CIVL: Applying a General Concurrency
Verification Framework to C/Pthreads Programs
(Competition Contribution)

Manchun Zheng!®)| John G. Edenhofner!, Ziging Luo', Mitchell J. Gerrard?,
Michael S. Rogers?, Matthew B. Dwyer?, and Stephen F. Siegel®

! Department of Computer and Information Sciences, University of Delaware,
Newark, USA
{zmanchun, johneden,ziqing,siege}@udel.edu
2 Department of Computer Science and Engineering, University of Nebraska,
Lincoln, USA
{mgerrard,mrogers,dwyer}@cse.unl.edu

Abstract. CIVL is a framework for the analysis and verification of con-
current programs. The front-end translates C programs that use (subsets
of) Pthreads, MPI, OpenMP, or CUDA—alone or in combination—to an
intermediate verification language CIVL-C. The back-end uses symbolic
execution and model checking techniques to verify a number of safety
properties of a CIVL-C program, such as absence of assertion viola-
tions, deadlocks, or out-of-bound indexes. We submit CIVL for verifying
Pthreads programs in the concurrency category.

1 Verification Approach

CIVL [8] is a framework for verifying parallel programs written using various
concurrency libraries or language extensions such as MPI [3], POSIX threads
(“Pthreads”) [2], OpenMP [6], and CUDA [5]. (Significant subsets of each of
these concurrency “dialects” is supported; CUDA support excludes C++ fea-
tures.) CIVL compiles programs to the CIVL-C modeling language, which extends
sequential C11 with concurrency and verification primitives and linguistic fea-
tures, such as nested functions and scoped memory. For each dialect, an AST
“transformer” and libraries are used to express the original program as an equiv-
alent CIVL-C program. Different transformers can work together to convert pro-
grams using multiple dialects into CIVL-C. !

CIVL uses a combination of explicit model checking and symbolic execution
for verification. Model checking is used to explore the thread and process inter-
leavings introduced by a concurrency model. CIVL uses state-of-the-art partial
order reduction to mitigate the state space explosion problem. Symbolic execu-
tion further reduces the state space by collapsing sets of equivalent values along

! Funding for the CIVL project is provided by the U.S. National Science Foundation
under awards CCF-1319571, CCF-1346769 and CCF-0953210.
© Springer-Verlag Berlin Heidelberg 2016

M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 908-911, 2016.
DOI: 10.1007/978-3-662-49674-9_57

CIVL: Applying a General Concurrency Verification Framework 909

program executions. CIVL makes use of the Symbolic Analysis and Reasoning
Library (SARL) [7] which is a package for normalizing, caching, and determining
validity queries over logical formulae. SARL can leverage multiple Satisfiability
Modulo Theories (SMT) solvers, but in general more than 99.5 % of the queries
generated in a verification run are solved within SARL and do not require invo-
cation of an SMT solver [8].

2 Software Architecture

The CIVL framework (Fig. 1) is distributed as open source software under the
GNU General Public License and consists of several components. ABC is a C11
front-end which generates Abstract Syntax Trees (AST) from CIVL-C programs.
The CIVL back-end builds a state-transition model based on the AST, then uses
GMC (Generic Model Checker) and SARL to perform model checking and to
manipulate symbolic state encodings to compute next states. For the competi-
tion, two theorem provers are used: CVC4 [1] and Z3 [4].

-
1
1
1
]
1
|
1
]
1
]
1
|
1
]
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1

1
1
1
1
]
1
|
1
]
1
]

4

ABC
parser

source ABC

1 1

| || oL VC'r};i'-r 1> Verification
| corcivic Abstract Syntax Tree | Model ! il ! ?::/';j';
. - ur=ovie> | o [teee
H L ABC cIvL \| i(GMC) (SARL),
1| CUDA, pretty- model- |! ! ; !

OpenMP, printer builder /| I I
1 ’ - 1
! Pthreads OpenMESCINVES ! i CvC4 \
e GEEEECIED — oo BackEnd \= 22/,

Fig. 1. The CIVL project architecture

CIVL is implemented in Java 7. It comes equipped with pre-built libraries to
model system functions and concurrent data structures to support a variety of
process and thread-level concurrency models. These libraries allow new concur-
rency dialects to be supported directly in the CIVL-C language, which reduces
the cost of extending CIVL.

3 Strengths and Weaknesses

The most significant strength of CIVL is its ability to verify programs that use
a variety of concurrency dialects, including “hybrid” programs that use multiple
dialects, such as MPI4Pthreads. CIVL also checks a large number of generic
properties, including absence of divisions by zero, reads of uninitialized vari-
ables, and out-of-bound array indexing. In fact CIVL found defects of each of
these kinds in the SV-COMP suite; these defects were subsequently corrected.
Additional properties include absence of memory leaks and illegal pointer deref-
erences, and dialect-specific properties, such as absence of “potential deadlocks”
in MPI programs. In addition, CIVL can verify the functional equivalence of two

910 M. Zheng et al.

versions of a C program with one or multiple of the four concurrency dialects,
such as a trusted sequential version and a more complicated parallel one.

The CIVL back-end (verifier) suffers from the state explosion problem, and
scalability can become an issue for programs that access shared variables fre-
quently or have many nondeterministic choices. For the competition, small bounds
were placed on the number of live threads (6). A “downscaling” transformation
is performed that replaces array lengths above a certain threshold (11) with a
small number (3); a similar transformation is applied to the upper bounds in
for loops. These are unsound transformations, but nevertheless allowed CIVL
to obtain the expected result for all of the examples in the concurrency category.

4 Setup and Configuration

CIVL v1.5 (available at http://vsl.cis.udel.edu/civl/svcomp16) is used for SVCOMP
2016. CIVL is distributed as a single jar file, which can be placed in any readable
directory. Then an executable file named civl should be created and placed in
the PATH; this file has the form

#!/bin/sh
java -Xmx15000M -Duser.home=$HOME -Djava.io.tmpdir=$TMPDIR \
-jar /path/to/civl.jar $@

The executables java (a Java >7 VM), cvcd (version 1.4), and z3 (ver-
sion >4.3.2) must also be in the PATH. Finally, the command “civl config”
should be executed once. This will search for appropriate theorem provers in
the PATH and create a file named .sarl in the user’s home directory containing
information about each. The entries for CVC4 and Z3 should appear in that file.

CIVL is submitted for the concurrency category of the competition. The
option —svcomp16 is used, which bundles the type and process bounds described
above. The command for the competition is civl verify -svcompl6 source.i,
where source. i is the file name of a target program. The wrapper script civl.py
can be used to interpret verification results.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011)

2. IEEE: Portable Operating System Interface (POSIX) Base Specifications, IEEE
Std 1003.1-2008, 2013 ed (2013). http://www.unix.org/versiond/

3. Message-Passing Interface Forum: MPI: A Message-Passing Interface standard,
version 3.0. http://www.mpi-forum.org/docs/docs.html

4. de Moura, L., Bjgrner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

5. NVIDIA: CUDA C Programming Guide Version 7.5. http://docs.nvidia.com/
cuda/cuda-c-programming-guide/. Accessed 31 Oct 2015

http://vsl.cis.udel.edu/civl/svcomp16
http://cvc4.cs.nyu.edu/downloads/
https://z3.codeplex.com/SourceControl/latest#README
http://www.unix.org/version4/
http://www.mpi-forum.org/docs/docs.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

CIVL: Applying a General Concurrency Verification Framework 911

6. OpenMP Architecture Review Board: OpenMP API Specification for Parallel Pro-
gramming. http://openmp.org/wp/. Accessed 8 Feb 2015

7. SARL: The Symbolic Algebra and Reasoning Library. http://vsl.cis.udel.edu/sarl.
Accessed 6 Feb 2015

8. Siegel, S.F., Zheng, M., Luo, Z., Zirkel, T.K., Marianiello, A.V., Edenhofner, J.G.,
Dwyer, M.B., Rogers, M.S.: CIVL: the concurrency intermediate verification lan-
guage. In: SC15 (2015). http://doi.acm.org/10.1145/2807591.2807635

http://openmp.org/wp/
http://vsl.cis.udel.edu/sarl
http://doi.acm.org/10.1145/2807591.2807635

	CIVL: Applying a General Concurrency Verification Framework to C/Pthreads Programs (Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Setup and Configuration
	References

