LCTD: Tests-Guided Proofs for C Programs
on LLVM

(Competition Contribution)

Olli Saarikivi®) and Keijo Heljanko

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University, School of Science,
PO Box 15400, FI-00076 Aalto, Finland
{o0lli.saarikivi,keijo.heljanko}@aalto.fi

Abstract. LCTD is an open source verification tool for C programs.
It uses the LLVM compiler framework to instrument programs for ver-
ification with the DASH algorithm. LCTD has been submitted to the
BitVectorsReach category of SV-COMP 2016.

1 Verification Approach

The DASH algorithm by Beckman et al. [1] combines dynamic symbolic execu-
tion (DSE) [2] with CEGAR. DASH attempts to generate tests based on coun-
terexamples found in the abstraction. When test generation fails the abstraction
is refined via a splitting operation on the abstract regions to remove the coun-
terexample. The tests can be seen as an underapproximation of the reachable
states of the program under test, which DASH tries to expand to include an
error. The abstraction on the other hand is an overapproximation which, if error
free, also proves the program under test to be so.

The flowchart in Fig. 1 provides a high-level overview of the DASH algorithm.
DASH implements a modified CEGAR loop, where instead of directly checking
whether a counterexample is spurious, DSE is used to generate a test that follows
the path to the error in the abstraction at least one step more than in previously
executed tests. When test generation fails abstraction refinement is performed
to eliminate the path from the abstraction.

We have implemented the DASH algorithm as a modification to the Lime
Concolic Tester (LCT) [3], which is an open source dynamic symbolic execution
tool for C and Java programs. Our tool LCTD extends the LLVM based C
support in LCT. For a detailed description of LCTD see [4].

2 Software Architecture

LCTD consists of two main parts:

— An instrumented version of the program to verify, which implements test exe-
cution and tracking, and constraint solving.
— A server component which maintains and refines the abstraction.

© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 927-929, 2016.
DOI: 10.1007/978-3-662-49674-9_62



928 O. Saarikivi and K. Heljanko

Refine abstraction
Ao

v yes |Can find a test to
Test found error? CError trace in abstraction?)—} cover more of the error
yes no trace?

CVeriﬁcation succeeded) yes

—

Fig. 1. Flowchart for the DASH algorithm

The target program is instrumented with a transformation pass in the LLVM
compiler framework, which adds for all LLVM IR instructions calls to counter-
parts in a runtime library. These calls allow the runtime to track the execution
and provide concrete values for calls to the _ _VERIFIER_nondet_* functions.

At startup the instrumented program connects to the server component for
instructions. For test executions it receives a set of concrete inputs, which are
used to execute the program. During execution tracking information will be
sent to the server, which follows the execution’s progress in the abstraction.
For solving new input values the server sends a set of concrete inputs and a
constraint to be solved at a specific point in the execution, which corresponds
to generating a test that visits a desired abstract region. Constraints are solved
using the Z3 4.3.2 SMT solver.

The server component initializes the abstraction to the control flow graph of
the target program. It waits for the instrumented program to connect, which it
then uses for executing tests and solving constraints.

3 Strengths and Weaknesses of the Approach

LCTD implements a bit-precise translation from LLVM IR instructions into
bitvector logic making the tool very precise. The usage of a modern SMT solver
allows LCTD to perform well on programs with complex bitwise logic.

LCTD leverages LLVM’s optimization passes as a preprocessing step. This
allows it to produce a simpler version of the program which often omits lots
of inessential code and thus verify an optimized LLVM representation of the
program.

One of the current challenges is that programs that rely heavily on control
flow or complex loops can result in LCTD splitting the abstraction along increas-
ingly deep paths, which results in very large region predicates that are slow to
solve. Other weaknesses are limited support for floating point operations, pointer
arithmetic and recursive functions.

4 Tool Setup and Configuration

LCTD and its benchmark definition XML can be downloaded from:
http://users.cse.aalto.fi/osaariki/lctd-svcomp/


http://users.cse.aalto.fi/osaariki/lctd-svcomp/

LCTD: Tests-Guided Proofs for C Programs on LLVM 929

The BenchExec script is available at:
https://github.com/OlliSaarikivi/benchexec/blob/master/benchexec/tools/
lctd.py

The version to use is “lctd-1.1.1-svcomp”. To install the tool:

— Install a Java VM version 1.7.0_79 or newer. LCTD has been tested with Java
1.7.0.79 OpenJDK (IcedTea 2.5.6).
— Add the “bin/” folder inside the root directory of the tool archive to PATH.

Invoking the command “lctdsvcomp <path-to-target.c>" instruments the
program and starts the verification process. Once finished it will report TRUE,
FALSE or UNKNOWN and in the case of FALSE provides a path to and printout
of the verification witness file. LCTD does not require any parameters apart from
a path to the source code of the program to verify.

Participation Statement: LCTD participates in the BitVectorsReach sub-
category and opts out of all other categories.

We do not participate in Overflows, the other bit vector sub-category, as
LCTD currently only supports code reachability properties. Other categories
were excluded mainly due to a variety of language support issues.

5 Software Project and Contributors

The main developer of LCTD is Olli Saarikivi. The tool was developed by Olli
Saarikivi for a Master’s Thesis under the supervision of Keijo Heljanko. LCTD
is based on the LCT-C tool developed in the Lime project (http://www.tcs.hut.
fi/Software/lime/).

LCTD is licensed under the MIT license.

References

1. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Ryder, B.G., Zeller, A. (eds.) Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). pp. 3-14. ACM.(2008)

2. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI). pp. 213-223. ACM.(2005)

3. Ké&hkonen, K., Launiainen, T., Saarikivi, O., Kauttio, J., Heljanko, K., Niemela, I.:
LCT: An open source concolic testing tool for Java programs. In: Proceedings of the
6th Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(BYTECODE). pp. 75-80.(2011)

4. Saarikivi, O., Heljanko, K.: LCTD: Test-guided proofs for C programs on LLVM.
Journal of Logical and Algebraic Methods in Programming, NWpPT 2013 special
issue..(2015)


https://github.com/OlliSaarikivi/benchexec/blob/master/benchexec/tools/lctd.py
https://github.com/OlliSaarikivi/benchexec/blob/master/benchexec/tools/lctd.py
http://www.tcs.hut.fi/Software/lime/
http://www.tcs.hut.fi/Software/lime/

	LCTD: Tests-Guided Proofs for C Programs on LLVM
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses of the Approach
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References


