
Reliable and Reproducible Competition Results
with BenchExec and Witnesses
(Report on SV-COMP 2016)

Dirk Beyer(B)

University of Passau, Passau, Germany
dirk.beyer@sosy-lab.org

Abstract. The 5th Competition on Software Verification (SV-COMP
2016) continues the tradition of a thorough comparative evaluation of
fully-automatic software verifiers. This report presents the results of the
competition and includes a special section that describes how SV-COMP
ensures that the experiments are reliably executed, precisely measured,
and organized such that the results can be reproduced later. SV-COMP
uses BenchExec for controlling and measuring the verification runs,
and requires violation witnesses in an exchangeable format, whenever a
verifier reports that a property is violated. Each witness was validated
by two independent and publicly-available witness validators. The tables
report the state of the art in software verification in terms of effectiveness
and efficiency. The competition used 6 661 verification tasks that each
consisted of a C program and a property (reachability, memory safety,
termination). SV-COMP 2016 had 35 participating verification systems
(22 in 2015) from 16 countries.

1 Introduction

The annual Competition on Software Verification (SV-COMP)1 is a continuous
effort by the software-verification community. The effort consists of the follow-
ing two parts: (1) The SV-COMP community defines and collects verification
tasks that the researchers and developers of software verifiers find interesting and
challenging; these verification problems should be used to evaluate the effectivity
(soundness and completeness) and efficiency (performance) of modern verifica-
tion tools. (2) The organizer of SV-COMP performs a systematic comparative
evaluation of the relevant state-of-the-art tool implementations for automatic
software verification with respect to effectiveness and efficiency; part of this is
to define and explore standards for a reliable and reproducible execution of such
a competition. This paper describes the rules, definitions, results, and other
interesting facts about the execution of the competition experiments, in par-
ticular how to make the experiments reproducible. The main objectives that
the community aims at by running yearly competitions are the following (taken
from [5]):
1 http://sv-comp.sosy-lab.org

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 887–904, 2016.
DOI: 10.1007/978-3-662-49674-9 55

http://sv-comp.sosy-lab.org

888 D. Beyer

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.

There is consensus that (1) and (2) are already achieved, but need continuous
improvement: the community of research groups and verifiers that participate
in SV-COMP is increasing, and the set of verification tasks needs even more
diversity, growing, and quality assurance. The repository and the issue tracker
show that there was considerable effort spent on consolidating the verification
tasks, in terms of consistency and quality. Regarding (3), the simple syntax of the
property language works well for SV-COMP, while it would be great to increase
the supported fragment of LTL. The standard witness language as a common,
exchangeable format was a big step forward in terms of standardization. The
requirement in SV-COMP that bug reports are counted only if the bug is repro-
ducible, i.e., the witness can be re-played on a different machine with a different
validation tool, makes it easier to understand problems. We received positive
feedback in terms of Objective (4), but we cannot evaluate this here.

Related Competitions. SV-COMP is complemented by two other competitions in
the field of software verification: RERS2 and VerifyThis3. While SV-COMP per-
forms reproducible experiments in a controlled environment (dedicated resources,
resource limits), the RERS Challenges gives more room for exploring combina-
tions of interactive with automatic approaches without limits on the resources,
and the VerifyThis Competition focuses on evaluating approaches and ideas
rather than on fully-automatic verification. The report on SV-COMP 2014 pro-
vides a more comprehensive list of other competitions [4].

2 Procedure

The procedure for the competition organization did not change in comparison
to the past SV-COMP editions [2–5]. SV-COMP was again an open competition
where all verification tasks were known before the submission of the participating
verifiers, such that there were no surprises and developers were able to train the
verifiers. In the benchmark submission phase, we collected and classified new
verification tasks, in the training phase, the teams inspected verification tasks
and trained their verifiers, and in the evaluation phase, verification runs were
preformed with all competition candidates and the system descriptions were
reviewed by the competition jury. As in the last years, the participants received
the preliminary results of their verifier per e-mail for inspection, after which the
results were publicly announced.
2 http://rers-challenge.org
3 http://etaps2015.verifythis.org

http://rers-challenge.org
http://etaps2015.verifythis.org

Reliable and Reproducible Competition Results 889

3 Definitions, Formats, and Rules

Verification Task. The definition of verification task was not changed (taken
from [4]). A verification task consists of a C program and a property. A verifi-
cation run is a non-interactive execution of a competition candidate on a single
verification task, in order to check whether the following statement is correct:
“The program satisfies the property.” The result of a verification run is a triple
(answer, witness, time). answer is one of the following outcomes:

True: The property is satisfied (i.e., no path that violates the property exists).
False: The property is violated (i.e., there exists a path that violates the prop-

erty) and a counterexample path is produced and reported as witness.
Unknown: The tool cannot decide the problem, or terminates abnormally, or

exhausts the computing resources time or memory (i.e., the competition
candidate does not succeed in computing an answer True or False).

Fig. 1. Categories (generated by GraphViz)

The component witness [6]
was this year mandatory only
for False answers; in the future,
witnesses are also required for
True answers. SV-COMP was sup-
ported by the two witness validators
CPAchecker and UAutomizer.
time is measured as consumed CPU
time until the verifier terminates,
including the consumed CPU time
of all processes that the verifier
started [8]. If the wall time was
larger than the CPU time, then the
time is set to the wall time. If
time is equal to or larger than the
time limit (15 min), then the veri-
fier is terminated and the answer

is set to ‘timeout’ (and interpreted
as Unknown).

Categories. The collection of ver-
ification tasks, which represents
the current interest and abili-
ties of tools for software verifica-
tion, is arranged into categories,
according to the characteristics of
the programs and the properties
to be verified. The assignment
was proposed and implemented
by the competition chair, and
approved by the competition jury.

890 D. Beyer

Table 1. Properties used in the competition (cf. [5] for more details)

Formula Interpretation / Syntax of property

G ! call(foo()) A call to function foo is not reachable on any finite execution.
CHECK(init(main()), LTL(G ! call(VERIFIER error())))

G valid-free All memory deallocations are valid (counterexample: invalid free).
More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.
CHECK(init(main()), LTL(G valid-free))

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.
CHECK(init(main()), LTL(G valid-deref))

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
counterexample: memory leak). More precisely: There exists no
finite execution of the program on which the program lost track
of some previously allocated memory.
CHECK(init(main()), LTL(G valid-memtrack))

F end All program executions are finite and end on proposition end, which
marks all program exits (counterexample: infinite loop). More
precisely: There exists no execution of the program on which the
program never terminates. CHECK(init(main()), LTL(F end))

Table 2. Scoring schema for SV-COMP 2016

Reported result Points Description

Unknown 0 Failure to compute verification result

False correct +1 Violation of property in program was correctly found

False incorrect −16 Violation reported but property holds (false alarm)

True correct +2 Correct program reported to satisfy property

True incorrect −32 Incorrect program reported as correct (wrong proof)

For the 2016 edition of SV-COMP, a total of 10 categories were defined. The
structure of categories is illustrated in Fig. 1 and described in more detail on
the competition web site4. As a new feature of the competition, a new (meta)
category Falsification was defined, which was meant to explore bug hunting
capabilities of verifiers that are not able to construct correctness proofs. The
new category consisted of all verification tasks with safety properties, and any
answers True were ignored. The categories, their defining category-set files, and
the contained programs are explained in more detail under Verification Tasks
on the competition web site.

Properties and Their Format. For the definition of the properties and the
property format we refer to the previous competition report [5]. All specifications

4 http://sv-comp.sosy-lab.org/2016/benchmarks.php

http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2016/benchmarks.php

Reliable and Reproducible Competition Results 891

Fig. 2. Setup: components that support reproducibility are highlighted in green

are available as .prp files in the respective directories of the benchmark cate-
gories in the repository. Table 1 lists the properties and their syntax as overview.

Evaluation by Scores and Run Time. In order to reflect the steady progress
towards completeness and soundness of verification tools, the scoring schema was
again adjusted in order to increase the penalty for wrong results. Table 2 provides
the overview. The ranking is decided based on the sum of points (normalized for
meta categories) and for equal sum of points according to success run time, which
is the total CPU time over all verification tasks for which the verifier reported
a correct verification result. Opt-out from Categories and Score Normalization
for Meta Categories was done as described previously [3] (page 597). The Com-
petition Jury consists again of the chair and one member of each participating
team. Team representatives of the jury are listed in Table 3.

4 Reproducibility

One of the main goals of SV-COMP is to make the competition as transparent
and reproducible as possible. To achieve this goal, it is necessary to control as
many as possible of the variables that might influence the results. Figure 2 gives
an overview over the components that contribute to the reproducible setup of
SV-COMP.

BenchExec: Precise Controlling and Measurement of Resources (e).
For scientifically valid experiments, we require for each verification run a reliable
assignment and controlling of computing resources (cores, memory, CPU time),
and a precise measurement. There are several requirements that experiments of a
competition such as SV-COMP have to fulfill [8]: (i) accurate measurement and
reliable enforcement of limits for CPU time and memory, (ii) reliable termination
of processes (including all child processes), and (iii) correct assignment of local
memory (for NUMA architectures). We use BenchExec

5 to perform all SV-
COMP experiments, because this benchmarking framework lets us conveniently
benefit from the modern resource control and measurement mechanisms that the
Linux kernel offers.
5 https://github.com/sosy-lab/benchexec

https://github.com/sosy-lab/benchexec

892 D. Beyer

Repository of Verification Tasks (a). The verification tasks are organized in
a public repository6. The repository was moved to GitHub in order to support
an issue tracker and to efficiently handle contributions from the community via
pull requests. The more appropriate logging of change history and issues gives
credit to people that contribute. Furthermore, the continuous-integration system
TravisCI is used to ensure that the verification tasks are compilable by Gcc

and Clang. The move to GitHub also had a positive effect on the activity on
the benchmark suite: more people are involved, and more fixes to verification
tasks were contributed. For reproducing the results of SV-COMP, the exact
versions of the verification tasks as used for SV-COMP 2016 are available via
the PGP-signed tag ‘svcomp16’ in the git repository.

Benchmark Definitions (b). For executing verification runs, we need to know
for each verifier, (i) which verification tasks need to be given to the verifier
(derived from participation declaration) and (ii) which parameters need to be
passed to the verifier (there are global parameters that are specified for all cate-
gories, and there are specific parameters such as the bit architecture and memory
model). The benchmark definitions are XML files in the format that BenchExec

expects; they are collected in a specific repository for SV-COMP7, in which the
PGP-signed tag ‘svcomp16’ points to the exact versions that were used in SV-
COMP 2016.

Tool-Specific Information (c). In order to successfully execute a verifier
and correctly interpret its results, a tool-info module needs to be provided to
BenchExec. First, the command-line to properly invoke the verifier (includ-
ing source and property file as well as the options) is assembled from the parts
specified in the benchmark definition (b). Second, the (tool-specific) information
that the verifier produces needs to be interpreted and translated into the uni-
form SV-COMP result (True, False(p), Unknown). The tool-info modules
that were used in SV-COMP 2016 are available in BenchExec release 1.7.

Verifier Archive (d). The verifiers are provided in an archive containing a
license (that permits academic use, use in SV-COMP, and reproducing the
results) and all parts that are needed to execute the verifier (statically-linked
executables, all components that are required in a certain version, or for which
no standard Ubuntu package is available, are included). The verifiers and the
above-mentioned components are provided on the systems-description page of
the SV-COMP web site8, together with the SHA1 hashes for verification of con-
sistency.

Violation Witnesses (f). SV-COMP counts answers False only if a valid
witness according to an exchangeable, machine-readable format is part of the
result triple as witness. This means that each verification run must be followed
by a validation run that checks if the witness adheres to the exchange format

6 https://github.com/sosy-lab/sv-benchmarks
7 https://github.com/sosy-lab/sv-comp
8 http://sv-comp.sosy-lab.org/2016/systems.php

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-comp
http://sv-comp.sosy-lab.org/2016/systems.php

Reliable and Reproducible Competition Results 893

and can be reproduced. The time limit for a validation run was set to 10 % of
the CPU time for a verification run, i.e., the witness validation was limited to
90 s. The purpose of the tighter resource limit is to avoid delegating verification
work to the validator. This ensures a high quality of assignment of scores: if a
verifier claims a found bug but is not able to provide a witness, then no score is
assigned. The witness format and the validation process is explained on the web
page9. More details on witness validation is given in a related research article [6].

Correctness Witnesses (g). Although SV-COMP requires since its second
edition (2013) that each result must be accompanied by a witness, this require-
ment was not enforced for the answer True, mainly due to the lack of validators
for correctness witnesses. This year, there was a demonstration category on val-
idation of correctness witnesses, with the purpose to get prepared for witness
validation for correctness results in the future.

5 Results and Discussion

For the fifth time, the competition experiments represent the state of the art
in fully-automatic and publicly-available software-verification tools. The report
shows the improvements of the last year, in terms of effectiveness (number of
verification tasks that can be solved, correctness of the results, as accumulated
in the score) and efficiency (resource consumption in terms of CPU time). The
results that are presented in this article were approved by the participating
teams.

Participating Verifiers. Table 3 provides an overview of the participating com-
petition candidates and Table 4 lists the features and technologies that are used
in the verification tools.

Computing Resources. The resource limits were the same as last year [5]:
Each verification run was limited to 8 processing units (cores), 15 GB of memory,
and 15 min of CPU time. The witness validation was limited to 2 processing units,
7 GB of memory, and 1.5 min of CPU time. The machines for running the exper-
iments were different from last year, because we had to use 24 machines instead
of eight. Each machine had two Intel Xeon E5-2650 v2 CPUs, with 16 processing
units each, a frequency of 3.4 GHz, 135 GB of RAM, and a GNU/Linux operating
system (x86 64-linux, Ubuntu 14.04 with Linux kernel 4.2). All verification runs
were executed on a dedicated CPU, i.e., 8 processing units were assigned to the
verification run, while the other 8 processing units were reserved and left idle.

One complete verification execution of the competition consisted of 313
benchmarks (each verifier on each selected category according to the opt-outs),
summing up to 115 761 verification runs. Witness validation required 524 bench-
marks (combinations of verifier, category with witness validation, and two val-
idators) summing up to 50 249 validation runs. The consumed total CPU time
for one competition run for verification only required a total of 319 days of CPU

9 http://sv-comp.sosy-lab.org/2016/witnesses/

http://sv-comp.sosy-lab.org/2016/witnesses/

894 D. Beyer

Table 3. Competition candidates with their system-description references and repre-
senting jury members

Participant Ref. Jury member Affiliation

2LS [31] Peter Schrammel U Oxford, UK

AProVE [33] Jera Hensel RWTH Aachen, Germany

Blast [32] Vadim Mutilin ISPRAS, Russia

Cascade [35] Wei Wang New York U, USA

CBMC [22] Michael Tautschnig Queen Mary U London, UK

Ceagle Dexi Wang Tsinghua U, China

Ceagle-Absref Guang Chen Tsinghua U, China

CIVL [36] Stephen Siegel U Delaware, USA

CPA-BAM [14] Karlheinz Friedberger U Passau, Germany

CPA-kInd [7] Matthias Dangl U Passau, Germany

CPA-RefSel [9] Stefan Löwe U Passau, Germany

CPA-Seq [12] — U Passau, Germany

DIVINE [37] Vladimı́r Štill Masaryk U, Czech Republic

ESBMC [24] Mikhail Ramalho U Southampton, UK

ESBMC+DepthK [28] Lucas Cordeiro Federal U Amazonas, Brazil

Forest [13] Pablo Sanchez U Cantabria, Spain

Forester [18] Ondřej Lengál Brno UT, Czech Republic

HIPrec [23] Quang Loc Le National U, Singapore

Impara Björn Wachter U Oxford, UK

Lazy-CSeq [19] Omar Inverso Gran Sasso Sc. Inst., Italy

LCTD [30] Keijo Heljanko Aalto U, Finland

LPI [20] George Karpenkov VERIMAG, France

Map2Check [29] Herbert Rocha Federal U Roraima, Brazil

MU-CSeq [34] Gennaro Parlato U Southampton, UK

PAC-MAN [11] Ming-Hsien Tsai Academia Sinica, Taiwan

PredatorHP [21] Tomas Vojnar Brno UT, Czech Republic

SeaHorn [15] Jorge Navas NASA Ames, USA

Skink Franck Cassez Macquarie U, Australia

SMACK+Corral [27] Zvonimir Rakamaric U Utah, USA

Symbiotic [10] Jan Strejček Masaryk U, Czech Republic

SymDIVINE [1] Jǐŕı Barnat Masaryk U, Czech Republic

UAutomizer [17] Matthias Heizmann U Freiburg, Germany

UKojak [26] Daniel Dietsch U Freiburg, Germany

UL-CSeq [25] Bernd Fischer Stellenbosch U, ZA

VVT [16] Alfons Laarman TU Vienna, Austria

Reliable and Reproducible Competition Results 895

Table 4. Technologies and features that the verification tools offer

896 D. Beyer

Table 5. Quantitative overview over all results

Reliable and Reproducible Competition Results 897

Table 6. Overview of the top-three verifiers for each category (CPU time in h,
rounded to two significant digits)

Rank Verifier Score CPU Time Solved Tasks False Alarms Wrong

Proofs

Arrays

1 ESBMC 190 3.2 131 2

2 SMACK+Corral 146 2.5 111

3 Symbiotic 101 .61 77

Bit Vectors

1 CPA-Seq 87 1.1 55

2 ESBMC 84 .61 51

3 CPA-kInd 77 .67 47

Heap

1 PredatorHP 298 .31 211 2

2 CPA-Seq 234 1.1 188 4

3 Cascade 197 2.7 140 2

Floats

1 2LS 136 .98 79

2 Ceagle 136 1.0 77

3 CBMC 134 5.0 78

Integers Control Flow

1 CPA-Seq 2652 35 1625 1

2 CPA-kInd 2095 35 1278

3 SMACK+Corral 2013 97 978 4

Termination

1 AProVE 909 4.8 500

2 UAutomizer 895 3.2 503

3 SeaHorn 504 .97 323 2

Concurrency

1 MU-CSeq 1240 .93 1016

2 Lazy-CSeq 1240 2.7 1016

3 CIVL 1240 7.8 1016

Device Drivers Linux64

1 CPA-RefSel 3177 24 1646 2

2 CPA-Seq 2801 23 1458 4

3 Blast 2704 5.9 1547 13 5

Falsification Overall

1 UAutomizer 823 7.0 381 1

2 SMACK+Corral 800 17 1140 26

3 CPA-kInd 707 14 479 2

Overall

1 UAutomizer 4843 44 3138 1 5

2 CPA-Seq 4794 65 3535 16

3 SMACK+Corral 4223 160 3464 26 9

898 D. Beyer

time. Each tool was executed several times, in order to make sure no installation
issues occur during the execution.

Quantitative Results. Table 5 presents the quantitative overview over all
tools and all categories (HIPrec participated only in subcategory Recursive and
LCTD only in subcategory BitVectorsReach). The format of the table is similar
to those of previous SV-COMP editions [5], with the exception that due to the
volume we now omit the CPU times. The tools are listed in alphabetical order;
every table row lists the scores of one verifier for each category. We indicate the
top-three candidates by formatting their scores in bold face and in larger font
size. An empty table cell means that the verifier opted-out from the respective
category. For the calculation of the score and for the ranking, the scoring schema
in Table 2 was applied, the scores for the meta categories were computed using
normalized scores as defined in the report for SV-COMP’13 [3]. There were two
categories for which the winner was decided based on the run time: in category
Concurrency, all top-three verifiers achieved the maximum score of 1240 points,
but the run time differed considerably; in category Floats the first and second
both achieved a score of 136 points. More information (including formatted inter-
active tables, quantile plots for every category, and also the raw data in XML
format) is available on the competition web-site.10

Table 6 reports the top-three verifiers for each category. The run time (col-
umn ‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved
Tasks’). The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number
of verification tasks for which the tool reported wrong results: reporting an
error path but the property holds (incorrect False) and claiming that the pro-
gram fulfills the property although it actually contains a bug (incorrect True),
respectively.

Discussion of Scoring Schema and Normalization. The SV-COMP
community considers it more difficult to compute correctness proofs com-
pared to computing error paths (cf. Table 2: True yields 2 points, False

yields 1 point) [2]. This has consequences on the final ranking: For example,
AProVE won the category Termination although UAutomizer solved more
verification tasks: AProVE solved 500, UAutomizer solved 503 verification
tasks. Both verifiers did not report any wrong results in this category. So the
higher score of AProVE (score: 909) is due to its ability to compute more
proofs than UAutomizer (score: 895), while UAutomizer found more viola-
tions. AProVE computed 409 proofs and found 91 property violations, while
UAutomizer computed 392 proofs and found 111 property violations. So in
this case, the scoring schema provides a good mapping from the community’s
intuition to the ranking.

A similar observation can be made on the score normalization. The com-
munity considers the value of solving a verification task in a large cate-
gory (many verification tasks) less than the value of solving a verification
task in a small category (only a few verification tasks) [3]. The values for

10 http://sv-comp.sosy-lab.org/2016/results/

http://sv-comp.sosy-lab.org/2016/results/

Reliable and Reproducible Competition Results 899

category Overall in Table 6 illustrate the purpose of the score normalization:
CPA-Seq solved 3 535 tasks, which is about 400 solved tasks more than the
winner UAutomizer could solve (3 138). So why did CPA-Seq not win the
category? Because UAutomizer is better in the intuitive sense of ‘overall’:
UAutomizer solved tasks more diversely, the ‘overall’ value of the verification
work is higher. Most prominently, UAutomizer solved many tasks in category
Termination which is not supported by CPA-Seq. Similarly, in category Falsi-
ficationOverall, SMACK+Corral solved more tasks than UAutomizer, but
produced also a lot of false alarms and the tasks that SMACK+Corral solved
were considered of less value (i.e., from large categories with many tasks). In
these cases, the score normalization correctly maps the community’s intuition.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [3] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The competition web-site10

includes such a plot for each category; as example, we illustrate the category
Overall (all verification tasks) in Fig. 3 and discuss the results below. A total of
13 verifiers participated in category Overall (only 6 the year before), for which
the quantile plot shows the overall performance over all categories (scores for
meta categories are normalized [3]).

Fig. 3. Quantile functions for category Overall. Each quantile function illustrates the
quantile (x-coordinate) of the scores obtained by correct verification runs below a
certain run time (y-coordinate). More details are given in a previous report [3]. A log-
arithmic scale is used for the time range from 1 s to 1000 s, and a linear scale is used
for the time range between 0 s and 1 s.

Overall Quality Measured in Scores (Right End of Graph). UAutomizer is the
winner of this category: the x-coordinate of the right-most data point represents
the highest total score (and thus, the total value) of the completed verification
work (cf. Table 6; right-most x-coordinates match the score values in the table).

900 D. Beyer

Amount of Incorrect Verification Work (Left End of Graph). The left-most data
points of the quantile functions represent the total negative score of a verifier
(x-coordinate), i.e., the amount of incorrect and misleading verification work.
Verifiers should start with a score close to zero; the winner UAutomizer is
very good in this aspect, together with the second place CPA-kInd (the two
right-most columns of category Overall in Table 6 report the concrete numbers:
only 1 and 16 false alarms, respectively, and 5 and 0 wrong proofs, for a total of
6 661 verification tasks).
Characteristics of the Verification Tools. Quantile plots also give hints on how
a verification strategy works. For example, the horizontal lines show that some
verifiers ‘solve’ a large quantity of verification tasks in the same run time, sug-
gesting that an answer is given without the result being actually computed.
A quick look at the wrapping execution scripts reveals that indeed a pre-mature
answer is returned after 850s or 880s, respectively. This insight is one of the
arguments for the community’s goal to have each result supported by evidence,
e.g., in the form of a verification witness.

Robustness, Soundness, and Completeness. Table 6 shows in the last two
columns that the best verifiers of each category report a low number of wrong
verification results (compared to the large number of verification tasks), indicat-
ing the advancement of the state-of-the-art verification technology. In the three
categories BitVectors, Floats, and Concurrency, the top-three verifiers did not
report any wrong results.

Verifiable Witnesses. SV-COMP counts answers False (bug reports) only if
the result contains a violation witness, which represents directions through the
state space to easily recover an error path. All verifiers in categories that required
witness validation supported the common exchange format for error witnesses,
and produced error paths in that format. For SV-COMP 2016, we used two
completely different witness validators: CPAchecker and UAutomizer.

Table 7. Validation of Correctness Witnesses

Verification Validation
CPAchecker

Validation
UAutomizer

Total tasks 3171 1574 1574

Results True 1574 1295 956

Confirmed witnesses 82% 61 %

Demonstration on Correctness Witnesses. The validation of the results for
answers True was not yet considered, but is identified as the next open problem
that the community should solve. As part of SV-COMP 2016, a demonstration
category (i.e., without ranking and scores) was announced to explore the pos-
sibilities of validating correctness witnesses. Two teams participated, and the

Reliable and Reproducible Competition Results 901

results are reported in Table 7. The table lists the results of a verification with
CPAchecker (k-induction-based configuration) and the validation results of
the correctness witnesses using the validators CPAchecker and UAutomizer.
The first row reports the total number of verification tasks that were given as
input. The verification was performed on an SV-COMP subset of 3 171 verifica-
tion tasks from the categories IntegersControlFlow and DeviceDriversLinux64.
The second row reports that for 1 574 verification tasks the expected and com-
puted verification result was True. Those 1 574 verification tasks were given
as input to the two validators, together with the correctness witness that the
verification produced. CPAchecker was able to validate (i.e., re-verify with
the given invariants from the witness) 1 295 verification tasks (82 %) and UAu-

tomizer was able to validate 956 verification tasks (61 %). More information is
given on the detailed table on the web page.11

6 Conclusion

SV-COMP 2016, the 5th edition of the Competition on Software Verification,
attracted 35 participating teams from 16 countries, which is so far the largest
number of participants (2012: 10, 2013: 11, 2014: 15, 2015: 22). The repository
of verification tasks was consolidated and the number of verification tasks was
increased (from 5 803) to 6 661 verification tasks. We used verifiable witnesses
again to validate the bug reports, and the results False were counted towards
the score only if the witness was confirmed. The number of witness validators
was increased from one to two, which contributed to the trust and neutrality of
SV-COMP’s evaluation. SV-COMP 2016 is the so-far broadest overview of the
state of the art in software verification. The large jury and the organizer made
sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency. Technical accuracy was ensured by using
the benchmarking framework BenchExec.

References

1. Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with
symbolic data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J.,
Matula, P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 47–59. Springer,
Heidelberg (2014)

2. Beyer, D.: Competition on software verification. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-28756-5 38

3. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 594–609. Springer,
Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-36742-7 43

11 http://sv-comp.sosy-lab.org/2016/witnesses/correctness-demo.html

http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://sv-comp.sosy-lab.org/2016/witnesses/correctness-demo.html

902 D. Beyer

4. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg
(2014). http://dx.doi.org/10.1007/978-3-642-54862-8 25

5. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46681-0 31

6. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness vali-
dation and stepwise testification across software verifiers. In: Proceedings of FSE,
pp. 721–733. ACM (2015). http://dx.org/10.1145/2786805.2786867

7. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 622–640. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/
978-3-319-21690-4 42

8. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178.
Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-23404-5 12

9. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Fischer, B., Geldenhuys,
J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 20–38. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-23404-5 3

10. Chalupa, M., Jonáš, M., Slaby, J., Strejček, J., Vitovská, M.: Symbiotic 3: New
slicer and error-witness generation (competition contribution). In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 946–949. Springer,
Heidelberg (2016)

11. Chen, Y.-F., Hsieh, C., Lengál, O., Lii, T.-J., Tsai, M.-H., Wang, B.-Y., Wang, F.:
Learning-based verification and model synthesis. In: Proceedings of ICSE (2016)

12. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

13. Gonzalez-de-Aledo, P., Sanchez, P.: FramewORk for embedded system verification
(competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 429–431. Springer, Heidelberg (2015)

14. Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis
and predicate analysis (competition contribution). In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 912–915. Springer, Heidelberg (2016)

15. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C pro-
grams (competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 447–450. Springer, Heidelberg (2015)

16. Günther, H., Laarman, A., Weissenbacher, G.: Vienna verification tool: IC3 for
parallel software (competition contribution). In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 954–957. Springer, Heidelberg (2016)

17. Heizmann, M., Dietsch, D., Greitschus, M., Leike, J., Musa, B., Schätzle, C.,
Podelski, A.: Ultimate automizer with two-track proofs (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 950–953.
Springer, Heidelberg (2016)

18. Hruška, M., Hoĺı, L., Lengál, O., Rogalewicz, A., Šimácek, J., Vojnar, T.: Run
forester, run backwards! (competition contribution). In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 923–926. Springer, Heidelberg (2016)

19. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg
(2014)

http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.org/10.1145/2786805.2786867
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_3

Reliable and Reproducible Competition Results 903

20. Karpenkov, E.G., Monniaux, D., Wendler, P.: Program analysis with local policy
iteration. In: Jobstmann, B., et al. (eds.) VMCAI 2016. LNCS, vol. 9583, pp.
127–146. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5 6

21. Kotoun, M., Peringer, P., Šoková, V., Vojnar, T.: Optimized Predators and the
SV-COMP heap and memory safety benchmark (competition contribution). In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 942–945.
Springer, Heidelberg (2016)

22. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker (competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 389–391. Springer, Heidelberg (2014)

23. Le, Q.L., Tran, M., Chin, W.-N.: HIPrec: Verifying recursive programs with a
satisfiability solver. Technical report (2016)

24. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (compe-
tition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 405–407. Springer, Heidelberg (2014)

25. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Unbounded lazy-CSeq: a lazy
sequentialization tool for C programs with unbounded context switches (competi-
tion contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 461–463. Springer, Heidelberg (2015)

26. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: ULTIMATE KOJAK with
memory safety checks (competition contribution). In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 458–460. Springer, Heidelberg (2015)

27. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Heidelberg (2014)

28. Rocha, H., Ismail, H.I., Cordeiro, L.C., Barreto, R.S.: Model checking embedded C
software using k-induction and invariants. In: Proceedings of SBESC. IEEE (2015)

29. Rocha, H.O., Barreto, R., Cordeiro, L.: Hunting memory bugs in c programs
with Map2Check (competition contribution). In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 934–937. Springer, Heidelberg (2016)

30. Saarikivi, O., Heljanko, K.: LCTD: Tests-guided proofs for C programs on LLVM
(competition contribution). In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016.
LNCS, vol. 9636, pp. 927–929. Springer, Heidelberg (2016)

31. Schrammel, P., Kröning, D.: 2LS for program analysis (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907.
Springer, Heidelberg (2016)

32. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7 (com-
petition contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 525–527. Springer, Heidelberg (2012)

33. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: termination
and memory safety of C programs (competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 417–419. Springer, Heidelberg (2015)

34. Tomasco, E., Lam, T.N., Inverso, O., Fischer, B., Torre, S.L., Parlato, G.: MU-
CSeq 0.4: Individual memory location unwindings (competition contribution). In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941.
Springer, Heidelberg (2016)

35. Wang, W., Barrett, C.: Cascade. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 420–422. Springer (competition contribution), Heidelberg
(2015)

http://dx.doi.org/10.1007/978-3-662-49122-5_6

904 D. Beyer

36. Zheng, M., Edenhofner, J.G., Luo, Z., Gerrard, M.J., Dwyer, M.B., Siegel, S.F.:
CIVL: applying a general concurrency verification framework to C/Pthreads pro-
grams (competition contribution). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 908–911. Springer, Heidelberg (2016)

37. Štill, V., Ročkai, P., Barnat, J.: DIVINE: Explicit-state LTL model checker (com-
petition contribution). In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 920–922. Springer, Heidelberg (2016)

	Reliable and Reproducible Competition Results with BenchExec and Witnesses (Report on SV-COMP 2016)
	1 Introduction
	2 Procedure
	3 Definitions, Formats, and Rules
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

