
Runtime Monitoring with Union-Find Structures

Normann Decker, Jannis Harder, Torben Scheffel, Malte Schmitz(B),
and Daniel Thoma

Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany

{decker,harder,scheffel,schmitz,thoma}@isp.uni-luebeck.de

Abstract. This paper is concerned with runtime verification of object-
oriented software system. We propose a novel algorithm for monitoring
the individual behaviour and interaction of an unbounded number of
runtime objects. This allows for evaluating complex correctness proper-
ties that take runtime data in terms of object identities into account. In
particular, the underlying formal model can express hierarchical interde-
pendencies of individual objects. Currently, the most efficient monitor-
ing approaches for such properties are based on lookup tables. In con-
trast, the proposed algorithm uses union-find data structures to manage
individual instances and thereby accomplishes a significant performance
improvement. The time complexity bounds of the very efficient opera-
tions on union-find structures transfer to our monitoring algorithm: the
execution time of a single monitoring step is guaranteed logarithmic in
the number of observed objects. The amortised time is bound by an
inverse of Ackermann’s function. We have implemented the algorithm in
our monitoring tool Mufin. Benchmarks show that the targeted class of
properties can be monitored extremely efficient and runtime overhead is
reduced substantially compared to other tools.

1 Introduction

In practice, exhaustive verification of a system is often not an option because of
economical or practical reasons, when third-party libraries are used or code is
loaded dynamically at runtime from uncontrolled sources. In these cases, Run-
time Verification (RV) can provide a reasonable lightweight alternative. Instead
of analysing the whole behaviour of a system, RV focuses on techniques to
observe a program’s execution and evaluate correctness properties regarding
this specific run. They allow for balancing the verification effort regarding the
targeted correctness guarantees. For example, verification efforts can focus on
specific, feasible parts such as low-level primitives or protocol implementations
while the remaining parts are being monitored at runtime. Moreover, RV can
be applied during software testing and debugging to obtain concise and specific
information.

Work partially supported by the European Cooperation in Science and Technology
(COST Action ARVI) and the German Federal Ministry for Education and Research
(CONIRAS/01IS13029).

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 868–884, 2016.
DOI: 10.1007/978-3-662-49674-9 54

Runtime Monitoring with Union-Find Structures 869

In software systems, a monitoring process is typically executed in parallel to a
program under scrutiny. While this can provide a very detailed observation of the
system’s behaviour, it necessarily imposes runtime overhead for the whole system
in terms of memory and computing resources. It is one of the main concerns in
RV to keep this overhead as small as possible. This is particularly challenging for
object-oriented systems. They require to track an unbounded number of runtime
objects and evaluate their individual behaviour and interaction. Consider, for
example, a Java collection object and iterator objects created for it. The number
of iterators can become arbitrarily large. Once the collection is modified none
of them is supposed to be used again, while iterators created for a different
collection or after the modification have still a valid state. Thus, for each object
some information, e.g. whether it is still valid to be used, may have to be stored
and updated upon some program event.

The currently most efficient tools for monitoring object-oriented systems are
JavaMOP [17] and MarQ [18]. They use data structures based on lookup tables,
implemented as hash maps, to store this mapping of objects to their individual
state. Unfortunately, this approach can quickly become infeasible since the num-
ber of table entries increases linearly with the number of maintained objects. A
program event may affect all of them and thus require an update of the corre-
sponding entries. Hence the cost of a single monitoring step can increase linearly
with the length of the observed execution trace. Considering the example above,
using many iterators quickly increases the lookup table. Every modification of
the collection requires iterating through the table to update the entries of all
derived iterator objects.

Contribution. We address this problem and propose a novel monitoring algo-
rithm that uses union-find data structures to store the state of program objects.
The essential idea is to store a mapping c : Δ → Q from object (identifiers)
Δ to monitoring information (states) Q in terms of sets Δq ⊆ Δ of objects for
each state q ∈ Q. Then, changing the state of all objects in some state q to
some state q′ can be done by merging Δq into Δq′ . On union-find structures this
is a constant-time operation, independent of the size of the sets. Further, our
data structure allows for selecting and updating more specific subsets of program
objects. The user can provide a tree-like hierarchy for the program objects and
refer to it in the specification. For example, every iterator object can be filed as
a direct child of its corresponding collection. The data structure then provides
efficient access to the set of, e.g., all children or ancestors of a particular object.
Hence, upon the modification of a collection, all corresponding valid iterator
objects can be marked invalid at once. Tree-like object relations are ubiquitous
in programming and employed in many algorithms, data structures and archi-
tectures. For correctness properties expressed with respect to such a hierarchy,
our algorithm provides extremely efficient runtime evaluation.

Outline. In the following Sect. 2 we define an operational model that allows
for expressing the behaviour and hierarchical dependencies between individual
objects. This model provides the conceptual basis for our monitoring approach
and thus characterises formally the addressed type of correctness properties.

870 N. Decker et al.

To provide a better understanding of the properties, we also identify a corre-
sponding fragment of first-order temporal logic. Based on the operational model,
we describe our data structure in Sect. 3. Our algorithm for efficiently process-
ing runtime events and updating the data structure is presented in Sect. 4. We
discuss the performance of our approach first by providing bounds for the time
complexity of a monitoring step. Then, Sect. 5 is concerned with our implemen-
tation. We present benchmarks for a collection of properties providing evidence
that our approach performs well in practice and in particular in comparison with
the state-of-the-art tools JavaMOP and MarQ.

Related Work. A monitoring approach for object-oriented systems, where the
instrumentation framework AspectJ is extended by a simple expression language,
was already considered in [1]. It allows for matching observed events against pat-
terns with free variables that are bound to values provided by the observation.
Data in general, of which object IDs form a special case, was intensively studied
for runtime verification leading to various approaches based on different specifica-
tion formalisms and execution schemes [4–7,12,13,15,19,20]. Regarding efficient
monitoring for object-oriented systems the influencial work by Chen and Rosu
[19] on the parametric trace slicing technique is tailored specifically towards han-
dling events carrying data in terms of object identifiers. It is implemented in the
system JavaMOP [17] which is considered one of the best performing runtime
verification tools. The trace slicing approach has been generalised to the concept
of quantified event automata (QEA) [4] in order to increase expressiveness while
still allowing for efficient evaluation. The tool MarQ [18] is based on QEA and
can compete performance-wise even with JavaMOP. The essential idea of these
frameworks is to evaluate a symbolic property on a set of projections of an input
trace. Trace slicing specifically considers sequences of events which are para-
meterised by identifiers. A sequence is divided into sub-sequences, called slices,
where all positions share common parameter values. The slices are then moni-
tored independently. In contrast to our approach, only limited interdependencies
between the different slices can be checked.

2 Projection Automata

The essential characteristics of an object are its state and identity. We therefore
use a model that reflects both but provides a reasonable abstraction. Finite word
automata are an established concept that is well suited for runtime verification
because it naturally operates on sequences of inputs. Regarding identity, we
employ the framework of data words to model observations that relate to a
particular object. In this setting, an object is reduced to its mere identity and
represented in terms of a so-called data value. Formally, we consider an infinite set
Δ of such values in order to represent an arbitrary number of different objects.
A finite set Σ of symbols represents the type of observations, e.g., a call to
a particular method or the access to a variable. A data word is now a finite
sequence w = (a1, d1)(a2, d2). . . (an, dn) ∈ (Σ × Δ)∗ of letters consisting of a
symbol a ∈ Σ and a value d ∈ Δ.

Runtime Monitoring with Union-Find Structures 871

For representing the hierarchical relation between objects we impose addi-
tional structure on Δ in terms of a tree-ordering relation ≤. It models the relation
between all possibly occurring objects as a forest. A tree-ordering is a partial
ordering where every strictly descending chain d1 > d2 > . . . is finite and such
that for every non-minimal element d ∈ Δ the largest element d′ < d is unique.
We call d′ the parent of d, written par(d). The level of a value d ∈ Δ is defined as
lvl(d) = 1 if d is minimal and otherwise lvl(d) = lvl(par(d))+1. We call (Δ,≤) of
depth � if there are longest strictly descending chains of length �. Additionally,
we assume that (Δ,≤) contains infinitely many minimal elements and that every
non-minimal element d ∈ Δ has an infinite number of siblings d �= d′ ∈ Δ with
par(d′) = par(d).

Definition 1 (Projection Automata). A projection automaton (PA) is a
tuple A = (Q,Σ, δ, q0, λ) where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × Σ × {<,=, >, ‖} → Q is the transition function, q0 ∈ Q is the initial
state and λ : Q → S is the output labelling for some semi-lattice (S,�).

The operational semantics of PA is given in terms of configurations c :
Δ → Q that map data values to states. The run of A on a data word w =
(a1, d1). . . (an, dn) is a sequence of configurations ρw = c0. . . cn such that the
initial configuration is the constant function c0 : Δ → {q0} and for all positions
0 ≤ i < n and all data values d ∈ Δ we have ci+1(d) = δ(ci(d), (ai+1, �))
where � ∈ {<,=, >, ‖} and di+1 � d. The output of A for the data word w is
A(w) :=

�
d∈Δ λ(cn(d)).

Syntactically, a PA is a finite automaton with output (i.e., a Moore machine)
over the input alphabet Σ ×{<,=, >, ‖} and the output alphabet S. Intuitively,
to every data value d ∈ Δ, an instance of the automaton is associated that
reads, instead of an input letter (a, d′) ∈ Σ × Δ, the symbol a ∈ Σ and the
information how the observed value d′ relates to itself, in terms of one of the
symbols from {<,=, >, ‖}. The output of all instances is then aggregated to a
single verdict, hence the semi-lattice. Note that the restriction to a deterministic
transition function is not essential since non-determinism (even alternation) can
be eliminated by standard constructions.

Example. Recall the property that modifying a collection invalidates iterators
previously created for it. The data values Δ can model these two types of objects
by choosing an ordering ≤ with two levels: collection IDs are minimal (roots)
and the iterator IDs dI ∈ Δ created for a collection with ID dC ∈ Δ are direct
children of dC < dI . Given this structure on Δ, the PA in Fig. 1 (Iterator)
expresses the property. Initially, all objects remain in state q0. Upon the creation
(c) of an iterator with ID dI ∈ Δ, this new iterator receives the letter (c,=) and
changes its state to q1. The corresponding collection receives (c, >) and all others
receive (c, ‖), thus staying in q0. Upon the modification of some collection (m),
all iterators for it receive (m, <) (the observed ID is strictly smaller) and if they
happen to be in state q1 move to state q2. Finally, when next() is called on some
iterator, this one reads the letter (n,=) and only if it happens to be in state q2
it moves to the failure state. Figure 1 shows further examples to be discussed in
Sect. 5.

872 N. Decker et al.

Fig. 1. Example properties formulated as PA with outputs � (white states) and ⊥
(grey states). Missing edges are self-loops.

Projection automata are closely related to class automata [11] that feature
an additional transducer but use only equality on the data domain. It can easily
be shown that PA (like class automata) can simulate Minsky machines.

A Logical Perspective. Projection automata characterise precisely the prop-
erties that our monitoring algorithm can verify since it is based on their opera-
tional semantics. On the other hand, first-order extensions of temporal logics, in
particular linear-time temporal logic (LTL), received much attention in RV [8–
10,13] because they provide a very generic framework for specifying properties
in a declarative fashion. In the following, we therefore discuss briefly how PA
relate to temporal logic with first-order constraints. We identify a fragment of
first-order logic that can be translated to PA and thus allows for using the very
efficient algorithm presented in Sects. 3 and 4 instead of generic techniques.

The fragment consists of a logical language that uses a single variable x and
a single constant d as well as zero-ary predicates (propositions) Pa, for a ∈ Σ,
and a binary predicate ≤. Formulae of that language have the form ∀xϕ where
ϕ is defined by the grammar ϕ :: = Pa | ϕ ∧ ϕ | ¬ϕ | X ϕ | ϕ U ϕ | t ≤ t where
a ∈ Σ and t ∈ {x, d} is either the variable or the constant.

Each letter (a, d) ∈ Σ × Δ in a data word can be considered as a structure
s over the signature above with universe Δ. Such a structure s interprets the
constant d as the value d ∈ Δ, the proposition Pa as true, the propositions Pb,
for b �= a, as false and the binary predicate ≤ as the tree-order relation on Δ.
For simplicity, however, let us define the semantics directly over data words as
follows. The semantics of the terms d and x is given for an interpretation d ∈ Δ
and a valuation dx ∈ Δ as �d�(d, dx) = d and �x�(d, dx) = dx. For data words
w ∈ (Σ × Δ)∗, letters (a, d) ∈ Σ × Δ and values dx we let

(w, dx) |= ∀xϕ iff (w, d′
x) |= ϕ for all d′

x ∈ Δ
((a, d)w, dx) |= Pa

((a, d)w, dx) |= t1 ≤ t2 iff �t1�(d, dx) ≤ �t2�(d, dx)
((a, d)w, dx) |= X ϕ iff (w, dx) |= ϕ

(w, dx) |= ϕ1 U ϕ2 iff (w, dx) |= ϕ2 ∨ (ϕ1 ∧ X(ϕ1 U ϕ2))

Runtime Monitoring with Union-Find Structures 873

The semantics of Boolean operators is defined as usual. To stay close to PA we
include the empty word ε, e.g., (ε, dx) �|= Pa and (ε, dx) |= ϕ1 U(¬Pa).

From formulae ϕ as defined in Eq. 2 we can now construct a PA Aϕ =
(Q,Σ, δ, q0, λ) with outputs from the Boolean lattice B = {⊥,
} such that
Aϕ(w) =
 if and only if (w, dx) |= ∀xϕ for some (hence every) dx ∈ Δ.
Interpreting subformulae of the form Pa and t1 ≤ t2 as atomic propositions we
can apply standard automata construction techniques (see, e.g., [21]) and obtain
a finite automaton B over the alphabet Γ = 2AP for AP = {Pa, t1 ≤ t2 | a ∈
Σ, t1, t2 ∈ {x, d}}. Due to the subset construction, the automaton B reads letters
that cannot occur in our setting. For example, there is no letter (a, d) ∈ Σ × Δ
that induces a structure where Pa and Pb holds for a �= b or where t ≤ t does
not hold for t ∈ {x, d}. We remove these letters and corresponding edges in B,
keeping thus only letters of the form ga

M = {Pa, x ≤ x, d ≤ d} ∪ M ∈ Γ where
M ⊆ {x ≤ d, d ≤ x} and a ∈ Σ. These have a unique correspondence to the
symbols from Σ × {<,=, >, ‖} and we thus obtain Aϕ by renaming each such
ga

M to (a,=) if M = {x ≤ d, d ≤ x}, to (a,<) if M = {d ≤ x}, to (a,>) if
M = {x ≤ d} and to (a, ‖) if M = ∅.

Note that this is essentially the generic construction presented in [13] instan-
tiated for the temporal logic LTL defined accordingly and the theory of letters
from (Σ × Δ). Technically, removing edges with inconsistent labels can be con-
sidered as an optimisation step that is possible given the simple structure of the
letters in a data word. We use LTL here due to its popularity in RV but can
replace it by other logics that translate to finite automata.

3 Data Structure

Our monitoring algorithm is based on simulating the operational semantics of
a given PA A = (Q,Σ, δ, q0, λ). It therefore operates on a data structure to
represent configurations c of A that we describe in this section. The essential
idea underlying our data structure is to store such a mapping c : Δ → Q by
partitioning Δ into subsets of data values with the same state assigned. At the
same time, this partition should also reflect the ordering relation between values.
Then, updating a configuration amounts only to a few operations on subsets of Δ
and we organise our data structure such that these can be performed efficiently.

When processing a letter (a, d) ∈ Σ ×Δ the successive configuration c′ maps
every value e ∈ Δ to a state δ(c(e), (a, �)), i.e., depending on the previous state
c(e) and the relation � between d and e. Our data structure therefore provides
efficient access to the subsets Δq = {d ∈ Δ | c(d) = q}, Δd� = {e ∈ Δ | d � e}
and Δd�,q = Δq ∩ Δd� for � ∈ {<,=, >, ‖}. Then, (Δd�,q)q∈Q,�∈{<,=,>,‖} is a
partition of Δ that reflects the ordering and represents the mapping c. It allows
for characterising the partition (Δ′

d�,q)q∈Q,�∈{<,=,>,‖} representing c′ by

Δ′
d�,q =

⋃

q′|q=δ(q′,(a,�))

Δd�,q′ .

874 N. Decker et al.

Fig. 2. Example for the shape of the data structure to represent PA configurations.
Part objects are linked to the representative of their associated object collection (black
and grey arrows). Non-representative elements of a collection have an uplink pointer
(blue arrows) to the representative or another element. The data structure is divided
into levels (indicated by colour saturation) that are only connected by the pointers
between representatives and Part instances. Note, there is no directed connection from
the global table to any of the objects within the left-hand segment of the object graph
(Color figure online).

Intuitively, the input letter (a, d) can be dispatched as symbol (a, �) to every part
Δd�, for each � ∈ {<,=, >, ‖} and then, within Δd�, the subsets Δd�,q ⊆ Δd�
for q ∈ Q are relabelled and merged according to how the letter (a, �) changes
the states q in A. This is the abstract view of how our algorithm processes events.

Based on the ordering on Δ and the subsets Δd<,q and Δd=,q we can already
describe the sets Δd>,q and Δd‖,q as

Δd>,q =
lvl(d)−1⋃

i=1

Δpari(d)=,q and Δd‖,q = Δq \ (Δd>,q ∪ Δd<,q ∪ Δd=,q).

Therefore it suffices to store only Δq, Δd<,q and Δd=,q for every d ∈ Δ in our data
structure. We next describe a concise representation of this (infinite) collection
of subsets that allows for performing the necessary operations efficiently.

Components. We identify data values d ∈ Δ with program objects and hence
use the latter directly in our data structure to represent data values. The only
assumption that we need to make is that we can attach additional information
to every object, if needed. We represent this information in terms of a class
PObject that provides the three fields part, uplink and table to store reference
pointers to other objects. Technically, we assume every program object in the
system to extend this class. In practice, this can be accomplished, e.g., by means
of program instrumentation. In the following we therefore regard any program
object simply as instance of PObject. Additionally, our data structure for storing
a PA configuration uses the classes Part and Table. An instance of Table will
be used to represent a partition (Δd<,q)q∈Q of Δd< for some particular value
d ∈ Δ. These partitions can be thought of as a (one-dimensional) table indexed

Runtime Monitoring with Union-Find Structures 875

by Q where each cell contains a part Δd<,q of the partition. An instance of Part
will in turn represent such a part.

Based on these components we store the subsets of Δ in a hierarchical fashion
as depicted in Fig. 2. To every PObject corresponding to some data value d we
associate a Table instance that holds a Part object representing the subset Δd<,q

for every state q ∈ Q. A Part object now maintains a collection of objects that
represent subsets of Δd<,q. The collection can contain both instances of Part
and of PObject representing subsets Δd′<,q and Δd′=,q, respectively, for direct
children d′ of d. While the former in turn represent a possibly empty collection
of objects, the latter indicate that the set Δd′=,q is non-empty, i.e. c(d′) = q.
Every PObject in the collection again carries a table pointing to subsets one
level deeper in the data structure and every Part object is associated with a
possibly empty collection of objects.

At the top of the data structure there is one designated Table instance that
we refer to as globalTable. It represents the partition (Δq)q∈Q and hence maps
every state q ∈ Q to a Part object representing the part Δq. The collection of
these Part objects now contain the program objects with minimal IDs d and
corresponding sup-parts Δd<,q.

Unobserved Values. A configuration assigns a state to all (infinitely many) data
values whereas only finitely many objects are actually observed during execu-
tion. We consider an object (ID) observed if it is associated to some event that
occurred or it has a smaller ID (wrt. (Δ,≤)) than an observed object. The map-
ping of unobserved values to states is stored symbolically: every Table object
holds a default field storing a state q ∈ Q. An unobserved ID is mapped to the
default state of the table attached to its larges ancestor. Note that all unobserved
values with the same largest observed ancestor cannot be distinguished because
they always fell into the same projection class along a run.

Union-Find. The object collections attached to Part instances are maintained
using a nesting of union-find data structures. This is the most crucial aspect
regarding the performance of the monitoring algorithm. It allows for efficiently
performing all operations that are necessary to update a configuration: comput-
ing the union of two parts, to insert and delete elements and to identify (find)
the Part object that holds a given element.

Recall that a union-find structure represents disjoint sets of objects organised
as a tree. One element (if any) of each set is appointed representative and used as
root while all others carry a reference to one other member of the same set. For
convenience we consider objects that can be inserted into a union-find structure
as Findable. We assume that Part as well as PObject extend this class providing
the references uplink and part. The former links an element to its parent in the
union-find tree but we use the term uplink to avoid confusion. The part field is
only used by the representative to point to the Part object that holds the set.

Classically, the operations find and insert operate on representatives of a
set but since we are mostly interested in the associated Part object we assume
operations with signatures

876 N. Decker et al.

fun find(obj: Findable): Part

proc insert(target: Part, obj: Findable)

where find returns the content of the part field of the representative and insert
adds an object to the collection attached to a Part object. For the same reason
we use the operation

proc moveAll(target: Part, source: Part)

that is derived from the basic operation union and moves all elements from the
collection attached to source to the collection attached to target. Moreover,
we assume the union-find structure provides an operation

proc delete(obj: Findable)

which can be implemented in different ways while maintaining the worst-case
complexity of the other operations [3,16].

Helper Functions. To facilitate the presentation of the algorithm we employ
the helper functions

fun part(table: Table, state: Q): Part

fun state(table: Table, part: Part): Q
fun createTable(parentTable: Table, default: Q): Table

that can easily be implemented based on the information present in the data
structure. The function part returns the Part object that the given state is
mapped to by the given table. Conversely, state returns the state that the
given table maps to the given Part object. It is assumed that the latter is indeed
referenced by the table and that the state is unique. The function createTable
creates a new Table object with the given default state. For every table index
q ∈ Q a new Part object is created and moreover inserted into the part for q
in parentTable. The object collection attached to itself is initially empty. Our
algorithm accesses the ordering on Δ by means of par and the functions

fun hasParent(obj: PObject): Boolean

fun parentTable(obj: PObject): Table

where hasParent(obj) is true if the ID of obj is not minimal. For every pro-
gram object parentTable returns the Table object associated with its parent
or globalTable if it is minimal. It is assumed that the object and, if existent,
its parent object have already been registered in the data structure as described
below in Sect. 4. Note that the ordering is not represented in the data structure
as described above. In Sect. 5 we discuss how the ordering information can be
made available in our setting.

Output. Considering the output v of the PA A in configuration c we observe
that v =

�
d∈Δ λ(c(d)) =

�
q|c−1(q) �=∅ λ(q) where c−1(q) = {d ∈ Δ | c(d) = q} is

the inverse of c. It hence suffices to evaluate which of the sets Δq are non-empty.
Since evaluating every Part object in the data structure is not an option—in
fact, Part objects are not necessarily reachable—we track the number of objects
in a field counter attached to every Part object. When performing a specific
operation, the local counters can easily be updated. By propagating local counter
changes upwards the tree structure the counters for the parts Δq can invariantly
provide the number of program objects mapped to a specific state.

Runtime Monitoring with Union-Find Structures 877

Recall that the part corresponding to the default state q in a table virtually
contains unobserved objects. These cannot be distinguished and we therefore
treat them as a single one and add one to the counter value of that part.

4 Monitor Execution Algorithm

Based on the data structure described in the previous section we now present an
algorithm that simulates one step of the operational semantics of some PA A =
(Q,Σ, δ, q0, λ). The main procedure step of the algorithm is shown in Listing 2.
It takes an event name a ∈ Σ and a PObject instance and updates the data
structure such that it represents the successor configuration of A after reading
a letter (a, d) ∈ Σ × Δ where d represents the object’s ID. In the following,
we identify PObject instances with data values from Δ representing their ID.
Moreover, we identify Part objects with the subset of Δ they represent. The
procedure step essentially dispatches the input letter (a, d) to the parts Δd<,
Δd=, Δd> and Δd‖ as symbols (a,<), (a,=), (a,>) and (a, ‖), respectively.
Assume the data structure encodes a configuration c of A.

Updating Δd=. Updating the part Δd= requires only to change the state q =
c(d) of the object d to another state q′ = δ(q, (a,=)). This is implemented by
the procedure changeState depicted in Listing 1. It removes the object d from
its current part Δpar(d)<,q and inserts it into the part Δpar(d)<,q′ . Removing d
amounts to deleting d from the union-find structure associated with the Part
object Δpar(d)<,q and consequently decrementing its counter. Subsequently, the
procedure setState inserts d into the (collection associated with the) target
part Δpar(d)<,q′ and increments its counter to update the size information. As
our data structure maintains nested parts, changing the size of a part requires
to propagate this change to all enclosing parts. The procedure updateCounter
realises this functionality. It calls find recursively to determine all enclosing
parts until a top most part Δq is reached and updated.

Updating Δd<. All elements from the part Δd< need to be updated according
to the symbol (a,<) upon reading (a, d). How this symbol changes the states
of these can simply be described by the mapping map : Q → Q with map(q) =
δ(q, (a,<)). As we aim to be efficient we must not explicitly handle every element
below the Part object Δd< in the data structure. Instead, we rearrange only the
Table object associated to d: depending on map, the parts Δd<,q are joined or
moved, i.e., new Part objects Δ′

d<,q :=
⋃

q′|map(q′)=q Δq′ are created for every
state q ∈. The function applyMap creates these new parts and computes their
counters based on the counters of the original parts. After applying the mapping,
it only remains to propagate the counter changes upwards in the data structure
to all enclosing parts.

Notice that this way, the data structure becomes inconsistent since the
changes are not automatically propagated downward the data structure to all
larger objects. In a consistent state (cf. Fig. 2) every part object Δe<,q is con-
tained in the collection of the part object Δpar(e)<,q for the same state q. Apply-
ing the map may, e.g., effectively relabel some Δpar(e)<,q to Δpar(e)<,q′ and then

878 N. Decker et al.

Listing 1. Procedures operating on the data structure
1 proc changeState(obj: PObject, q: Q) {

2 updateCounter(find(obj), -1)

3 delete(obj)

4 setState(obj, q) }

6 proc setState(obj: PObject, target: Q) {

7 val targetP =

8 part(parentTable(obj), target)

9 insert(targetP, obj)

10 updateCounter(targetP, 1) }

12 proc updateCounter(startP: Part,

13 delta: Int) {

14 if (startP == null) return
15 startP.counter += delta

16 updateCounter(find(startP), delta) }

18 proc changeStatesIncomp(obj: PObject,

19 anchor: PObject, map: Q → Q) {

20 val state = state(parentTable(obj),

21 find(obj))

22 if (hasParent(obj)) {

23 changeStatesIncomp(

24 par(obj), anchor, map)

25 } else {

26 globalTable =

27 applyMap(globalTable, map)

28 if (hasParent(anchor)) {

29 pullUpdates(par(anchor)) } }

30 changeState(obj, state) }

32 proc pullUpdates(obj: PObject) {

33 if (hasParent(obj)) pullUpdates(par(obj))
34 fun map(q: Q): Q = state(

35 parentTable(obj),

36 find(part(obj.table, q)))

37 obj.table = applyMap(obj.table, map) }

38 proc changeStates(obj: PObject, map: Q → Q) {

39 val oldTab = obj.table

40 obj.table = applyMap(oldTab, map)

41 foreach q in Q {

42 updateCounter(part(parentTable(obj), q),

43 part(obj.table, q).counter

44 - part(oldTab, q).counter) } }

46 fun applyMap(tab: Table, map: Q → Q): Table = {

47 val newTab = createTable(tab, map(tab.default))

48 foreach q in Q {

49 val source = part(tab, q)

50 val target = part(newTab, map(q))

51 moveAll(target, source)

52 target.counter += source.counter }

53 return newTab }

55 proc register(obj: PObject) {

56 if (obj.table != null) return
57 if (hasParent(obj)) register(par(obj))
58 val default = parentTable(obj).default

59 obj.table =

60 createTable(parentTable(obj), default)

61 updateCounter(part(obj.table, default), 1)

62 setState(obj, default) }

64 proc dismissUpdates(obj: PObject) {

65 foreach q in Q {

66 val displaced = part(obj.table,q)

67 delete(displaced)

68 insert(part(parentTable(obj), q),

69 displaced)

70 }}

Δe<,q is enclosed by the part Δpar(e)<,q′ , although not being a subset. How-
ever, this inconsistency only means that the parts Δe<,q did not yet receive the
transition from q to q′. We can recover the correct state by determining the out-
most enclosing part and consulting the global table for its state. The procedure
pullUpdates in Listing 1 implements this functionality. We will, however, only
use it if necessary, meaning propagation of such changes is lazy. Note that, in
contrast to setStates no counter updates must be propagated.

Updating Δd‖. The essential idea for updating Δd‖ is to save the state of d and all
the ancestors e < d of d, apply the update for (a, ‖) to the global table, i.e., to all
objects, and then restore the saved states of the ancestors and d. That way pre-
cisely all incomparable objects are affected. Most of this process is implemented
by the recursive procedure changeStatesIncomp shown in Listing 1. Notice, that
before restoring the states of d and its ancestors, the changes made to the global
table need to be propagated to d. Otherwise restoring would not have an effect
and upon the next update the unintended modifications would still be applied.
It remains to restore the state of the larger elements in the part Δd< afterwards.
This is implemented independently in the procedure dismissUpdates. This pro-
cedure deletes for every q the part associated with q in the table of d from its
current enclosing part and inserts it into the part associated with q in the parent
table. Thus it corrects the inconsistency based on the information in the local
table instead of the information in the global table, as done by pullUpdates.

Runtime Monitoring with Union-Find Structures 879

Listing 2. Main procedure
1 proc step(obj: PObject, event: Σ) {

2 register(obj)

3 pullUpdates(obj)

5 fun mapGT(q: Q): Q = δ(q, (event, <))
6 changeStates(obj, mapGT)

8 changeState(obj,

9 δ(state(parentTable(obj), find(obj)),

10 (event, =)))

11 var obj2 = obj

12 while (hasParent(obj2)) {

13 obj2 = par(obj2)
14 changeState(obj2,

15 δ(state(parentTable(obj2), find(obj2)),

16 (event, >))) }

17 fun mapIC(q: Q): Q = δ(q,(event, ‖))
18 changeStatesIncomp(obj, obj, mapIC)

19 dismissUpdates(obj)

20 }

Procedure step. Consider the main procedure step in Listing 2 called for an
event a ∈ Σ and object d ∈ Δ. It first calls register to ensure d has been prop-
erly registered with our data structure. Notice that when creating a new table
for the object, all parts are, technically, empty. However, the part corresponding
to the default state in the table above virtually contains unobserved objects. We
therefore increment its counter by one. Then, pullUpdates is used to ensure
that the table associated with the observed object d is consistent with respect
to the global table. In lines 5–6 and 8–10 of Listing 2 the parts Δd< and Δd=

are updated, respectively, as described above. The lines 11–16 update the part
Δd> of smaller objects according to the symbol (a,>). This case can be han-
dled by determining all affected objects explicitly using function par. Then the
corresponding target state is computed and assigned similarly as in the case of
Δd=. Finally, lines 17–19 handle Δd‖. As before a function mapIC is defined map-
ping source to target states for transitions labelled by (a, ‖) and the procedure
changeStatesIncomp is called, followed by the restore operation as described
above.

Complexity. It is crucial to know how the performance of a monitoring algo-
rithm depends on the behaviour of the monitored program. For the following
analysis, we fix a PA A with s control states and assume that the data domain
(Δ,≤) is of bounded depth �. Let Ak(i) be Ackermann’s function defined as
A0(i) := i + 1 and Ak+1(i) := Ai+1

k (i) where f j(x) is the function f iterated
j times on x. Following [2], we define the inverse of Ackermann’s function as
α(i, j) := min{k ≥ 2 | Ak(i) > j} and α(i) := α(i, i). We observe that the exe-
cution time of step is dominated by the calls to operations on union-find data
structures and that it causes O(s ·�+�2) calls to find and O(s ·�) calls to union-
and delete-operations. If our data structure contains n program objects, the size
of every union-find structure in it is bound by s · n. Then, the find-operations
can be realised in O(log(s · n)) worst-case time and O(α(s · n)) amortised time;
all other operations can be realised in constant time [2]. Hence, for fixed s and
�, the worst-case and amortiseed execution time of step on a data structure
containing n program objects is in O(log(n)) and in O(α(n)), respectively.

Note, that our data structure only requires space linear in the number of
observed objects. Furthermore, the factor �2 for the number of find-calls arises
only from the update of the set Δd> in lines 11–16 and Δd‖ in lines 17–19 of
Listing 2. There, setState is called at most � times which causes in turn up to
� find-calls to adjust the counters. Updating the counters for � consecutive

880 N. Decker et al.

setState-calls could be implemented accumulatively with only � find-calls
instead. An optimised implementation of step therefore provides a worst-case
and amortised time complexity in O(s · � · log(n)) and O(s · � ·α(n)), respectively.

5 Implementation and Evaluation

We have implemented our approach in Java as the tool Mufin. Properties are
specified in Java by defining automata using a simple Java API. In addition
the required tree-ordering on data values and the mapping of program events
to unary logical events has to be provided. We use AspectJ intercept program
events, such as method invokations, and dispatch them to Mufin.

In the presentation of the algorithm in Sect. 4 we assumed direct access to
the tree-ordering on data values and used the function par to obtain the parent
of a program object. An implemented of such a function depends on the setting
as the order used for the specification may not be directly represented in the
monitored program or might be hard to access. Mufin uses special events from
which this order can be observed. Consider again the example from Sect. 1.
When a new iterator is created the implementation can access both, the iterator
and the corresponding collection. As the collection has to be the parent of the
iterator the implementation can store this information, e.g. using a pointer from
the iterator to the collection. Since our monitoring algorithm requires that all
smaller objects are known when an event occurs, we also require these special
events to occur on an object before any other events. The implementation detects
when an event occurs on an object where the parent object is not yet known or
when a special event occurs that conflicts with a previously observed event.

While we assumed to use program objects directly in the conceptual presen-
tation, our implementation adds only one additional field to program objects
that points to auxiliary objects actually contained in the data-structure. As
program objects are not referenced from inside the union-find structure, they
can be garbage collected as soon as they are no longer referenced by the orig-
inal program. Also, the delete operation simply marks these auxiliary objects
as deleted and they are only cleaned up during find-operations. The obvious
consequence is that unnecessary auxiliary objects might pile up within a union-
find structure. However, this does not happen as long as events occur regularly
involving every observed program object. The assumption that almost all pro-
gram objects, that are not ready for garbage collection, will always occur in some
future event seems to be reasonable for many applications. The advantage of this
approach is that garbage collection does not require any additional considera-
tion. Classical union-find structures only require upward references in direction
of the representative element of a part. Efficient implementations of the delete-
operation also require further references in the reverse direction. Assuming that
find-operations are performed regularly on most elements, most elements will
not be referenced by any other element. Once they are no longer reference by
a program object they will thus be garbage collected. Using an implementation
with efficient deletes would require to use the API of the Java garbage collec-
tor in order to trace when some observed program object is garbage collected

Runtime Monitoring with Union-Find Structures 881

which would come with some performance overhead on its own. While this is an
option when requiring strict guarantees, our benchmarks show that our simpler
approach works well.

Instrumenting the elementary object class requires to modify the Java Virtual
Machine (JVM). To avoid this, Mufin can also use a hash table to map program
objects to auxiliary objects instead of a reference. This variation, called Mufin
Light, has a notable impact on runtime and memory overhead, however, the
advantage of our algorithm remains as our benchmarks show.

Evaluation. Mufin took part in the Java track of the recent 2nd Competition
on Runtime Verification [14]. We selected the seven benchmarks with properties
expressible in our formalism of the 14 submitted to the competition. All bench-
marks comprise a property and a small program generating a sequence of events.
Monitoring the given property involves keeping track of nearly all the objects
of the program. Therefore, the benchmarks are very well suited to compare the
performance of different tools. For real-world applications a far smaller overhead
can be expected as usually only a fraction of objects and events will be observed.
Projection automata for the benchmarks are depicted in Fig. 1.

Benchmarks. The first group of benchmarks comprises Iterator, already
described in Sect. 1, and three variations: SafeIterator uses the same property
but instantiates far more objects (several millions instead of about ten). MapIt-
erator enforces a similar property where iterators are created for key sets of a
map and modifications occur on the map, thereby requiring three instead of only
two levels of objects. It also creates several millions of objects. DelayedIterator
is a variation of Iterator where the next-method may be called one time after a
modification of the collection without failing. These benchmarks are very com-
mon for the evaluation of online monitoring tools, e.g. in [19] only properties
of this kind are considered. Multiplexer aims to show the effect of a property
requiring more control states. It models a multiplexer with four channels where
an arbitrary number of clients is connected to each channel. New clients can
be attached to the active channel (c), removed (r) and used (u) and the active
channel can be switched (n). Using a client attached to an inactive channel vio-
lates the property. Toggle is designed to demonstrate the effect of a global action
affecting a large number of objects. Objects can be created (c) and the state of
all existing objects can be toggled (t). Objects may only be processed (p) if they
are in one of their two internal states. Tree provides a scenario were the maximal
level of observed objects is not known in advance. Objects are created as inner
nodes (ci) or leafs (cl) of a tree. Messages sent (s) on any node are dispatched
to corresponding leafs with an input buffer of size one and processed (p) there.
Conversely, a reset (r) clears the buffer of corresponding leafs. A critical send
operation (sc) requires the buffer of all receiving leafs to be empty. Finally, any
node can be invalidated (i) effectively removing it from the tree.

Results. We executed the benchmarks with Mufin, Mufin Light, JavaMOP and
MarQ and measured execution time and memory consumption of the complete
JVM process. Figure 3 shows relative time and memory overhead, i.e. additional

882 N. Decker et al.

Fig. 3. Relative time and memory overhead of the tools Mufin, JavaMOP and MarQ
while monitoring the given properties on the benchmark programs. A relative time
overhead of 1 means that the absolute monitoring overhead is equal to the execution
time of the non-instrumented program. (The difference between the instrumented and
non-instrumented benchmark is the absolute overhead.)

time and memory consumption divided by that of the unmonitored program.
Mufin (in both variants) is always multiple, often more than ten, times faster
than JavaMOP and MarQ while consuming far less memory. Comparing Mufin
with Mufin Light shows a notable impact of the global hash table but the perfor-
mance benefit of our approach clearly persists. Comparing Iterator, DelayedIter-
ator and Multiplexer shows that the number of states in a specification has only
a small effect on the overhead of Mufin. Comparing SafeIterator and MapIt-
erator shows that the impact of an addition level is small as well. The mea-
surements for SafeIterator and MapIterator also show that Mufin handles large
numbers of instantiated objects far better than the other tools. The results for
Toogle demonstrate the massive impact of actions affecting many objects at
once. In this benchmark almost every step affects around 10 000 objects render-
ing the previous approaches practically infeasible. The benchmark Tree can not
be specified using the formalisms of the other tools. It shows that the overhead
of Mufin grows for a greater depth of the ordering and thus of the data structure
(in this case up to 7) but remains acceptable. The memory overhead of Mufin
Light is significantly larger than that of Mufin, the latter remaining very small
(below 1) in all cases. This is most likely due to hash tables that can only be
filled up to a certain degree without becoming extremely inefficient. Some varia-
tions in memory consumption may be due to the allocation strategy of the JVM
and the memory measurements therefore only show a general tendency. Mufin
is available for download1.

1 http://www.isp.uni-luebeck.de/mufin.

http://www.isp.uni-luebeck.de/mufin

Runtime Monitoring with Union-Find Structures 883

6 Conclusion

Our investigations on monitoring temporal properties of object-oriented systems
show that complex constraints, including hierarchical dependencies between indi-
vidual objects, can be evaluated efficiently at runtime. We demonstrated that
union-find data structures are a valuable algorithmic tool for runtime analysis.
In the proposed monitoring algorithm they provide strict guarantees on the exe-
cution time of a monitoring step. This ensures that the accumulated runtime
overhead grows effectively only linear with the execution time of the monitored
program. Our benchmarks show that the conceptual benefits actually apply in
practice and can outperform the currently most efficient monitoring tools Java-
MOP and MarQ. Our formal model and logical characterisation provide a good
understanding of the class of properties our approach can be applied to. Since
we exploit their inherent hierarchical structure we clearly pay performance by
expressiveness. However, since hierarchical structures are ubiquitous in comput-
ing they still cover a wide range of relevant specifications. The class of properties
monitorable with our approach can be further extended. For example, some iter-
ator implementations provide a remove method that deletes the current object
from the underlying collection. It invalidates all other iterators of the same col-
lection. To handle such constraints, further predicates are needed to address
more types of subsets of objects, in this case the set of all siblings of an object.
Given our data structure, the algorithm can be extended accordingly. Exploiting
the ability to measure the number of objects assigned to some state provides fur-
ther a basis for evaluating quantitative properties. The underlying model could
easily be extended, e.g., by constraints on the number of children of an object
in a certain state.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták,
O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching
with free variables to AspectJ. In: Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications 2005, pp. 345–364. ACM (2005)

2. Alstrup, S., Li Gørtz, I., Rauhe, T., Thorup, M., Zwick, U.: Union-find with con-
stant time deletions. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 78–89. Springer, Heidelberg
(2005)

3. Alstrup, S., Thorup, M., Gørtz, I.L., Rauhe, T., Zwick, U.: Union-find with con-
stant time deletions. ACM Trans. Algorithms 11(1), 1–28 (2014)

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

884 N. Decker et al.

6. Barringer, H., Havelund, K.: TraceContract: a scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

7. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 111–125. Springer, Heidelberg (2007)

8. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)

9. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15 (2015)

10. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

11. Bojańczyk, M., Lasota, S.: An extension of data automata that captures XPath.
Logical Methods Comput. Sci. 8(1) (2012)

12. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchro-
nous systems. In: Proceedings of Temporal Representation and Reasoning 2005,
pp. 166–174. IEEE Computer Society (2005)

13. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J. Softw.
Tools Technol. Transfer 1–21 (2015)

14. Falcone, Y., Nickovic, D., Reger, G., Thoma, D.: Second international competition
on runtime verification. In: Bartocci, E., et al. (eds.) RV 2015. LNCS, vol. 9333,
pp. 405–422. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 27

15. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170
(2015)

16. Kaplan, H., Shafrir, N., Tarjan, R.E.: Union-find with deletions. In: Proceedings
of Symposium on Discrete Algorithms 2002, pp. 19–28. ACM/SIAM (2002)

17. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

18. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015)

19. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Logical
Methods Comput. Sci. 8(1), 1–47 (2012)

20. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electr. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

21. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

http://dx.doi.org/10.1007/978-3-319-23820-3_27

	Runtime Monitoring with Union-Find Structures
	1 Introduction
	2 Projection Automata
	3 Data Structure
	4 Monitor Execution Algorithm
	5 Implementation and Evaluation
	6 Conclusion
	References

