
CPA-BAM: Block-Abstraction Memoization
with Value Analysis and Predicate Analysis

(Competition Contribution)

Karlheinz Friedberger

University of Passau, Passau, Germany
friedber@fim.uni-passau.de

Abstract. The software verification framework CPAchecker is built
on basic approaches like CPA and CEGAR. The configuration for the
SV-COMP’16 uses the concept of block-abstraction memoization and
combines it with the parallel execution of value analysis and predicate
analysis. The CEGAR loop uses a refinement strategy that prefers to
refine the precision of the lightweight value analysis, such that the pre-
cision of the predicate analysis remains abstract and concise as long as
possible. The usage of mature analyses like value analysis and predicate
analysis allows us to bring together the potential of lazy abstraction and
interpolation and the benefits of block-abstraction memoization.

1 Software Architecture

CPAchecker is a software verification framework that is build on Config-
urable Program Analysis (CPA) [1] and allows developers to easily inte-
grate new analyses in a predefined way. CPAs are available for distinct tasks like
tracking program locations, call stacks, function pointers, and assignments to
variables. Also well-known approaches like value analysis and predicate analy-
sis are integrated in CPAchecker in this manner. CPAs can be combined to
form a more complex program analysis. The framework can execute a (con-
figurable) algorithm like the CEGAR algorithm or a sequence of algorithms to
verify reachability properties. There are analyses that support checking memory-
safety properties and overflow detection, but this contribution does not use them.

CPAchecker is written in Java and uses the C-parser of the Eclipse CDT
project (https://eclipse.org/cdt/). There are bindings for external libraries that
allow to use BDDs, octagons, and SMT formulas. The predicate analysis in our
configuration uses the SMT solver MathSAT5 (http://mathsat.fbk.eu/), because
it supports bit-precise reasoning and interpolation for SMT formulae.

2 Verification Approach

Our configuration uses block-abstraction memoization (BAM) [4] to speedup the
analysis. BAM divides the program into blocks and analyzes them separately.
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 912–915, 2016.
DOI: 10.1007/978-3-662-49674-9 58

https://eclipse.org/cdt/
http://mathsat.fbk.eu/


CPA-BAM: Block-Abstraction Memoization with Value Analysis 913

We choose functions as block size, such that a function call corresponds with a
block entry and a function exit refers to a block exit, respectively. BAM aims
for a modular analysis, i.e. if a block has been already analyzed, the re-analysis
of this block uses the stored result from a cache.

In SV-COMP’12, BAM was used with predicate analysis [3], and in
SVCOMP’15, value analysis and predicate analysis were combined in a sequential
way [2]. With several improvements and extensions done in the last year, we are
now able to combine BAM not only with predicate analysis, but also with value
analysis, interval analysis, and combinations thereof. We have defined and imple-
mented the operators of BAM for the corresponding domains. For this year’s SV-
COMP, value analysis and predicate analysis are executed in a parallel manner
to leverage the advantages of both approaches within the analysis with BAM.

BAM itself does not track any assignments or predicates over variables, but
delegates this task to other more precise analyses. In our submission, the value
analysis tracks assignments of variables and the predicate analysis uses predi-
cates to analyze the program. Each of these two analyses is implemented as a
CPA and uses a precision that determines which facts (assignments or predicates)
are important for reasoning over the program, for example, for the reachability
of a property violation. Figure 1 shows the CEGAR loop that updates the pre-
cisions during the refinements of the corresponding analysis. In CPAchecker,
a reachability analysis uses the configured CPAs to examine the program until
either a counterexample is reached or the program is analyzed completely. The
second case refers to a program without any property violation. In the first case
however, if the reachability analysis finds a counterexample, we check it for fea-
sibility with both analyses in sequence. For a spurious counterexample one of
the analyses should find the cause and perform the refinement, i.e. updating the
corresponding precision. As the value analysis is more efficient in tracking many
assignments, the counterexample is first checked with this analysis. As soon as
one of the analyses cannot confirm the counterexample, the precision of this
analysis is refined in order to exclude the spurious counterexample in the next
iteration of the CEGAR loop. If both analyses confirm the counterexample, we
report an error witness.

Fig. 1. Refinement for value analysis and predicate analysis in the CEGAR loop



914 K. Friedberger

Recursive tasks are analyzed by an extension of BAM that was already used in
SV-COMP’15. However, last year’s contribution is improved by using the parallel
combination of value analysis and predicate analysis in the way described above.
Additionally, if no cached block abstraction can be reused before unrolling the
recursive function up to a depth of 30, we abort the analysis of any deeper
recursion. This bound is sufficient for the currently available recursive tasks.

3 Strengths and Weaknesses

The contributed configuration of BAM is most effective for solving large pro-
grams consisting of many functions, such that the benefit of using a cache justifies
the overhead of BAM itself, i.e. the reuse of block abstractions outperforms the
application of special operators in BAM. We report only a few wrong results for
all tasks and none of them is a wrong proof. As our approach in CPAchecker
uses its available analyses, some weaknesses are inherited. For example, value
analysis and predicate analysis do not support large arrays or complex data
structures. Our configuration does not check for memory-safety properties, ter-
mination or overflows, but simply ignores those cases and reports UNKNOWN.

4 Setup and Configuration

The CPAchecker project is available at http://cpachecker.sosy-lab.org and needs
a Java 7 runtime environment. We submit version 1.4-svcomp16c for participa-
tion in all categories. The tool can be downloaded from http://cpachecker.sosy-lab.

org/CPAchecker-1.4-svcomp16c-unix.tar.bz2.
CPAchecker has to be executed with the following command line:
scripts/cpa.sh -sv-comp16-bam -disable-java-assertions -heap 10000m -spec prop.prp program.i

The parameter -64 should be added for C programs in categories assuming
a 64-bit environment. CPAchecker will report the result of the verification
to the console, including the violated property and the name of the output
directory. In case of finding a property violation, the witness is written to the
file witness.graphml within the output directory. CPAchecker can be exe-
cuted using the tool-info module cpachecker.py and the benchmark definition
cpa-bam.xml available at http://sv-comp.sosy-lab.org/2016/systems.php.

5 Project and Contributors

CPAchecker is licensed as an open-source project, headed by Dirk Beyer,
and developed by members of the Software Systems Lab at the University of
Passau. The framework is utilized and extended by an international group of
developers. Our thanks go to all contributors for their work on CPAchecker,
especially the members of the Institute for System Programming of the Russian
Academy of Sciences for reporting several bugs in our implementation of block-
abstraction memoization. More information about CPAchecker is provided at
http://cpachecker.sosy-lab.org, where also a list of all contributors is available.

http://cpachecker.sosy-lab.org
http://cpachecker.sosy-lab.org/CPAchecker-1.4-svcomp16c-unix.tar.bz2
http://cpachecker.sosy-lab.org/CPAchecker-1.4-svcomp16c-unix.tar.bz2
http://sv-comp.sosy-lab.org/2016/systems.php
http://cpachecker.sosy-lab.org


CPA-BAM: Block-Abstraction Memoization with Value Analysis 915

References

1. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

2. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

3. Wonisch, D.: Block abstraction memoization for CPAchecker. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 531–533. Springer, Heidelberg
(2012)

4. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoiza-
tion. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 332–347.
Springer, Heidelberg (2012)


	CPA-BAM: Block-Abstraction Memoization with Value Analysis and Predicate Analysis
	1 Software Architecture
	2 Verification Approach
	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References


