
Online Timed Pattern Matching
Using Derivatives

Dogan Ulus1(B), Thomas Ferrère1, Eugene Asarin2, and Oded Maler1

1 Verimag Université Grenoble-Alpes/CNRS, Grenoble, France
dogan.ulus@imag.fr

2 IRIF, Université Paris Diderot/CNRS, Paris, France

Abstract. Timed pattern matching consists in finding all segments of
a dense-time Boolean signal that match a pattern defined by a timed
regular expression. This problem has been formulated and solved in [17]
via an offline algorithm that takes the signal and expression as inputs
and produces the set of all matches, represented as a finite union of
two-dimensional zones. In this work we develop an online version of
this approach where the input signal is presented incrementally and the
matching is computed incrementally as well.

Naturally, the concept of derivatives of regular expressions due to
Brzozowski [6] can play a role in defining what remains to match after
having read a prefix of the signal. However the adaptation of this concept
is not a straightforward for two reasons: the dense infinite-state nature of
timed behaviors and the fact that we are interested in matching, not only
in prefix acceptance. To resolve these issues we develop an alternative
theory of signals and expressions based on absolute time and show how
derivatives are defined and computed in this setting. We then implement
an online timed pattern matching algorithm based on these results.

1 Introduction

Timed regular expressions (tre), introduced in [3,4], constitute a formalism for
expressing patterns in timed behaviors in a compact and natural way. They aug-
ment classical regular expressions with timing constraints and as such they provide
an alternative specification style to real-time temporal logics such as MTL [10]. We
believe that such expressions have numerous applications in many domains such as
runtime verification, robotics, medical monitoring and circuit analysis [7,9].

For a given expression ϕ and input signal w, timed pattern matching means
computing the match set M(ϕ,w) consisting of all pairs (t, t′) of time instants
such that the segment of w between t and t′ satisfies the expression ϕ. In [17] we
showed how to compute M(ϕ,w) offline, assuming the input signal to be com-
pletely available before the matching. In this paper we develop an online matching
algorithm where the input is presented incrementally and matches are computed
on the fly. An online procedure can be used to monitor real systems during their
actual executions (in contrast with monitoring simulations) and alert the user in

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 736–751, 2016.
DOI: 10.1007/978-3-662-49674-9 47

Online Timed Pattern Matching Using Derivatives 737

real time. In addition, an online procedure can reduce memory requirements, dis-
carding signals and intermediate matches when those are no longer needed.

The online pattern matching procedure that we develop in this paper is built
upon the notion of derivatives of regular expressions, introduced by Brzozowski
in 1964 [6]. In essence, the derivative of an expression with respect to a letter
or word, tells us what remains to be observed in order to reach acceptance. In
this sense it is very similar to the tableaux construction used to build automata
from temporal logic formulae. Derivatives provide an elegant solution for prob-
lems of language membership [14], pattern matching [13,16] and automaton
construction [1,5,6] and have been observed to be naturally suitable for mon-
itoring behaviors of systems [12,15]. The original notion of the derivative that
we recall in Sect. 2 is based on discrete time and requires a careful adaptation to
dense time. Moreover, as we will explain, matching is more complex than accep-
tance (of the word or its prefixes) and this has some implications on associating
derivatives with rewrite rules.

In Sect. 3 we modify the definition of signals, one of the commonly-used
formalisms to express timed behaviors, so as to lift the theory of derivatives to
the timed setting. Signals (and sequences) are traditionally defined to start at
time zero and when two signals are concatenated as in w = u · v, the second
argument v is shifted forward in time, to start at the end of u. In contrast,
we define signals in absolute time, each having its own fixed starting point. In
this setting concatenation becomes a partial function, defined only when the
domains of definition of the two signals fit. We also introduce a special place
holder symbol � and define extended signals where all letters in some prefix
have been replaced by this symbol.

We then adapt timed regular expressions to represent sets of extended sig-
nals using the absolute time semantics. The regular expressions of [3,4,17] are
obtained as a syntactic sub-class denoting “pure” �-free signals, used for the
initial specification. The more general expressions are used to represent interme-
diate stages during the incremental computation of the match set.

In Sect. 4 we introduce our main technical contribution: the definition and
computation of derivatives of left-reduced timed regular expressions with respect
to a constant signal of arbitrary duration and all its factors. We apply this
result to solve the problem of online timed pattern matching in Sect. 5 where we
observe an input signal consisting of a finite concatenation of constant signals.
We give a complete example of a run of our algorithm and briefly mention our
implementation and its performance.

2 Preliminaries

Let Σ∗ be the set of all finite words over alphabet Σ with ε denoting the empty
word. A language L over Σ is a subset of Σ∗. The syntax of regular expressions
over Σ is given by the following grammar:

r := ∅ | ε | a | r1 · r2 | r1 ∨ r2 | r∗

738 D. Ulus et al.

where a ∈ Σ. A regular expression r specifies a regular language �r�, inductively
defined as follows:

�∅� = ∅ �r1 · r2� = �r1� · �r2�
�ε� = {ε} �r1 ∨ r2� = �r1� ∪ �r2�
�a� = {a} �r∗� = �r�∗

In some cases it is important to determine whether or not the language of a
regular expression r contains the empty word ε. For this purpose an empty word
extraction function ν (also known as the nullability predicate) is defined such as

ν(r) =

{
ε if ε ∈ �r�

∅ otherwise

This function which extracts ε from r if it exists, is computed inductively by the
following rules:

ν(∅) = ∅ ν(r1 · r2) = ν(r1) · ν(r2)
ν(ε) = ε ν(r1 ∨ r2) = ν(r1) ∨ ν(r2)
ν(a) = ∅ ν(r∗) = ε

Definition 1 (Derivative). The derivative of a language L with respect to a
word u is defined as

Du(L) := { v ∈ Σ∗ | u · v ∈ L}.

In [6] Brzozowski applied the notion of derivatives to regular expressions and
proved that the derivative Da(r) of an expression r with respect to a letter a
can be computed recursively using the following syntactic rewrite rules:

Da(∅) = ∅ Da(r1 · r2) = Da(r1) · r2 ∨ ν(r1) · Da(r2)
Da(ε) = ∅ Da(r1 ∨ r2) = Da(r1) ∨ Da(r2)
Da(a) = ε Da(r∗) = Da(r) · r∗

Da(b) = ∅

These rules are extended for words by letting Da·w(r) = Dw(Da(r)). By defini-
tion, membership w ∈ L is equivalent to ε ∈ Dw(L). Hence to check, for example,
whether abc is in the language of the expression ϕ = a∗ · (b · c)∗ we compute
Dabc(ϕ) = Dc(Db(Da(ϕ)))) = (b · c)∗ as follows:

a∗ · (b · c)∗ −→
Da

a∗ · (b · c)∗ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗,

and since ν((b · c)∗) = ε, abc ∈ �ϕ�.
It is of course not a coincidence that this procedure resembles the reading of

the word by an automaton where derivatives correspond to states and those that
contain ε correspond to accepting states. Hence we can report membership in
�ϕ� of w as well as the membership of all its prefixes. We can do it incrementally
as new letters arrive.

Online Timed Pattern Matching Using Derivatives 739

Matching is more involved as we are interested in the membership of all
factors of w, starting at arbitrary positions. Thus, having read j letters of w, the
state of a matching algorithm should contain all the derivatives by w[i..j], i ≤ j.
When letter j +1 is read, these derivatives are updated to become derivatives by
w[i..j + 1], new matches are extracted and a new process for matches that start
at j + 1 is spawned. Table 1 illustrates the systematic application of derivatives
to find segments of w = abcbc that match ϕ = a∗ ·(b ·c)∗. The table is indexed by
the start position (rows) and end position (columns) of the segments with respect
to which we derive. Derivatives that contain ε correspond to matches and their
time indices constitute the match set {(1, 1), (1, 3), (1, 5), (2, 3), (2, 5), (4, 5)}. In
a discrete finite-state setting there are finitely many such derivatives but this is
not the case for timed systems.1

Table 1. Pattern matching using derivatives for w = abcbc and ϕ = a∗ · (b · c)∗.
Entry (i, j) represents the derivative with respect to w[i, j]. Derivatives containing
ε are shaded with green. The state of an online matching algorithm after reading j
symbols is represented in column j.

In dense time, the analogue of the arrival of a new letter is the arrival of
a constant segment of the signal w[t1, t2]. When this occurs, the state of the
algorithm should be updated to capture all derivatives by segments of the form
w[t, t2] for t < t2 and all matches ending in some t < t2 should be extracted.
The technique for representing and manipulating such an uncountable number
of derivative together with their corresponding time segments is the main con-
tribution of this paper.

1 To keep the survey within a reasonable size and avoid tedious repetitions, the descrip-
tion here is not fully rigorous, using the same notation for the semantic notion of a
left quotient, which is unique for every language and word, and the syntactic notion
of a derivative of a regular expression. The derivation of the minimal automaton
from a regular expression, for example, requires additional rewrite rules to detect
equivalence between different regular expressions.

740 D. Ulus et al.

3 Signals, Timed Languages and Expressions

We consider an alphabet Σ = B
m which is the set of valuations of a set of

propositional variables P = {p1 . . . , pm}. We define signals not as free floating
objects but anchor them in absolute time.

Definition 2 (Signals). A signal over an alphabet Σ is a piecewise-constant
function w : [t1, t2) −→ Σ, where t1 ≤ t2 ∈ R≥0 and w admits a finite number of
discontinuities. The time domain of the signal and its beginning and end times
are denoted as

dom(w) = [t1, t2) = [τ1(w), τ2(w)).

The empty signal ε is the unique signal satisfying dom(w) = ∅. The duration of
w is |w| = τ2(w) − τ1(w) and |ε| = 0. We often view the boundary points of a
signal as a pair, τ(w) = (τ1(w), τ2(w)).

We use w[t, t′] to denote the restriction of w to an interval [t, t′) ⊆ dom(w)
and let Sub(w) = {w[t, t′] | τ1(w) ≤ t < t′ ≤ τ2(w)} be the set of sub-signals
(factors, segments) of w. Concatenation is restricted to signals that meet, that
is, one ends where the other starts.

Definition 3 (Meets and Concatenation). Signal w1 meets signal w2 when
w1 = ε or w2 = ε or τ2(w1) = τ1(w2). Concatenation is a partial function such
that w1 · w2 is defined only if w1 meets w2:

w1 · w2(t) =

{
w1(t) if t ∈ dom(w1)
w2(t) if t ∈ dom(w2)

The empty signal ε is the neutral element for concatenation: ε · w = w · ε = w.
The set of signals thus defined can be made a monoid by making concatenation
total by introducing a new element ⊥ and letting w1 ·w2 = ⊥ when the signals do
not meet. The newly introduced element is an absorbing zero satisfying ⊥ · w =
w · ⊥ = ⊥.

The variability (logical length) of a signal w is the minimal n such that
w can be written as w = w1 · w2 · · · wn where each wi is a constant signal.
We use notations Σ(∗), Σ(+) and Σ(n) to denote the set of all signals, non-
empty signals and signals of variability n, respectively. In particular, Σ(1) is the
set of all constant signals. Sets of signals are referred to as signal languages on
which Boolean operations as well as concatenation and star are defined naturally.
Finally we extend the time restriction operation of [4] which constrains the
duration of signals, to apply also to their time domains. The language K

J 〈L〉I

where I, J,K are intervals of non-negative reals, is a subset of L consisting of
signals with duration in I, beginning in t1 ∈ J and ending in t2 ∈ K. We omit
the corresponding interval when there is no restriction on beginning, ending or
duration.

We are interested in representing a family of sub-signals of a n-variability
signal w = w1 . . . wn starting in segment i and ending in segment j, that is,

Online Timed Pattern Matching Using Derivatives 741

Sub[i:j](w) := {w[t, t′] | t ∈ dom(wi) and t′ ∈ dom(wj)}. It can be easily verified
that

Sub[i:j](w) = Sub(wi) · wi+1 · · ·Sub(wj) = Sub(wi) · Sub(wi+1) · · · Sub(wj).

In the classical discrete setting, the derivative Da is associated with a rewrite
rule a → ε and a word w is accepted if it can be transformed into ε by successive
rewritings. For the purpose of timed matching we need a more length-preserving
view where reading a corresponds to a rule a → � where � is a special place-
holder that indicates that a has been processed. Acceptance then corresponds
to the rewriting of w into a signal w′ : dom(w) �→ �. We let Σ� = Σ ∪ {�} and
define extended signals which are signals over Σ�, as well as some subclasses of
those.

Definition 4 (Extended Signals). An extended signal over alphabet Σ is a
function w : [t, t′) → Σ�. An extended signal w is left-reduced if w ∈ �(∗) ·Σ(∗).
A left-reduced signal w is pure if w ∈ Σ(∗) and reduced if w ∈ �(∗).

We use initial Greek letters to denote reduced signals and hence a left-reduced
signal w will be written as w = α · v where α is a reduced signal and v is a pure
signal.

Definition 5 (Left Reduction). A reduction rule R(u) for a signal u ∈ Σ(∗)

is a pair (u, γ) such that γ ∈ �(∗) and dom(u) = dom(γ). The left reduction of
a left-reduced signal language L with respect to u is:

δu(L) := { αγw | αuw ∈ L, α ∈ �(∗) and w ∈ Σ(∗)}
We use operation δu(L) in a similar way Du(L) is used in the classical setting
but with one important difference. When v = Du(w) the length of the word is
reduced, that is, |v| = |w| − |u|, while when v = δu(w) the domains (and hence
durations) of v and w are the same. Consequently, unlike the classical case where
membership of w in L amounts to ε ∈ Dw(L), here the membership is equivalent
to γ ∈ δw(L) where γ is a reduced signal of the same domain as w. It is not
difficult to check that δu1·u2(L) = δu2(δu1(L)) and sometimes we denote by δS

the left reduction with respect to a set of signals.

Example 1. Consider a signal language L = {w1, w2} such that

w1(t) =

{
a if t ∈ [0, 3)
b if t ∈ [3, 5)

w2(t) =

{
a if t ∈ [0, 2)
b if t ∈ [2, 5)

In Fig. 1 we illustrate a left reduction operation δu3(δu2(δu1(L))) = {w′′′
1 } with

respect to u = u1u2u3 with u1 : [0, 1) �→ a, u2 : [1, 3) �→ a and u3 : [3, 5) �→ b.
Since w′′′

1 is a reduced signal and τ(u) = τ(w′′′
1), u ∈ L.

We now introduce timed regular expressions to describe sets of signals and
extended signals using the absolute time semantics. Note that the intersection
operator, which is considered a syntactic sugar in the classical theory, adds
expressiveness in the timed setting [4].

742 D. Ulus et al.

w1:

w′
1:

w′′
1 :

w′′′
1 :

w2:

w′
2:

0 1 2 3 4 5 0 1 2 3 4 5

a b

↓δu1

� a b

↓δu2

� b

↓δu3

�

a b

↓δu1

� a b

↓δu2

⊥

Fig. 1. A left reduction example.

Definition 6 (Extended Timed Regular Expressions). Extended timed
regular expressions are defined by the following grammar:

ϕ := ∅ | ε | p | � | ϕ1 · ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ∗ | K
J 〈ϕ〉I

where p is a proposional variable in P and I, J,K are intervals of R≥0.

The semantics of the expressions is defined by the following rules (we use
a |= p to denote the fact that p holds at a):

�∅� = ∅
�ε� = {ε}
�p� = {w : [t, t′) → Σ | 0 ≤ t < t′ and ∀t′′ ∈ [t, t′). w(t′′) |= p}
��� = {w : [t, t′) → {�} | 0 ≤ t < t′}

�ϕ · ψ� = �ϕ� · �ψ�
�ϕ ∨ ψ� = �ϕ� ∪ �ψ�
�ϕ ∧ ψ� = �ϕ� ∩ �ψ�

�ϕ∗� =
∞⋃

i=0

�ϕ�i

�K
J 〈ϕ〉I� = {w | w ∈ �ϕ�, |w| ∈ I, w �= ε → (τ1(w) ∈ J ∧ τ2(w) ∈ K)}

A signal language is regular if it can be represented by a timed regular expression.
The syntax in Definition 6 allows to define sets including extended signals

with arbitrary interleavings of letters and �. Below we define three syntactic
classes of expressions. The first class, called pure (or original) timed regular
expressions, corresponds almost the same syntax of expressions seen in [3,4,17].
Pure expressions are �-free and do not place any restriction on the absolute
beginning and ending values over their sub-expressions. The second class is
reduced timed regular expressions which is formed using the � symbol only.
Lastly we have left-reduced timed regular expressions, obtained as compositions
of reduced and pure expressions satisfying some conditions.

Definition 7 (Syntactic Classes). A timed regular expression ϕ belongs to
the classes of reduced, pure or left-reduced timed regular expressions if functions
r?, p? or lr?, respectively, evaluate to true in the following table.

Online Timed Pattern Matching Using Derivatives 743

Reduced Pure Left-reduced
Case r?(ϕ) p?(ϕ) lr?(ϕ)

∅ � � �
ε � � �
p ⊥ � �
� � ⊥ �

ϕ1 · ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2)
lr?(ϕ1) ∧ p?(ϕ2) ∨
r?(ϕ1) ∧ lr?(ϕ2)

ϕ1 ∧ ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2) lr?(ϕ1) ∧ lr?(ϕ2)
ϕ1 ∨ ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2) lr?(ϕ1) ∧ lr?(ϕ2)

ϕ∗ r?(ϕ) p?(ϕ) r?(ϕ) ∨ p?(ϕ)
K
J 〈ϕ〉I r?(ϕ) p?(ϕ) ∧ J = K = [0,∞) lr?(ϕ)

Trivially any reduced expression ψ and any pure expression ϕ represent reduced
and pure signal languages such that �ψ� ⊆ �(∗) and �ϕ� ⊆ Σ(∗). For left-reduced
expressions we do not allow concatenation and star operations on arbitrary left-
reduced expressions as in Definition 7 because left-reduced languages are not
closed under concatenation. By doing that we have the following result.

Proposition 1. The language �ϕ� of a left-reduced timed regular expression ϕ

is an extended signal language such that �ϕ� ⊆ �(∗) · Σ(∗).

Proof. For the concatenation ϕ1 · ϕ2 we have two possibilities: (1) �ϕ1� ⊂
�(∗) · Σ(∗) and �ϕ2� ⊂ Σ(∗); (2) �ϕ1� ⊂ �(∗) and �ϕ2� ⊂ �(∗) · Σ(∗). For
both possibilities, we have �ϕ1 · ϕ2� = �ϕ1� · �ϕ2� ⊂ �(∗) · Σ(∗). Other cases are
straightforward by following the definitions.

A comprehensive study on regular algebra extended with intersection operation
can be found in [2]. We now mention some algebraic rules relative to the time
restriction operator. It is shown in [17] how the right hand side of following
equations can be computed from the corresponding left hand side.

K1
J1

〈�〉I1 · K2
J2

〈�〉I2 = K3
J3

〈�〉I3 and K1
J1

〈�〉I1 ∧ K2
J2

〈�〉I2 = K3
J3

〈�〉I3

for some intervals I3, J3 and K3, and

(
m∨

i=1

Ki

Ji
〈�〉Ii)

+ =
n∨

i=1

K′
i

J ′
i
〈�〉I′

i
for some m,n ∈ N

Therefore we can simplify timed regular expressions further using these equations
and procedures.

744 D. Ulus et al.

4 Derivatives of Left-Reduced Timed Regular
Expressions

We now introduce, semantically and syntactically, a derivative operation for left-
reduced signal languages and expressions based on the left reduction operation.
Since our goal is to solve the dense time matching problem, we have to operate
on sets of signals and define derivatives more symbolically. Therefore we define
the derivative Δv to correspond to the left reduction with respect to all factors
of v.

Definition 8 (Dense Derivative). The derivative Δv(L) of a left-reduced lan-
guage L with respect to a constant signal v ∈ Σ(1) is defined as follows:

Δv(L) :=
⋃

u∈Sub(v)

δu(L)

As mentioned previously, reduced signals will provide the output of our matching
procedure. Their existence will be the witness of a match and their time domains
will indicate its position in the signal.

Definition 9 (Extraction). The extraction xt(L) of a left-reduced signal lan-
guage L is

xt(L) := { α | α ∈ �(∗) ∩ L}
The following result shows that xt can be computed syntactically for left-reduced
timed regular expressions.

Theorem 1 (Extraction Computation). For a given left-reduced timed reg-
ular expression ϕ, applying the following rules recursively yields an expression
ψ such that �ψ� = xt(�ϕ�).

xt(∅) = ∅

xt(ε) = ε
xt(p) = ∅

xt(�) = �

xt(ψ1 · ψ2) = xt(ψ1) · xt(ψ2)
xt(ψ1 ∨ ψ2) = xt(ψ1) ∨ xt(ψ2)
xt(ψ1 ∧ ψ2) = xt(ψ1) ∧ xt(ψ2)
xt(K

J 〈ψ〉I) = K
J 〈xt(ψ)〉I

xt(ψ∗) = (xt(ψ))∗

Proof. We proceed by induction and only look at the case of concatenation,
other cases are similar. For any expressions ϕ1, ϕ2 it holds

�xt(ϕ1 · ϕ2)� = {α | α ∈ �(∗) and α ∈ �ϕ1 · ϕ2�}
= {α1α2 | α1, α2 ∈ �(∗), α1 ∈ �ϕ1� and α2 ∈ �ϕ2�}
= {α1 | α1 ∈ �(∗) and α1 ∈ �ϕ1�} · {α2 | α2 ∈ �(∗) and α2 ∈ �ϕ2�}
= �xt(ϕ1)� · �xt(ϕ2)�

Example 2. Consider a left-reduced expression ϕ :=
〈 [0,3]

[0,3]〈�〉[0,3] · p∗〉
[0,2]

.
Applying Theorem 1 we extract from ϕ a reduced expression ψ such that
ψ =

〈 [0,3]
[0,3]〈�〉[0,3]

〉
[0,2]

. Expression ψ can be simplified further to [0,3]
[0,3]〈�〉[0,2].

Online Timed Pattern Matching Using Derivatives 745

We now state our main result concerning derivatives of left-reduced timed regular
expressions.

Theorem 2 (Derivative Computation). Given a left-reduced timed regular
expression ϕ and a constant signal v : [t, t′) �→ a, applying the following rules
yields an expression ψ such that �ψ� = Δv(�ϕ�).

Δv(∅) = ∅

Δv(ε) = ∅

Δv(�) = ∅

Δv(p) =

{
Γ ∨ Γ · p if a |= p where Γ := [t,t′]

[t,t′]〈�〉[0,t′−t]

∅ otherwise

Δv(ψ1 · ψ2) = Δv(ψ1) · ψ2 ∨ xt
(
ψ1 ∨ Δv(ψ1)

) · Δv(ψ2)
Δv(ψ1 ∨ ψ2) = Δv(ψ1) ∨ Δv(ψ2)
Δv(ψ1 ∧ ψ2) = Δv(ψ1) ∧ Δv(ψ2)
Δv(K

J 〈ψ〉I) = K
J 〈Δv(ψ)〉I

Δv(ψ∗) = xt(Δv(ψ))∗ · Δv(ψ) · ψ∗

Proof. By semantic definition Δv(ϕ) = { αγw | αuw ∈ �ϕ� and (u, γ) ∈
RSub(v)} where RSub(v) := { R(u) | u ∈ Sub(v)}. We proceed by induction on
the structure of ϕ. In the following we tend to use languages and expressions
interchangeably, when in the interest of readability. Consider the cases:

• For ϕ = ∅, ϕ = ε and ϕ = � : for all cases αuw /∈ �ϕ� therefore Δv(ϕ) = ∅.
• For ϕ = p : It needs that α = ε and u ∈ �p�. Then, αuw ∈ �p� can be satisfied

if either w = ε or w ∈ �p�. By applying definitions, we get

Δv(p) = { γ | u ∈ �p� and (u, γ) ∈ RSub(v)} ∪
{ γw | u ∈ �p�, w ∈ �p� and (u, γ) ∈ RSub(v)}

= Γ ∨ Γ · {w | w ∈ �p�}
= Γ ∨ Γ · p

where the expression Γ is [t,t′]
[t,t′]〈�〉[0,t′−t]. Hence, we have Δv(p) = Γ ∨ Γ · p if

u ∈ �p�, otherwise Δv(p) = ∅. The condition u ∈ �p� can be easily checked by
testing a |= p.

• For ϕ = ϕ1 · ϕ2 : αuw ∈ �ϕ1 · ϕ2� should be satisfied. There are three possi-
bilities to split αuw in dense time:
� It can be split up into αuw1 ∈ �ϕ1� and w2 ∈ �ϕ2�.

Δv(ϕ) = {αγw1w2 | αuw1 ∈ �ϕ1�, w2 ∈ �ϕ2� and (u, γ) ∈ RSub(v)}
= {αγw1 | αuw1 ∈ �ϕ1� and (u, γ) ∈ RSub(v)} · {w2 | w2 ∈ �ϕ2�}
= Δv(ϕ1) · ϕ2

� It can be split up into α1 ∈ �ϕ1� and α2uw ∈ �ϕ2�.

Δv(ϕ) = {α1α2γw | α1 ∈ �ϕ1�, α2uw ∈ �ϕ2� and (u, γ) ∈ RSub(v)}
= {α1 | α1 ∈ �ϕ1�} · {α2γw | α2uw ∈ �ϕ2� and (u, γ) ∈ RSub(v)}
= xt(ϕ1) · Δv(ϕ2)

746 D. Ulus et al.

� It can be split up into αu1 ∈ �ϕ1� and u2w ∈ �ϕ2�. For this case, it is
required by definitions that ϕ1 is a left-reduced expression and ϕ2 is a
pure expression. This is the most involved case requiring to split reducing
signals.

Δv(ϕ) = {αγ1γ2w | αu1 ∈ �ϕ1�, u2w ∈ �ϕ2� and (u1u2, γ1γ2) ∈ RSub(v)}
= {αγ1γ2w | αu1 ∈ �ϕ1�, u2w ∈ �ϕ2�, (u1, γ1) ∈ RSub(v),

(u2, γ2) ∈ RSub(v) and (u1, γ1) meets (u2, γ2)}
= {αγ1 | αu1 ∈ �ϕ1� and (u1, γ1) ∈ RSub(v)}·

{γ2w | u2w ∈ �ϕ2� and (u2, γ2) ∈ RSub(v)}
= xt(Δv(ϕ1)) · Δv(ϕ2)

Thus Δv(ϕ1 ·ϕ2) can be found by the disjunction of these three cases. Then, by
rearranging the last two cases, we obtain the equality claimed in the theorem.

• For ϕ = ψ∗: assume without loss of generality ε �∈ ψ. Then

Δv(ψ∗) = Δv(ε) ∨ Δv(ψ · ψ∗)
= Δv(ψ) · ψ∗ ∨ xt(ψ) · Δv(ψ∗) ∨ xt(Δv(ψ)) · Δv(ψ∗)
= Δv(ψ) · ψ∗ ∨ xt(Δv(ψ)) · Δv(ψ∗)
= [ε ∨ X ∨ X2 ∨ · · · ∨ X∞] · Δv(ψ) · ψ∗ where X = xt(Δv(ψ))
= xt(Δv(ψ))∗ · Δv(ψ) · ψ∗

• Time restriction and Boolean operations follow definitions straightforwardly.

Corollary 1. The derivative Δv(ϕ) of a left-reduced timed regular expression ϕ
with respect to a constant signal v is a left-reduced timed regular expression.

Proof. Theorem 2 shows that only finite number of regular operations is required
to find the derivative and these equations satisfy requirements in Definition 7.

We extend derivatives for arbitrary signals by letting Δε(ϕ) = ϕ and

Δv·w(ϕ) = Δw(Δv(ϕ)).

Lemma 1. The derivative Δw(ϕ) of a left-reduced timed regular expression ϕ
with respect to a signal w = w1 . . . wn with n segments is equivalent to the left
reduction of ϕ with respect to the set of sub-signals of w beginning in dom(w1)
and ending in dom(wn).

Δw(ϕ) =
⋃

u∈Sub[1:n](w)

δu(�ϕ�)

Proof. Using definitions we directly have

Δw(ϕ) = Δwn
(Δwn−1(. . . (Δw1(ϕ))))

= δSub(wn)(δSub(wn−1)(. . . (δSub(w1)(�ϕ�)))
= δSub(w1)·Sub(w2)...Sub(wn)(�ϕ�)
= δSub[1:n](�ϕ�)

Online Timed Pattern Matching Using Derivatives 747

5 Application to Online Timed Pattern Matching

In this section we solve the problem of online timed pattern matching by apply-
ing concepts and results introduced in previous sections. Our online matching
procedure assumes the input signal w to be presented incrementally as follows.
Let w = w1w2 . . . wn be an n-variability signal and at each step j we read a new
segment wj : [tj , t′j) �→ aj where aj ∈ Σ. After reading a new segment wj we may
have new matches ending in dom(wj) in addition to previously found matches.
Therefore we define an incremental match set Mj(ϕ,w) consisting of matches
ending in dom(wj) and we say that Mj(ϕ,w) is the output of jth incremental
step.

Mj(ϕ,w) := { τ(s) | s ∈ �ϕ�, s ∈ Sub[i:j](w) and 1 ≤ i ≤ j}
We then define the state of the online timed pattern matching procedure at the
step j as a left-reduced timed regular expression.

Definition 10 (The State of Online Procedure). Given a pure timed reg-
ular expression ϕ the state of the online timed pattern matching procedure after
reading a prefix w1..j of the input signal is:

ψj :=
∨

1≤i≤j

Δwi..j
(ϕ)

Then, starting with ψ0 = ϕ, we update the state upon reading wj+1 by letting

ψj+1 = Δwj+1(ψj) ∨ Δwj+1(ϕ)

Now we show that the extraction of reduced signals from state ψj provides the
match set Mj(ϕ,w). We do not make a distinction here between a reduced signal
α and its time domain τ(α) as they stand for the same thing.

Theorem 3. Given a state ψj of an online matching procedure for expression ϕ
and a signal w, the incremental match set Mj(ϕ,w) is found by the extraction
of the state:

Mj(ϕ,w) = xt(ψj)

Proof. Following Definition 10 and Lemma 1 we know the state ψj represents
a reduced language δS(ϕ) of ϕ with respect to a set of signals S satisfying
s ∈ Sub(w) and τ2(s) ∈ dom(wj). A reduced signal α in δS(ϕ) indicates the
existence of a signal s ∈ S such that τ(s) = τ(α) and s ∈ �ϕ�, thus s is a match.
Then we can find the match set Mj by extracting all reduced signals from the
state ψj .

Theorem 3 allows us to have a complete procedure for online timed pattern
matching for given ϕ and an input signal w = w1 . . . wn summarized below:

1. Extract ϕ to see if the empty word is a match.
2. For 1 ≤ j ≤ n repeat:

748 D. Ulus et al.

p

q

0 3 8 10

Fig. 2. A signal w := w1w2w3 over variables p and q.

Table 2. Timed pattern matching using derivatives for w = w1w2w3 and ϕ = 〈p · q〉I .
Entries represent the derivative with respect to wi..j . Reduced expressions, indi-

cating matched segments, are shaded with green. (I = [4, 7], Γ1 =
[0,3]

[0,3]〈�〉[0,3],
Γ2 =

[3,8]

[3,8]〈�〉[0,5] and Γ3 =
[8,10]

[8,10]〈�〉[0,2]).

(a) Update the state of the matching ψj by deriving the previous state ψj−1

with respect to wj and adding a new derivation Δwj
(ϕ) to the state for

matches starting in segment j.
(b) Extract ψj to get matches ending in segment j.

We present an example of online pattern matching for the timed regular
expression ϕ := 〈p · q〉[4,7] and input signal w := w1w2w3 with w1 : [0, 3) �→ {p ∧
¬q}, w2 : [3, 8) �→ {p∧q} and w3 : [8, 10) �→ {¬p∧q} over propositional variables
p and q shown in Fig. 2. In Table 2 we depict the step-by-step computation of
the match set M(ϕ,w) after reading the next segment from w. For Step 1 the
state ψ1 is equal to the derivative of ϕ with respect to w1 such that ψ1 =
〈Γ1 · q〉[4,7] ∨ 〈Γ1 · p · q〉[4,7] where Γ1 = [0,3]

[0,3]〈�〉[0,3]. The extraction xt(ψ1) is
empty therefore we do not have any match ending in dom(w1) = [0, 2). For
Step 2 where Γ2 = [3,8]

[3,8]〈�〉[0,5] the extraction of the state is equal to xt(ψ2) =

〈Γ1·Γ2〉[4,7]∨〈Γ2〉[4,7] = [4,8]
[0,3]〈�〉[4,7]∨ [7,8]

[3,4]〈�〉[4,5]. Similarly, for Step 3 where Γ3 =
[8,10]
[8,10]〈�〉[0,2], the extraction of the state is equal to xt(ψ3) = 〈Γ1 · Γ2 · Γ3〉[4,7] ∨
〈Γ2 · Γ3〉[4,7] = [8,9]

[1,3]〈�〉[5,7] ∨ [8,9]
[4,6]〈�〉[4,5]. In Fig. 3 we illustrate corresponding

Online Timed Pattern Matching Using Derivatives 749

Step 2 Step 3

t′

t3 8 10

3

8

10
t′

t3 8 10

3

8

10

Fig. 3. A graphical representation of online timed pattern matching presented in
Table 2 with t and t′ denoting, respectively, the beginning and end of the match.

segments (t, t′) extracted in Steps 2 and 3 where solid regions show the actual
outputs for the corresponding step.

We implemented our procedure using the functional term rewriting language
Pure and C++. Besides derivative and extraction rules we introduced in this
paper, our implementation includes some basic algebraic rewrite rules as well
as simplification rules for reduced expressions given in Sect. 3. We perform our
experiments on a 3.3 GHz machine for a set of test patterns and we depict per-
formance results of the online procedure in comparison with the offline pro-
cedure in [17] in Table 3. For typical cases, experiments suggest a linear time
performance with respect to the number of segments in the input for both algo-
rithms. Although the online procedure runs slower than the offline procedure, it
requires less memory and the memory usage does not depend on the input size
as expected.

Table 3. Execution times/Memory usage (in seconds/megabytes)

Offline Algorithm Online Algorithm

Input Size Input Size

Test Patterns 100 K 500 K 1 M 100 K 500 K 1 M

p 0.06/17 0.27/24 0.51/33 6.74/14 29.16/14 57.87/14

p · q 0.08/21 0.42/46 0.74/77 8.74/14 42.55/14 81.67/14

〈p · q · 〈p · q · p〉I · q · p〉J 0.23/28 1.09/77 2.14/140 28.07/14 130.96/14 270.45/14

(〈p · q〉I · r) ∧ (p · 〈q · r〉J) 0.13/23 0.50/51 1.00/86 15.09/15 75.19/15 148.18/15

p · (q · r)∗ 0.11/20 0.49/37 0.96/60 11.53/15 52.87/15 110.58/15

750 D. Ulus et al.

6 Conclusions

The contribution of the paper is both theoretical and practical. From a theoret-
ical standpoint we have tackled the difficult problem of exporting the concept of
derivatives from discrete to timed behaviors, languages and expressions. To this
end we introduced a new approach to handle signals in absolute time, yielding
a new type of monoid with interesting properties that by itself is worth investi-
gating in the future. We have shown that such derivatives can be computed syn-
tactically using left-reduced timed regular expressions and that all the matches
of the expressions in the signal can be extracted from this representation.

We have used these results to implement a novel procedure for online pat-
tern matching for timed behavior that can be used to monitor systems in real
time and detect occurrences of complex patterns. Our procedure consumes a
constant segment from the input signal and reports a set of matches ending in
that segment before processing the next segment. The algorithm can be applied,
of course, to the discrete case where words are viewed as signals that can change
their values only at integer times. Despite the overhead, our algorithm might
be advantageous for words that have long periods of stuttering if a delay in the
detection of matching can be tolerated.

We believe that this procedure has a lot of potential applications in detecting
temporal patterns at different time scales. It can be used, for example to detect
patterns in music as in [8], in cardiac behavior or in speech. To this end the
expression should be extended with predicates over real numbers [7] as in the
passage from MTL to STL (signal temporal logic) [11]. Other potential applica-
tion domains could be the detection of congestions in traffic or in communication
network and the analysis of execution logs of organizations information systems
or web servers, for example to detect internet robots or customers who are about
to abandon our web site.

Acknowledgement. This work was partially supported by the French ANR projects
EQINOCS and CADMIDIA and benefitted from useful comments made by anonymous
referees.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

2. Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions. Theor.
Comput. Sci. 143(1), 51–72 (1995)

3. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Logic
in Computer Science (LICS), pp. 160–171 (1997)

4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

5. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor.
Comput. Sci. 48(3), 117–126 (1986)

6. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)

Online Timed Pattern Matching Using Derivatives 751

7. Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 322–337.
Springer, Heidelberg (2015)

8. Giavitto, J.-L., Echeveste, J.: Real-time matching of antescofo temporal patterns.
In: Principles and Practice of Declarative Programming (PPDP), pp. 93–104 (2014)

9. Havlicek, J., Little, S.: Realtime regular expressions for analog and mixed-signal
assertions. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 155–162
(2011)

10. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

11. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg
(2008)

12. Morin-Allory, K., Borrione, D.: On-line monitoring of properties built on regular
expressions. In: Forum on specification and Design Languages, (FDL), pp. 249–255
(2006)

13. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

14. Rosu, G., Viswanathan, M.: Testing extended regular language membership
incrementally by rewriting. In: Rewriting Techniques and Applications (RTA),
pp. 499–514 (2003)

15. Sen, K., Rosu, G.: Generating optimal monitors for extended regular expressions.
Electron. Notes Theor. Comput. Sci. 89(2), 226–245 (2003)

16. Sulzmann, M., van Steenhoven, P.: A flexible and efficient ML lexer tool based on
extended regular expression submatching. In: Cohen, A. (ed.) CC 2014 (ETAPS).
LNCS, vol. 8409, pp. 174–191. Springer, Heidelberg (2014)

17. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Heidelberg (2014)

	Online Timed Pattern Matching Using Derivatives
	1 Introduction
	2 Preliminaries
	3 Signals, Timed Languages and Expressions
	4 Derivatives of Left-Reduced Timed Regular Expressions
	5 Application to Online Timed Pattern Matching
	6 Conclusions
	References

