal of the two SMGs to be joint. The
join operation is used not only to reduce the number of SMGs to deal with but
also as a basis of abstraction and entailment checking. Predator uses function
summaries to facilitate inter-procedural analysis. The support of arithmetic in
Predator is such that Predator deals with integers exactly up to some bound (32
in SV-COMP’16) and then replaces them by an unknown value.

Compared with SV-COMP’15, not many changes were done in the Predator
analyzer itself. We have just resolved several minor issues by, e.g., correcting
arithmetic in the 32-bit mode or replacing error messages produced when per-
forming so-far unsupported operations over interval-based values by producing
the “unknown” verdict.

1.2 Predator Hunting Party

In SV-COMP’15, we started to run several variants of Predator in parallel.
Among them there was one Predator verifier implementing the above sketched
sound shape analysis. Due to its use of abstraction, the verifier could produce
false alarms, and so its result was accepted only when it proved a program cor-
rect. In parallel with the verifier, three Predator DFS hunters without any list
abstraction (though still with limited precision of the arithmetic) and with dif-
ferent bounds on the depth of the state space search (in particular, 400, 700,
and 1000 GIMPLE instructions) were used. The verdict of these hunters was
considered only when they reported an error. If neither the verifier nor the DFS
hunters produced an acceptable answer, a BFS hunter was started to perform
a breadth first search without any list abstraction and with no bound on the
length of its run (other than the timeout used by SV-COMP). The BFS hunter



944 M. Kotoun et al.

was allowed to report errors as well as to prove a program correct in case it
exhausted its state space.

For SV-COMP’16, we have decided to preserve the above concept but to
revisit suitability of the concrete numbers of hunters used, their limits on the
state space search, as well as the order in which they are run. First, the number of
concurrently running Predators stayed at four given by the four available cores.
We have, however, decided to use only two DFS hunters, with the depth of the
state space search limited to 200 and 900 GIMPLE instructions, respectively. In
general, this move is motivated by having one hunter that quickly searches for
bugs with very short witnesses and one than searches for longer but still not very
long witnesses. Moreover, we have decided to start the BFS hunter right away
in place of one of the cancelled DFS hunters. Its role is to either prove correct
finite-state programs (not proved correct by the verifier due to the abstraction
used) or to find bugs that are not quickly found by the DFS hunters.

The above mentioned concrete DFS bounds are based on an analysis of those
SV-COMP’16 programs in the heap data structures category that contain an
error. In particular, it appears that: (1) In over 80 % of the cases, the error
can be found in the limit of 200 instructions. (2) In about 96 % of the cases
(meaning all but four of the considered programs with errors), the error can be
found within 900 instructions. (3) In the remaining cases, the witness may be
much longer (going up to over 50,000 instructions), which is too much for being
used over all programs. Fortunately, in some of the cases, the witness may be
quite long, but the search space is relatively narrow, so an error can still be
found by the BFS hunter. In the end, we have programs proved correct by the
verifier (but not the BFS hunter), programs proved correct by the BFS hunter
(but not the verifier), programs with errors found by the DFS hunters (but not
the BFS hunter), as well as programs with errors found by the BFS hunter (but
not the DFS hunters).

The above change alone allowed us to prove one more program correct in the
given time limit while at the same time saving around 38 % of the wall time.
While the concrete numbers and bounds of hunters are tuned for the SV-COMP
benchmark, the general set up of the prover and the hunters is applicable more
broadly. The concrete numbers may be adjusted in a similar way for other sets
of programs to be verified as common, e.g., in the world of search-based testing.

2 Strengths and Weaknesses

The main strength of PredatorHP is that—unlike various bounded model
checkers—it treats unbounded heap manipulation in a sound way. At the same
time, it is also quite efficient, and the use of various concurrently running Preda-
tor hunters greatly decreases chances of producing false alarms (there do not
arise any due to heap manipulation, the remaining ones are due to imprecise
treatment of other data types).

The main weakness of PredatorHP and also of Predator itself is its weak
treatment of non-pointer data. Due to this, Predator participates in the heap



Optimized PredatorHP and the SV-COMP Heap 945

data structures category only. Within this category, a weakness of Predator is
that it is specialized in dealing with lists, and hence it does not handle structures
such as trees or skip-lists (that is, it handles them very well in a bounded way,
but our aim is to stick with sound verification).

3 Tool Setup and Configuration

The source code of PredatorHP used in SV-COMP’16 is freely available on the
Internet1. The file README-SVCOMP-2016 shipped with the source code describes
how to build the tool. To run it, the script predatorHP.py can be invoked. The
script takes a verification task file as a single positional argument. Paths to both
the property file and the desired witness file are accepted via long options. The ver-
ification outcome is printed to the standard output. The script does not impose
any resource limits other than terminating its child processes when they are no
longer needed. More information about the setting of PredatorHP used in the com-
petition can be found here: http://sv-comp.sosy-lab.org/2016/systems.php.

4 Software Architecture, Project, and Contributors

Predator is implemented in C++ with a use of Boost libraries as a GCC plug-
in based on the Code Listener framework [2]. PredatorHP is implemented as a
Python script. Predator is an open source software project distributed under the
GNU General Public License version 3. The main author of Predator is Kamil
Dudka. Besides him and the PredatorHP team, Petr Muller and numerous other
people contributed to Predator.

References

1. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manip-
ulation. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 215–237. Springer, Heidelberg (2013)

2. Dudka, K., Peringer, P., Vojnar, T.: An easy to use infrastructure for building static
analysis tools. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EURO-
CAST 2011, Part I. LNCS, vol. 6927, pp. 527–534. Springer, Heidelberg (2012)

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp.

http://sv-comp.sosy-lab.org/2016/systems.php
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp

	Optimized PredatorHP and the SV-COMP Heap and Memory Safety Benchmark
	1 Verification Approach
	1.1 The Predator Shape Analyzer
	1.2 Predator Hunting Party

	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Architecture, Project, and Contributors
	References


