CPA-RefSel: CPACHECKER with Refinement
Selection

(Competition Contribution)

Stefan Lowe®)

University of Passau, Passau, Germany
loewe@fim.uni-passau.de

Abstract. Our submission to SV-COMP’16 is based on the software
verification framework CPACHECKER. We suggest to combine the value
and predicate analysis of the framework, both performing CEGAR based
on interpolation. The novelty of our approach is that both analyses per-
form intra-analysis refinement selection, with a top-level refinement com-
ponent additionally employing inter-analysis refinement selection. All
in all, this allows for an efficient verification process, as intra-analysis
refinement selection selects a suitable refinement for an analysis and
inter-analysis refinement selection selects the analysis that is best to be
refined.

1 Verification Approach

We built our verifier using the software verification framework CPACHECKER.
As framework, CPACHECKER offers a wide range of analyses, and our approach
combines the value analysis (VA) and the predicate analysis (PA) in a par-
allel composition. This compositional approach resides inside an extension of
the counterexample-guided abstraction refinement (CEGAR) approach, which
in both analyses is driven by interpolation [1]. Our extension of the CEGAR
algorithm is depicted in Fig. 1 (taken from [2]), and a brief outline follows.
After a short pre-analysis, which already verifies a few programs success-
fully, our extended CEGAR algorithm is initiated, which first closely resembles
the classic CEGAR approach. The composition of the value and the predicate
analysis is started with empty precisions, 7¥A = §, 7" = 0, i.e., during the
initial state-space exploration no assignments (for VA) and no predicates (for
PA) are tracked. If the resulting over-approximation of the state space is free of
errors, then the CEGAR loop terminates with the verdict true, if a real coun-
terexample is found, then the CEGAR loop terminates with the verdict false. If
an inconclusive error path o is found, here represented as sequence of pairs of
an operation op and a program location [/, then the standard CEGAR algorithm
would compute a single refinement, e.g., by inferring interpolants from the single
infeasible error path to exclude this infeasible error path in future state-space
explorations.
© Springer-Verlag Berlin Heidelberg 2016

M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 916-919, 2016.
DOI: 10.1007/978-3-662-49674-9_59

CPA-RefSel: CPACHECKER with Refinement Selection 917

State-Space Exploration true ExtractPaths"*|ExtractPaths™
™= = = o 0,”=((p, 1),...(0p,, 1))
R inconclusive | 172 o DO o oo iy om)
VA .. || PA_.. g=top,) op, D 2 HETT T Lo = ((op, 1), (0, 1)
I T ~ ~—
. ’ false ‘ ZVA ZPA
A
L > 2
v VA v PA
SelectRefinement Refine"? Refine™
TT, W|th (0, T[) cT (0™, ") (0, ™)
- PRI PR
g PRy P,
@ " (@™) J
©", ™ T

Fig. 1. Refinement selection for combining a value and a predicate analysis [2]

Exactly here we deviate from the standard CEGAR approach, and instead,
we perform intra-analysis refinement selection by first calling procedure
ExtractPaths to extract a set X of infeasible sliced paths from the original infea-
sible error path [3], and then, by calling procedure Refine, to compute a set 7 of
individual refinements, one for each of the available infeasible sliced paths [3].

Each of the refinements makes the precision of the analysis strong enough to
exclude the original infeasible error path [3]. This allows the analysis to heuris-
tically select from a pool of available refinements, and it may pick a refinement
that seems like a good fit for the further course of the analysis, while at the same
time, it can avoid unsuitable ones, e.g., those that might lead to loop unrollings.

The procedures ExtractPaths and Refine are available for both the value analy-
sis and the predicate analysis, making intra-analysis refinement selection pos-
sible for both analyses [2]. Furthermore, we can leverage refinement selection
to a higher level — with intra-analysis refinement selection we have multiple
refinements to select from, and we have means available to distinguish between
unsuited and well-suited refinements. So we can utilize these mechanisms to
enable inter-analysis refinement selection, i.e., we do not only select the refine-
ment that is best for a component analysis, but we also decide whether the
composite analysis should perform its refinement for the value or the predicate
analysis [2].

Specifically for the SV-COMP, we made refinement selection applicable
together with adjustable-block encoding. Mind that with large blocks, e.g., with
abstractions computed only at loops, the number of available refinements to
select from tends to be lower compared to when having small blocks, e.g. with
single-block encoding. Now, we compute abstraction whenever control flow joins,
as the analysis performs best with medium-sized blocks, proving that selecting
suitable refinements is as important as an appropriate block-encoding strategy.

918 S. Lowe

2 Software Architecture

The CPACHECKER framework is written in JAVA. For parsing C code we employ
the C parser from the Eclipse CDT project. CPACHECKER offers interfaces to a
wide range of decision procedures, and for our submission we rely on MathSAT to
solve SMT and interpolation queries issued by the bit-precise predicate analysis.

3 Strengths and Weaknesses

A combination of a value and a predicate analysis demonstrated its potential
already in an earlier edition of SV-COMP [4], winning silver in the category
Overall and in several sub-categories. However, the intent of this year’s sub-
mission is to showcase the power of refinement selection in the, from our point
of view, highly important category DeviceDriversLinux64, where refinement
selection works particularly well, allowing us to win the gold medal. Still, we
seek for a better understanding of heuristics for inter- and intra-analysis refine-
ment selection. Despite the fact that the CPACHECKER framework supports
checking memory safety and overflows, our submission is not competitive there,
while also lacking support for concurrency, termination, large arrays and explicit
recursion.

4 Setup and Configuration

Our verifier is built from revision 18373 from the official CPACHECKER repos-
itory, branch refinementSelectionForABE. It is also archived at http://
sv-comp.sosy-lab.org /2016 /systems.php. To run our tool please enter this com-
mand:

scripts/cpa.sh -sv-compl6--refsel -disable-java-assertions -heap 12500m -spec prop.prp task.i

For C programs that assume a 64-bit environment add the parameter -64.
The tool prints to the console the verdict, the violated property, and the name of
the output directory, the latter holding the witness file witness.graphml in case
a property violation is found. To reproduce the results, use Java 7, the bench-
mark definition cpa-refsel.xml and the tool-info module cpachecker.py, both
officially archived online at http://sv-comp.sosy-lab.org/2016/systems.php.

5 Project and Contributors

CPACHECKER is a verification framework maintained by the Software Systems
Lab at the University of Passau, made available under the Apache 2.0 license.
It proofed successful in every edition of the SV-COMP, and it is used by prac-
titioners and researchers at the Russian Academy of Science, the Universities of
Darmstadt, Hamburg, Paderborn and Vienna, as well as at Verimag in Grenoble.
We would like to thank all contributors for their efforts spent on CPACHECKER.

http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/systems.php

CPA-RefSel: CPACHECKER with Refinement Selection 919

References

1. Beyer, D., Lowe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varrd, D. (eds.) FASE 2013 (ETAPS 2013). LNCS,
vol. 7793, pp. 146-162. Springer, Heidelberg (2013)

2. Beyer, D., Lowe, S., Wendler, P.: Refinement selection. In: Fischer, B., Geldenhuys,
J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 20-38. Springer, Heidelberg (2015)

3. Beyer, D., Lowe, S., Wendler, P.: Sliced path prefixes: an effective method to enable
refinement selection. In: Graf, S., Viswanathan, M. (eds.) Formal Techniques for
Distributed Objects, Components, and Systems. LNCS, vol. 9039, pp. 228-243.
Springer, Heidelberg (2015)

4. Lowe, S.: CPACHECKER with Explicit-Value Analysis Based on CEGAR and Inter-
polation. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 610-612. Springer, Heidelberg (2013)

	CPA-RefSel: CPACHECKER with Refinement Selection
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References

