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Abstract. A variety of applications of Satisfiability Modulo Theories
(SMT) require finding a satisfying assignment which optimizes some
user-given function. Optimization in the context of SMT is referred to as
Optimization Modulo Theories (OMT). Current OMT research is mostly
dedicated to optimization in arithmetic domains. This paper is about
Optimization modulo Bit-Vectors (OBV). We introduce two OBV algo-
rithms which can easily be implemented in an eager bit-vector solver.
We show that an industrial problem of fixing cell placement during the
physical design stage of the CAD process can be reduced to optimization
modulo either Bit-Vectors (BV) or Linear Integer Arithmetic (LIA). We
demonstrate that our resulting OBV tool can solve industrial instances
which are out of reach of existing BV and LIA OMT solvers.

1 Introduction

Nowadays, Satisfiability Modulo Theories (SMT) solving is widely applied. Tra-
ditionally, SMT solvers are expected to return any model (satisfying assign-
ment), given a satisfiable formula, but many applications require a model which
optimizes some user-given function [12,13,23,24,32,38]. The problem of finding
the optimal model in SMT is called Optimization Modulo Theories (OMT) [35].

OMT was first addressed in [32], which presented a general OMT frame-
work, in which the minimization/maximization cost function is restricted to
Boolean variables. The restriction of the cost function to Boolean variables was
lifted in [35]. In that work, a solution for optimization modulo linear arithmetic
over the rationals was proposed, where the cost function can be an arbitrary
arithmetic term. The two basic approaches to optimization, given a satisfiability
solver, applied in [35], are binary and linear search, respectively, for the optimal
assignment. In [35], both approaches are customized and tuned to arithmetic
reasoning in the context of the DPLL(T) approach to SMT [18].

Bit-vector (BV) SMT theory [5] is a highly expressive theory, where the vari-
ables are fixed-size bit-vectors and the set of operators includes arithmetic, com-
parison, bit-wise, and bit-propagating (e.g., extraction, concatenation, shifts)
operators. BV solvers are widely applied [15,20,25,26,34,42]. Given a BV for-
mula F , we define the problem of Optimization modulo Bit-Vectors (OBV) to
be the problem of finding a satisfying assignment to F which maximizes some
user-given target bit-vector term t in the formula, where the term is interpreted
as an unsigned number. (Minimization can be modeled as maximization of the
target’s negation.)
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Our definition lets the cost function be as generic as possible (similarly to the
approach of [35] to arithmetic optimization) as the target term can be an arbi-
trary function over the formula’s input variables. Let our maximization target
be t = [vn−1, vn−2, . . . , v0], where vi’s are bits and v0 is the Least Significant Bit
(LSB). Note that our semantics induces a strict priority for satisfying the bits of
t in the following sense. The solver will prefer satisfying bit i while leaving the
lower bits i−1, . . . , 0 unsatisfied, to satisfying bits i−1, . . . , 0 while leaving bit i
unsatisfied (since, e.g., the value [1000] = 8 is higher than the value [0111] = 7).

Surprisingly, OBV research is scarce. We are not aware of any paper dedicated
to OBV. The only existing solver supporting OBV is an extension to the Z3
SMT solver, called νZ [8,9]. νZ solves OBV by applying the following reduction
to weighted MAX-SAT, proposed in [7] (where, given a set of hard Boolean
clauses and a set of soft weighted Boolean clauses, weighted MAX-SAT finds a
satisfying assignment to the hard clauses maximizing the weight of the satisfied
soft clauses). First, the input BV formula is translated to hard Boolean clauses.
Second, for each i ∈ {0, 1, . . . , n}, a soft weighted unit clause (vi) of the weight
2i is added to the formula. The reduction guarantees that the solver will give a
strictly higher priority to satisfying bit number i than to bits i − 1, . . . , 0, thus
ensuring that t’s value is maximized. Note that applying a similar reduction with
equal weights given to the bits of t would result in maximizing the number of
satisfied bits in t, rather than t’s value.

This paper proposes two new algorithms for OBV solving by leveraging
binary and linear search to eager BV solving [17,21]. Both algorithms are easy
to implement. Both are incremental. Both take advantage of the SAT solver’s
conflict analysis capabilities to prune the search space on-the-fly.

The application which triggered our OBV research emerged during the place-
ment sub-stage of the physical design stage of the Computer-Aided Design
(CAD) [39] flow at Intel. Assume that after a placement of standard cells has
already been generated, a new set of design constraints of different priority,
introduced late in the process, has to be taken into account by the placement
flow. Re-running the placer from scratch with the new set of constraints would
not satisfy backward compatibility, stability, and run-time requirements, hence
a new post-processing fixer tool is required. The goal of the fixer is to fix as
many as possible of the violations resulting from applying the additional design
constraints, with preference being given to fixing high-priority violations. We
will demonstrate that this problem can be reduced to optimization modulo
either bit-vectors or linear integer arithmetic (LIA). Section 6 of this work shows
that our algorithms have substantially better capacity on real-world and crafted
placement fixer benchmarks than νZ in both LIA and BV mode and OptiMath-
SAT [36,37] in LIA mode (the crafted benchmarks are publicly available at [29]).

In what follows, Sect. 2 contains preliminaries. Section 3 introduces our reduc-
tion of the placement fixer problem to optimization modulo BV and LIA. Sec-
tions 4 and 5 present our OBV algorithms. Section 6 presents the experimental
results, and Sect. 7 concludes our work.
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2 Preliminaries

We start off with some basic notions. A bit is a Boolean variable which can be
interpreted as 0 or 1. A bit-vector of width n, v[n] = [vn−1, vn−2, . . . , v0], is a
sequence of n bits, where bit v0 is the Least Significant Bit (LSB) and vn−1 is
the Most Significant Bit (MSB). We consider Boolean variables and bit-vector
variables of width 1 to be interchangeable. A constant is a bit-vector each one of
whose bits is substituted by 0 or 1. A bit-vector operation receives one or more
bit-vectors and returns a bit-vector. A Term DAG is a Directed Acyclic Graph
(DAG), each of whose input nodes (that is, nodes with in-degree 0) comprises a
bit-vector or a constant and each of whose internal nodes (that is, nodes with
in-degree > 0) is an application of a bit-vector operation over previous nodes. A
BV formula F is a term DAG, where some of its Boolean terms are asserted to
1 (that is, they must be assigned 1 in every assignment which satisfies F ).

The only assumption this paper makes about the input BV formula is that
it can be translated to Conjunctive Normal Form (CNF) in propositional logic
(a CNF formula is a conjunction of clauses, where each clause is a disjunction of
Boolean literals, and a Boolean literal is a Boolean variable or its negation). This
assumption holds for the BV language as defined in the SMT-LIB standard [5].
See [19] for a further overview of BV syntax and semantics.

Let μ be a full assignment to the variables of a BV formula F and v be a
term in F . We denote by μ(v) the value assigned to v in μ, interpreted as an
unsigned number.

A BV formula F is satisfiable iff it has a model (where a model is a satisfying
assignment). A model μ to F is t-maximal iff μ(t) ≥ ν(t) for every model ν to F .

Given a BV formula F and a term t in F , where t is called the optimization
target, let the problem of Bit-Vector Optimization (OBV) be the problem of
finding a t-maximal model to F .

A SAT solver [6,27,40] receives a CNF formula F and returns a model, if
one exists. In incremental SAT solving under assumptions [14,30,31], the user
may invoke the SAT solver multiple times, each time with a different set of
assumption literals and, possibly, additional clauses. The solver then checks the
satisfiability of all the clauses provided so far, while enforcing the values of
the current assumptions only. In the widely used Minisat’s approach [14] to
incremental SAT solving under assumptions, the same SAT solver instance solves
the entire sequence internally. The assumptions are modeled as first decision
literals in the user-given order. Each assignment to an assumption is followed by
Boolean Constraint Propagation (BCP). If the solver discovers that the negation
of one of the assumptions is implied by other assumptions during BCP, it halts
and returns that the problem is unsatisfiable. Whenever the solver unassigns one
or more of the assumptions following a backtracking or a restart, it reassigns
the unassigned assumptions in the user-given order (where each assignment is
followed by BCP) before picking any other decisions.

An eager BV solver [11,17] works by preprocessing the given BV formula [11,
17,28], bit-blasting it to CNF and solving with SAT.
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3 Modeling the Placement Fixer Problem

This section details the placement fixing problem, mentioned in Sect. 1, and
shows how to reduce it to an optimization problem modulo either BV or LIA.

3.1 Problem Formulation

We start with the problem formulation. We will be using the example in Fig. 1
for illustration.

Initial Set Up. We are given a grid of size (X,Y ) and a set of n non-overlapping
(but possibly touching) rectangles r1, . . . , rn placed on the grid. Each rectangle
ri’s initial placement is given as the coordinates of its bottom-left corner (xi,yi),
height hi and width wi. The example in Fig. 1 has five rectangles.

A placement of rectangles in the grid might have violations between pairs of
touching rectangles. A violation v(b, t, δ) between the bottom rectangle rb and
the top rectangle rt, where 1 ≤ b, t ≤ n and −wb < δ < wt, occurs when rb’s
top side touches rt’s bottom side (that is, when yb + hb = yt) and the relative
horizontal position of the rectangles is δ = xb − xt. Each violation v(b, t, δ) has
a problem-induced unique priority p(b, t, δ) ∈ N. In other words, the problem
causes all the violations to be ranked according to their priority.

In our example shown in Fig. 1, there exist three violations of priority:
p(1, 4,−2), p(4, 3, 2), and p(5, 2, 0).

Fixer Goal. Given the initial placement, the fixer may shift the rectangles
horizontally or vertically (that is, move each rectangle horizontally or vertically),
so as to reduce the number of violations according to their priority. Shifting the
same rectangle both horizontally and vertically is allowed. The priority is strictly
followed in the sense that fixing one violation of priority p should be preferred
to fixing any number of violations of priorities lower than p. Note that shifting
existing rectangles might create new violations.

The input problem induces additional constraints on the allowed shifts:

1. Shift constraints: some of the rectangles are non-shiftable (that is, they
must not be shifted), while the greatest allowed horizontal and vertical shift
for any shiftable rectangle is α and β, respectively.

2. Parity preservation: for each rectangle the y-coordinate at the new location
must be even iff the original y-coordinate is even.

Consider our example in Fig. 1. Assume that all the rectangles are shiftable
and that α = 2 and β = 2. Violation 3 can be eliminated altogether by shifting
r5 down to (6, 0) (shifting it down to (6, 1) is disallowed by parity preservation).
The other two violations v1 and v2 can be resolved by shifting r4 to the right
to (4, 3). Note that if r4 had been non-shiftable, violations v1 and v2 could have
been resolved only at the expense of creating new violations, in which case the
optimal solution to the problem would have depended on the actual priorities of
the violations (unspecified in our example).
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Fig. 1. Fixer placement problem modeling example.

3.2 Problem Encoding

The encoding is shown in Fig. 2. It can be applied to encode our problem into
optimization modulo either BV or LIA.

First, the algorithm goes over all the shiftable rectangles. For each rectangle
ri, it creates two new variables x′

i, y
′
i to represent ri’s location after the fix (the

bit-width of the BV variables is chosen to accommodate the size of the grid). In
addition, the algorithm ensures that the parity is preserved. For BV, the parity
preservation constraint can be modeled by asserting yi&1 == y′

i&1 (where &
stands for bit-wise AND). For LIA, it can be modeled in either one of the two
following ways: (a) using an auxiliary variable t to assert that yi − y′

i == 2t, or
(b) using LIA’s native mod operator to assert that yi mod 2 == y′

j mod 2.
Second, the algorithm ensures that the rectangles will not overlap after the

fix. This can easily be done for both BV and LIA by adding inequalities for
each pair of rectangles over the new variables x′

i, y
′
i, x

′
j , y

′
j to ensure there is no

overlap.
Third, the algorithm creates the target term to be used for BV maximization

(adjusting our construction to LIA reasoning is explained in the next paragraph).
It starts by creating an empty bit-vector u. It then goes over all the potential
violations in a loop, in order of priority, starting with the violation of the lowest
priority. It formulates a condition c which holds iff the violation occurs after the
fix. Then the negation of c is inserted into u as the MSB (using concatenation).
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Fig. 2. Placement fixer: encoding

Our construction guarantees that the fixer accomplishes the task of generat-
ing a placement having as few violations as possible while strictly following the
priority, iff u is given the maximal value. Hence, the solver is asked to maximize
the value of u in the case where BV reasoning is applied. To achieve the same
effect for LIA, the algorithm maximizes the bits of u lexicographically starting
from the MSB and going towards the LSB (lexicographical maximization for
LIA is available in both νZ and OptiMathSAT).

Note that one cannot use integer linear programming (ILP) to encode our
problem efficiently, since our problem requires using disjunctive constraints to
prevent overlaps between pairs of rectangles. Specifically, given any two rectan-
gles r1 and r2, it is either that x′

1 > x′
2 + w2 or x′

2 > x′
1 + w1 (similar equations

must be generated for y coordinates). One could, though, use Linear Disjunctive
Programming (LDP) [2,3] to encode our problem. We have left the non-trivial
work of reducing our problem to LDP to the future.

4 Optimization with Weak Assumptions

Our first OBV algorithm is based on a modification to Minisat’s approach to
SAT solving under assumptions, called SAT solver under weak assumptions. We
call our algorithm OBV-WA (standing for Optimization modulo Bit-Vectors with
Weak Assumptions). It can also be understood as a linear search for the t-
maximal model starting with the highest possible value of t and going towards
0, where the algorithm stops at the first satisfying assignment. Section 6 will
demonstrate that OBV-WA is substantially more efficient than the Näıve Linear
Search (NLS) algorithm, depicted below (given a satisfiable formula F and the
optimization target t):
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1: Solve F with an SMT solver
2: while Solve returns SAT do
3: Assert t is greater than t’s value in the last model returned by Solve
4: Solve F with an SMT solver
5: return last model returned by Solve

4.1 OBV-WA Algorithm

Assume an eager BV solver is provided with a satisfiable BV formula F and
an optimization target t[n] and is requested to find a t-maximal model to F
(one can verify that F is satisfiable by invoking a BV solver before applying our
algorithm). First, OBV-WA translates F to CNF (following an optional invoca-
tion of word-level preprocessing). Then it applies a SAT solver, where literals
corresponding to the bits tn−1, tn−2, . . . , t0 are provided to the solver as weak
assumptions which are processed as follows. The SAT solver assigns the weak
assumptions as the first decision variables in the specified order (from the MSB
tn−1 towards the LSB t0), where BCP follows each assignment. If the solver dis-
covers that the negation of one of the assumptions is implied by other assump-
tions during BCP, it continues to the next assumption (in contrast to returning
that the problem is unsatisfiable, as in Minisat’s approach to SAT solving under
assumptions).

This simple adjustment of Minisat’s algorithm guarantees that the solver
returns a t-maximal model. Indeed, OBV-WA checks the satisfiability of F under
every t value starting from t = 2n − 1 towards t = 0 in decreasing order. t is
decreased by δ > 1 only once the solver proves that there is no model in the
range [t, t − δ + 1]. Indeed, the bit ti is flipped by the solver to 0 only if there is
no model to F with ti = 1.

The algorithm in Algorithm1 is an implementation of OBV-WA. It contains
the following three functions:

1. Solve: the main function invoked by the user: given a BV formula F and an
optimization target t[n], it returns a t-maximal model. The function initializes
an index i, which points to the next unassigned assumption, with n−1. It also
initializes dl wa to 0, where dl wa is the highest decision level where a weak
assumption is assigned as a decision literal. It then invokes a SAT solver with
decision and backtrack strategies modified as specified below. The algorithm
returns the model found by the SAT solver (we assume an implicit conversion
from the Boolean model returned by the SAT solver to the corresponding BV
model to the original formula).

2. OnDecision: invoked by the underlying SAT solver to get a decision literal
when it has to take a decision. It receives the next decision level. OnDecision
returns the next unassigned assumption, if any, and decreases the index i by
1. Assigned assumptions are skipped. If an unassigned assumption is found,
the function stores the assumption’s index in a decision level indexed array
SavedI and updates dl wa. This is required for proper backtracking. If all the
assumptions are assigned, a standard SAT decision heuristic is applied.
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3. OnBacktrack: invoked by the SAT solver whenever it backtracks. It
receives the decision level to backtrack to. If the decision level is higher
than dl wa, nothing is done. Otherwise, the function updates the assump-
tion index i so as to point to the next unassigned assumption. It also updates
dl wa accordingly.

Note that the decision level of an assigned weak assumption i might be
different from n − i, since any assumption could entail other assumptions at the
same decision level. For this reason, the algorithm must maintain the mapping
SavedI from the decision level dl of each assigned weak assumption to its index i.

An approach similar to SAT solving under unordered weak assumptions has
recently been used in [10] to reduce the number of faults in model-based safety
analysis. The contribution of our work is in reducing OBV to SAT solving under
weak assumptions, where the assumptions must correspond to the target variable
bits, ordered from the MSB towards the LSB.

4.2 Incrementality

OBV-WA is incremental in the same sense as Minisat’s algorithm: it can be invoked
multiple times with different optimization targets, where the formula can be
extended between the invocations. This type of incrementality is now supported
in the new SMT-LIB format SMT-LIB 2.5 [4]. To support incremental push/pop,
another type of incrementality inherited by SMT-LIB 2.5 from SMT-LIB 2.0,
one can use selector literals as follows: following each push, add a fresh selec-
tor literal s to every clause in the bit-blasted formula and then add ¬s as a
(strong) assumption. To pop, add the unit clause ¬s. To use both strong and
weak assumptions in one invocation, simply assign first the strong assumptions
and then the weak ones.

5 Optimization with Inline Binary Search

In this section we present our second OBV algorithm, called OBV-BS (standing
for Bit-Vector Optimization with Binary Search). We will see in Sect. 6 that
OBV-BS’s is considerably more efficient than the Näıve Binary Search (NBS)
algorithm performing a binary search for the maximal t value using the SMT
solver as an oracle.

5.1 OBV-BS Algorithm

Like OBV-WA, this algorithm first translates the formula to CNF. It then applies a
binary search-style algorithm implemented on top of an incremental SAT solver.

We need to extend our definitions for the subsequent discussion in the context
of OBV solving given a formula F and the optimization target t. Let the value
of an assignment α to F be α(t) (that is, the value assigned to the target t in α).

For a partial assignment α, we define its value α(t) to be equal to α0(t), where
α0 extends α by assigning 0 to all the unassigned bits of t. Values of assignments
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Algorithm 1. OBV-WA – OBV with Weak Assumptions

1: function Solve(BV Formula F , Optimization Target t[n])
Require: F is satisfiable
Ensure: A t-maximal model to F is returned
2: Pre-process and bit-blast F to CNF
3: i := n − 1 � n − 1 is the MSB
4: dl wa := 0
5: μ := SAT()
6: return μ

7: function OnDecision(Decision level dl)
8: while i ≥ 0 and ti is assigned do
9: i := i − 1

10: if i < 0 then
11: return StandardSATHeuristic(dl)
12: SavedI (dl) := i
13: dl wa := dl
14: return ti

15: function OnBacktrack(Decision level dl)
16: if dl ≤ dl wa then
17: i := SavedI (dl)
18: dl wa := dl − 1

induce an order between them. In particular, an assignment α is higher, lower,
or equal to β, if α(t) > β(t), α(t) < β(t), or α(t) = β(t), respectively. We
sometimes interpret assignments to F as Boolean assignments, assigning values
to the bits of BV variables individually. Alternatively, we sometimes interpret
assignments to F as sets of Boolean literals, where each assigned bit b of a BV
variable appears as either b or ¬b.

Consider Algorithm 2 implementing OBV-BS. The algorithm maintains the
current model μ, initialized with an arbitrary model to F at line 3, and a partial
assignment α, which is empty in the beginning. The main loop of the algorithm
(starting at line 5) goes over all the bits of the optimization target t starting from
the MSB tn−1 down to t0. Each iteration extends α with either ti or ¬ti, where
ti is preferred over ¬ti iff there exists a model where ti is assigned 1 while bits
higher than i have already been assigned in previous iterations. In other words,
ti is preferred whenever there exists a model whose value is greater than or equal
to α(t) + 2i. Essentially, the algorithm implements a binary search over all the
possible values of the optimization target t, where the search is automatically
pruned based on the conclusions of the SAT solver’s conflict analysis.

The algorithm is incremental in the same sense as OBV-WA, that is, it fully
supports Minisat-style incremental solving under assumptions, while push/pop
can be supported through selector variables.
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5.2 Correctness Proof

Three invariants, which hold throughout the algorithm at the beginning of the
algorithm’s loop, are shown in Fig. 3. According to Inv. 1, μ must be a model.
According to Inv. 2 and 3, α is always a subset of μ and any t-maximal model,
respectively (where the assignments are interpreted as sets of Boolean literals).
Note that if the invariants hold, then at the end of the algorithm μ is a t-maximal
model, since: (a) by the end α will have assigned values to every bit of t, (b)
Inv. 2 ensures that μ agrees with α on all bits of t and (c) Inv. 3 guarantees that
α agrees on all bits of t with t-maximal models.

The invariants clearly hold just before the first loop iteration. Consider an
arbitrary iteration of the loop. We assume that the invariants hold at its begin-
ning.

First, the algorithm checks whether the current bit ti is 1 in μ (at line 6).
If it is, α is simply extended with ti and the algorithm goes on to the next
iteration. Let us verify that the invariants hold at the end of an iteration in this
case. First, μ is not changed, hence Inv. 1 still holds. Second, α is extended with
a μ literal, thus Inv. 2 is preserved. Inv. 3 and 2 hold in the beginning of the
iteration, hence any t-maximal model ν agrees with α and μ on the values of
the Boolean variables tn−1, . . . , ti+1. Any such ν must also contain ti positively,
since otherwise μ’s value would have been higher than that of ν. Thus, Inv. 3 is
preserved.

Assume now that ti = 0 in μ, that is ¬ti ∈ μ. In this case (the treatment
of which starts at line 9), the algorithm checks whether there exists a model
(different from μ) that extends α with ti. It does this by invoking a SAT solver
and providing it α and ti as (strong) assumptions.

If the problem is satisfiable and a model τ is found, we update μ to τ and
continue to the next iteration of the loop. Let us verify the invariants at the end
of the loop for this case. μ is still a model after the update, so Inv. 1 holds. α
still agrees with μ on all α values, since the α values have been provided to the
SAT solver as assumptions, so the updated μ must contain them. Thus, Inv. 2
is preserved. Inv. 3 still holds, since α has not been changed.

In the only remaining case, if the SAT solver returns UNSAT, we extend α
with ¬ti. Let us verify the invariants. Inv. 1 is preserved, since μ is not changed.
Inv. 2 is preserved, since μ must contain ¬ti according to our algorithm’s flow
(otherwise, the condition at line 6 would hold). Finally, any t-maximal model
must still agree with α, preserving Inv. 3 for the following reasons. The only
potential disagreement could be regarding the value of ti, since Inv. 3 holds
at the beginning of the loop. But the outcome of our SAT query guarantees
that there is no model containing α and ti, hence any t-maximal model must
contain ¬ti.

5.3 Performance Optimizations

We have implemented two important performance optimizations for Algorithm2:
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1. μ is a model.
2. α ⊆ μ.
3. α ⊆ ν for every t-maximal model ν.

Fig. 3. OBV-BS invariants

Algorithm 2. OBV-BS – OBV with Inline Binary Search

1: function Solve(BV Formula F , Optimization Target t[n])
Require: F is satisfiable
Ensure: A t-maximal model to F is returned
2: Pre-process and bit-blast F to CNF
3: μ := SAT()
4: α := {}
5: for i ← n − 1 downto 0 step 1 do
6: if ti ∈ μ then � ti ∈ μ ≡ ti = 1 in μ
7: α := α ∪ {ti}
8: else
9: τ := SatUnderAssumptions(α ∪ {ti})

10: if SAT solver returned SAT then
11: μ := τ
12: else
13: α := α ∪ {¬ti}
14: return μ

1. In non-incremental mode, one can add unit clauses instead of the assumptions
at lines 7 and 13. This is expected to boost the performance, since it has been
shown that using unit clauses instead of assumptions results in a substantial
performance improvement in the context of incremental SAT solving under
assumptions [28,30].

2. Modern SAT solvers apply phase saving [16,33,41] as their polarity selection
heuristic. In phase saving, once a variable is picked by the variable decision
heuristic, the literal is chosen according to its latest value, where the values
are normally initialized with 0. In our implementation of OBV-BS we initialize
the phase saving values of all the bits of the optimization target t to 1 in
each invocation, encouraging the solver to prefer a higher value for t’s bits by
default. This optimization allows the algorithm to converge faster.

5.4 Comparing OBV-WA and OBV-BS

Let us compare OBV-WA and OBV-BS at a high-level. OBV-WA should work bet-
ter when the t-optimal model’s value has many 1’s in it, since OBV-WA tries to
assign 1’s to all the bits of t whenever possible. Otherwise, OBV-BS is expected
to perform better. In addition, OBV-BS has the advantage that it always has
an approximation of the maximal model that can be returned to the user if
optimality can be traded for performance. OBV-WA does not have intermediate
non-optimal solutions.
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6 Experimental Results

We have implemented our algorithms OBV-WA and OBV-BS in Intel’s eager BV
solver Hazel. This section studies the performance of OBV-WA and OBV-BS on
industrial placement fixer benchmarks as well as publicly available placement
fixer benchmarks crafted by us [29].

The crafted benchmarks consist of diversified instances of the generic prob-
lem of placing rectangles on a grid, described in Sect. 3. First, we created
a number of families, where a family is defined per grid size g × g, where
g ∈ {10, 25, 50, 75, 100}. Each family consists of 40 benchmarks. Let the density
of a benchmark d ∈ {0.2, 0.5, 0.7, 0.9} be the fraction of occupied grid cells. Each
family has 10 benchmarks for each of the four possible density values. The size
and coordinates of the rectangles for each benchmark are drawn randomly, where
the size of rectangles’ sides is drawn from the set {1, 2, . . . , �g/10�}. Second, we
crafted another family of high-density instances, called HD (High-Density), for
grid size 50 × 50. Each benchmark in the HD family was created by placing
rectangles on the grid until all the room was exhausted.

For the comparison we used two publicly available OMT solvers: νZ [8,9]
(version 4.3.3) in BV and LIA modes, and OptiMathSAT [36,37] (version 1.3.5)
in LIA mode. νZ and OptiMathSAT are extensions of the leading SMT solvers
Z3 and MathSAT, respectively, for OMT. Note that νZ is the only available
solver that supports OBV.

Recall from Sect. 3.2 that we presented two ways of encoding the parity
preservation constraint yi mod 2 == y′

j mod 2: (a) using an auxiliary variable t
to assert that yi − y′

i == 2t, or (b) using LIA’s native mod operator. We exper-
imented with νZ in LIA mode on benchmarks generated with both encodings.
νZ-BV, νZ-LIA, and νZ-LIA-m below stand for, respectively, νZ in BV mode,
νZ in LIA mode using auxiliary variables to encode parity constraints, and νZ
in LIA mode using the LIA’s native mod operator to encode parity constraints.
We used OptiMathSAT with only the auxiliary variable-based encoding, since
OptiMathSAT does not support the mod operator.

We have also implemented the Näıve Linear Search (NLS) and Näıve Binary
Search (NBS) algorithms (recall the beginning of Sects. 4 and 5, respectively) on
top of Hazel.

We used machines with 32 GB of memory running Intel� Xeon� processors
with 3 GHz CPU frequency. The time-out was set to 1800 s. Detailed experimen-
tal results are available in [29].

Consider Table 1. It presents the number of instances solved within the time-
out per family, where a family is defined per grid size for all crafted instances,
except for the HD family. In addition, we considered a family of 50 industrial
instances. The family name is shown in column 1. Column 2 shows the average
number of unsatisfied bits in the optimization target t (in the optimal solution),
while column 3 provides the number of SAT calls within OBV-BS on average. The
number of instances per family is shown in column 4. (Statistics are not avail-
able for the industrial instances because of IP considerations.) The subsequent
columns present the number of instances solved for a particular solver.
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Table 1. Comparing OBV algorithms

Grid size UNSAT

bits in t

#SAT

calls in

OBV-BS

# OBV-

WA

OBV-

BS

Opti-

MathSAT

νZ-

BV

νZ-

LIA

νZ-

LIA-m

NLS NBS

10 × 10 7 11 40 40 40 40 40 40 40 39 40

25 × 25 6 38 40 40 40 12 40 40 40 9 7

50 × 50 50 77 40 40 40 0 7 23 20 0 0

75 × 75 75 110 40 40 40 0 0 0 1 0 0

100 × 100 0.025 182 40 40 40 0 0 0 0 0 0

Industrial 50 50 50 0 0 0 0 0 0

HD 1324 889 54 1 54 0 0 0 0 0 0
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Fig. 4. Comparing OBV-WA to OBV-BS on 100 × 100 grids.

Consider the non-HD crafted instances and the industrial instances. Our algo-
rithms clearly outperform the current state-of-the-art. Both OBV-WA and OBV-BS
solve all the non-HD crafted instances and all the industrial instances. None of
the other solvers can solve a single industrial instance. νZ, in each one of the
three modes, solves only a portion of the crafted 50 × 50 instances, and can
solve none of the crafted 100× 100 instances. OptiMathSAT is outperformed by
the other solvers on the crafted instances. The näıve binary and linear search
algorithms (NBS and NLS) are not competitive.

Figures 4 and 5 compare OBV-WA to OBV-BS head-to-head on 100 × 100 grids
and industrial instances, respectively. One can see that OBV-WA consistently out-
performs OBV-BS on both the crafted and the industrial instances. In light of
these results, OBV-WA is now applied for the placement fixing problem at Intel.
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Fig. 5. Comparing OBV-WA to OBV-BS on industrial instances.

Strikingly, the apparent advantage of OBV-WA does not extend to the HD
family. OBV-BS solves all the HD instances, while OBV-WA only solves a single HD
instance (the other solvers solve none of the HD instances). This phenomenon
is explained by the fact the number of unsatisfied bits in the maximal solu-
tion is significantly higher for the HD family. Our conclusion is that OBV-BS is
more robust than OBV-WA, but in practice OBV-WA might still be preferred, if the
instances are not too difficult.

7 Conclusion

This paper is the first full-blown work dedicated to the problem of Optimiza-
tion modulo Bit-Vectors (OBV). We have presented two incremental OBV algo-
rithms, which can easily be implemented in an eager Bit-Vector (BV) solver.

We have implemented our algorithms and studied their performance on real-
world instances emerging in the industrial problem of fixing cell placement dur-
ing the physical design stage of CAD process. The problem can be encoded as
either optimization modulo BV or Linear Integer Arithmetic (LIA). We have also
experimented with crafted, publicly-available instances that mimick the place-
ment fixing problem.

Our algorithms have shown substantially better capacity than the state-of-
the-art Optimization Modulo Theories (OMT) solvers νZ and OptiMathSAT,
where OptiMathSAT has been applied in LIA mode and νZ in both BV and
LIA modes.

As a future work we intend to study the integration of our algorithms with
more recent approaches to incremental SAT solving under assumptions [31]. In
addition, we are planning to apply our OBV algorithms to other problems.
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