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Abstract. Multipushdown systems (MPDS) are formal models of multi-
threaded recursive programs. They are turing powerful and hence one
considers under-approximation techniques in their analysis. We study the
use of loop accelerations in conjunction with bounded context analysis.

1 Introduction

Sequential recursive programs are usually modeled as pushdown systems (PDSs)
and algorithmic techniques developed for PDSs have been used to solve a num-
ber of problems related to the verification of such programs (e.g. [14,20,23,
26,40,41]). Extending this idea to multi-threaded recursive programs requires
multi-pushdown systems (MPDSs), i.e. automata with multiple pushdown stores.
Unfortunately, MPDSs are turing powerful. The main technique used to circum-
vent this problem is that of under-approximation. The idea is to identify a subset
of behaviours and restrict the verification only to this subset. An underapprox-
imation is interesting only if the verification problem when restricted to this
subset is decidable and in addition the subset covers interesting behaviours.
This idea came to the fore with the bounded context analysis proposed in [39].
A context switch occurs when the automaton switches from accessing one stack
to another (or equivalently, the execution of a multi-threaded program switches
from scheduling one thread to another). Placing an a priori bound on the num-
ber of context switches results in the decidability of reachability and other veri-
fication problems. Subsequently, other classes generalizing the bounded context
assumption have been proposed (see [2–6,15,28,32–35]).

Recall that the configuration of a PDS can be seen as a word (giving the
current state and the contents of the stack). In the global model checking problem
the aim is to compute from (a representation of) the set of initial configurations
(I) (a representation of) the set of configurations reachable from I (denoted
post∗(I)). For PDSs if the initial set of configurations is a regular language then
the set of reachable configurations is a computable regular language ([14,26]).

The configuration of a MPDS can be represented as a tuple of words giving
the current state and the contents of each of the stacks. We can then repre-
sent sets of configurations by recognizable or regular languages [10]. Given a
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recognizable language representing the set of initial configurations, the set of
configurations that may be reached via runs with at most k-context switches is
also a (computable) recognizable language [39]. Thus, the global model checking
problem is decidable and this has many applications, including the obvious one
— reachability can be decided.

Note that our description of global model-checking does not require that the
representations of the initial set I and the reachable set post∗(I) to be the
same. For instance, for PDSs, whether we use finite sets or regular sets for
the initial set of configurations, the final set can be described effectively as a
regular set. However, if both sets use the same description, then we say that
the representation is stable. Stability is an useful property as it permits us to
compose (and hence iterate finitely) the algorithm.

Another well known technique used in the verification of infinite state systems
is that of loop accelerations. It is similar in spirit to global model checking but
with different applications. The idea is to consider a loop of transitions (a finite
sequence of transitions that lead from a control state back to the same control
state). The aim is to determine the effect of iterating the loop. That is, to
effectively construct a representation of the set of configurations that may be
reached by valid iterations of the loop.

Loop accelerations turn out to be very useful in the analysis of a variety of
infinite state systems (e.g., [1,7–9,11–13,16,24,25,29,30,36,37]). In this paper,
we propose to use accelerations in the verification of MPDSs. We take this further
by proposing a technique that composes the iterations of such loops with con-
text bounded runs to obtain a new decidable under-approximation for MPDSs.
Observe that there is no bound on the number of context switches under loop
iterations while a context bounded run permits unrestricted recursive behav-
iours, not permitted by loop iterations, thus complementing each other.

We begin by showing that both regular and rational sets of configurations are
stable w.r.t. bounded context runs. Then, we show that this does not extend to
iterations of loops. We show that under iterations of a loop, the post∗ of a regular
set of transitions is always rational while that of a rational set need not be ratio-
nal. We then address the question of a representation that is stable w.r.t. loop
accelerations. Towards this we propose a new representation for configurations
called n-CSRE inspired by the CQDDs [16] and the class of bounded semilinear
languages [18]. We show that n-CSREs are indeed stable w.r.t iteration of loops.
This result also has the pleasant feature that the construction is in polynomial
time. However, n-CSREs are not stable w.r.t bounded context runs.

As a final step we introduce a joint generalization of both loop iterations
and bounded context executions called bounded context-switch sets. We show
that the class of languages defined by n-dimensional constrained automata
(a n-dimensional version of Parikh automata [17,31]) is stable w.r.t accelera-
tions via bounded context-switch sets. Since membership is decidable for this
class, we obtain a decidability of reachability under this generous class of behav-
iours. Observe that the class of n-dimensional constrained automata is not closed
under intersection and that the inclusion problem is undecidable.
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Related Work. To the best of our knowledge this is the first study of accelerations
in the setting of MPDSs. By using ideas from acceleration we have obtained a
decidable under-approximation that significantly extends the notion of context-
bounding, and which seems incomparable to many other classes considered in
literature. The closest work is the pattern-based (or bounded) verification for
MPDSs [21,22,27]. The pattern-based verification checks the correctness of the
program for the set of the executions described as a bounded language (i.e.,
w∗

1w
∗
2 · · · w∗

n). Our loop acceleration result allow to compute the set of reachable
configurations induced by a bounded language and hence solving the global
reachability problem for pattern-based verification for MPDSs (and providing a
new proof for its decidability).

2 Preliminaries

Let N denote the set of natural numbers. For i, j ∈ N with i ≤ j, we use [i..j] to
denote the set {k ∈ N | i ≤ k ≤ j}. Let A and B two sets. For a partial function
g : A ⇀ B and a ∈ A, we write g(a) = ⊥ if g is undefined on a. Let Σ be
a finite alphabet. As usual Σ∗ denotes the set of all finite words over Σ and ε
denotes the empty word. Let u ∈ Σ∗, we use Parikh(u) to denote the mapping
that associates to each letter a in Σ, the number of occurrences of a in u.

Next we extend these notions to higher dimensions. Let Σ1, . . . , Σn be n
finite alphabets. A n-dim word u over Σ1, . . . , Σn is a tuple (u1, u2, . . . , un)
with ui ∈ Σ∗

i . For every j ∈ [1..n], we use u[j] to denote the word uj .
Let i ∈ [1..n] and w ∈ Σ∗

i , we use u[i ← w] to denote the n-dim word
(u1, u2, . . . , ui−1, w, ui+1, . . . , un). A n-dim language is a set of n-dim words.
Given two n-dim words u = (u1, . . . , un) and v = (v1, . . . , vn), their concate-
nation is defined by uv = (u1v1, . . . , unvn). The concatenation of two n-dim
languages L1, L2 is defined as expected to be L1.L2 = {uv | u ∈ L1 ∧ v ∈ L2}.

A n-tape finite state automaton over Σ1, . . . , Σn is defined as A =
(Q,Σ1, . . . , Σn, δ, q0, F ) where Q is a finite set of states, q0 is the initial state, F
is the set of final states, and δ ⊆ (Q × (Σ1 ∪ {ε}) × · · · × (Σn ∪ {ε}) × Q), is
the transition relation. A run π of A over a n-dim word w over Σ1, . . . , Σn is a
sequence of transitions (q0,u1, q1), (q1,u2, q2), . . . , (qm−1,um, qm) ∈ δ such that
w = u1u2 · · ·um. The run π is accepting if qm ∈ F . The language of A, denoted by
L(A), is the set of n-dim words w for which there is an accepting run of A over w.
A n-dim language is rational if it is the language of some n-tape automaton [10].
Observe that 1-tape automata are the standard finite-state automata.

An interesting subclass of rational languages are what are called recognizable
or regular languages. A n-dim language L is regular if it is a finite union of
products of n rational 1-dim languages (i.e. L =

⋃m
j=1 L(j,1) × · · · × L(j,n) for

some m ∈ N where L(j,i) is an 1-dim rational language over Σi). Observe that if
n = 1 rational and regular languages are the same. The language {(ai, bi) | i ≥ 0}
is an example of a rational language that is not regular.

Let us recall some properties of rational and regular languages (see, e.g., [10]).
First, the class of regular languages, for any dimension n ≥ 1, is closed under
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boolean operations. On the other hand, for every n ≥ 2, the class of n-dim rational
languages is closed under union and concatenation but not under complementa-
tion, nor under intersection. However, the emptiness and membership problems
for rational languages are decidable in all dimensions and further the inclusion
problem is also decidable for regular languages. The inclusion problem is unde-
cidable for rational languages (for n ≥ 2).

We describe some additional closure properties of rational languages that will
prove useful. Rational languages are effectively closed under the permutation of
indices: Let A be a n-tape automaton over Σ1, . . . , Σn. Given a mapping h :
[1..n] → [1..n], it is possible to construct a n-tape automaton h(A), linear in the
size of A, such that (w1, ..., wn) ∈ L(A) iff (wh(1), . . . , wh(n)) ∈ L(h(A)). Rational
languages are also effectively closed under projection: Given a set of indices ι =
{i1 < i2 < . . . im} ⊂ {1, . . . , n}, we can construct an automaton Πι(A), linear in
size of A, such that L(Πι(A)) = {(wi1 , wi2 , . . . , wim) | (w1, w2, . . . , wn) ∈ L(A)}.
Rational languages are also closed under an operation we call composition: Let
A be as before and let A′ be a rational language over Σ′

1, Σ
′
2, . . . , Σ

′
m. Let i ∈

{1, . . . , n} and j ∈ {1, . . . , m} be two indices s.t. Σ′
j = Σi. Then, it is possible

to construct a (n + m − 1)-tape automaton A ◦(i,j) A′, whose size is O(|A|.|A′|),
accepting (w1, . . . , wn, w′

1, . . . , w
′
j−1, w

′
j+1, . . . , w

′
m) iff (w1, . . . , wn) ∈ L(A) and

(w′
1, . . . , w

′
j−1, wi, w

′
j+1, . . . , w

′
m) ∈ L(A′), i.e. the composition corresponding to

the synchronization of the ith tape of A with the jth tape of A′.

3 Multi-PushDown Systems

A Multi-PushDown System (MPDS) is a tuple M = (n,Q, Γ,Δ) where: (1)
n ≥ 1 is the number of stacks, (2) Q is the non-empty finite set of states, (3) Γ
is the finite set of stack symbols, and (4) Δ ⊆ (Q × (∪i∈[1..n]Ω(i)) × Q) is the
transition relation. For every i ∈ [1..n], Ω(i) is the set of operations on the stack
i containing: (i) the push operation pushi(a) (a ∈ Γ ), (ii) the pop operation
popi(a) (a ∈ Γ ), and (iii) the internal operation nopi. A PushDown System
(PDS) can be seen as a MPDS with n = 1. Let Δi = Δ ∩ (Q × Ωi × Q).

A configuration of the MPDS M is a (n + 1)-tuple (q, u1, u2, · · · , un) where
q ∈ Q is the current state of M , and for every i ∈ [1..n], ui ∈ Γ ∗ is the current
content of the i-th stack of M . A configuration can be seen as (n + 1)-word.
The set of configurations of the MPDS M is denoted by Cf (M). Given two
configurations (q, u1, · · · , un) and (q′, v1, · · · , vn) of M and a transition t ∈ Δ, we
define the transition relation t−→M as follows: (q, u1, · · · , un) t−→M (q′, v1, · · · , vn)
iff one of the following holds: (1) t = (q, pushi(a), q′), vi = a.ui and uj = vj

for all j ∈ ([1..n] \ {i}), (2) t = (q, popi(a), q′), ui = a.vi and uj = vj for all
j ∈ ([1..n] \ {i}), or (3) t = (q, nopi, q

′) and uj = vj , for all j ∈ [1..n].
For a sequence of transitions σ = t1t2 . . . tm ∈ Δ∗ and two configurations

c, c′ ∈ Cf (M), we write c
σ−→M c′ to denote that one of the following two cases

holds: (1) σ = ε and c = c′, or (2) there are configurations c0, · · · , cm ∈ Cf (M)
such that c0 = c, c′ = cm, and ci

ti+1−−−→M ci+1 for all i ∈ [0..m − 1]. Given a set
of configurations C ⊆ Cf (M) and a set of sequences of transitions Θ ⊆ Δ∗, the



702 M.F. Atig et al.

acceleration problem for M , with respect to C and Θ, consists in computing the
set PostΘ∗(C) = {c′ | c σ−→M c′ , c ∈ C , σ ∈ Θ∗}.

4 Context-Bounding as an Acceleration Problem

In the following, we show that context-bounded analysis [33,34,38,39] for an
MPDS M = (n,Q, Γ,Δ) can be formulated as an acceleration problem wrt. the
class of rational/regular configurations. Given two configurations c, c′ ∈ Cf (M)
and k ∈ N, the k-context reachability problem consists in checking whether there
is a sequence of transitions σ ∈ Δ∗

i1
Δ∗

i2
· · · Δ∗

ik
, with i1, i2, . . . , ik ∈ [1..n], such

that c
σ−→M c′. The decidability of the k-context reachability problem can be

seen as an immediate corollary of the decidability of the membership problem
for rational languages and the following result:

Theorem 1. Let i ∈ [1..n]. For every regular (rational) set of configurations C,
the set PostΔ∗

i
(C) is regular (rational) and effectively constructible.

The set PostΔ∗
i
(C) has been shown to be regular and effectively constructible

when C is regular in [39]. In the following, we prove Theorem 1 for the case when
C is rational. We write Mi for the PDS (1, Q, Γ,Δi) simulating the behavior of
M only on the stack i. First we recall a result established in [19,35].

Lemma 1. It is possible to construct, in polynomial time in the size of Mi, a
4-tape finite state automaton T , over Q,Γ,Q, Γ , such that (q, u, q′, v) ∈ L(T ) iff
(q, u) π−→Mi

(q′, v) for some sequence π ∈ Δ∗
i .

Observe that Lemma 1 relates any possible starting configuration (q, u) with
any configuration (q′, v) reachable from (q, u) in Mi. Let us assume now that
we are given a (n + 1)-tape automaton A = (P,Q, Γ, . . . , Γ, δ, p0, F ) accepting
the set C. In the following, we show how to compute a (n + 1)-tape finite state
automaton A′ accepting the set PostΔ∗

i
(C). To do that, we proceed as follows: We

first compose A with T , synchronizing the second tape of T (containing the stack
contents at the starting configuration) with the (i+1)-th tape of A, to construct
a (n + 4)-tape automaton A1 = A ◦(i+1,2) T . We also need to synchronize the
starting states (i.e. the first tape of A with the first tape of T ). This can be done
by intersecting A1 with the (regular) language

⋃
q∈Q{q}× (Γ ∗)n ×{q}×Q×Γ ∗.

Let A2 be the automaton resulting from the intersection operation. Then, we
project away the starting control state (occurring on tapes 1 and n+ 2) and the
content of the i + 1-th tape to obtain the (n + 1)-tape automaton A3 = Πι(A2)
where ι = ([1..n] \ {1, i + 1, n + 2}). This is almost what is needed except that
the new content of the stack i occurs at the last position instead of position
i + 1 and the control state occurs at penultimate position instead of the first
position. We rearrange this using the permutation operation. We let A′ = h(A3)
where h is defined as follows: (1) h(1) = n, (2) h(j) = j − 1 for all j ≤ i, (3)
h(i + 1) = n + 1, and (4) h(j) = j − 2 for all j > i + 1.

Observe that the size of A′ is polynomial in |A|· — this follows from Lemma 1
and the bounds on the closure operation on rational languagesmentioned in Sect. 2.
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5 Accelerating Loops: Case of Regular/Rational Sets

In this section, we address the acceleration problem for the iterative execution
of a sequence of transitions in the control graph of a MPDS M = (n,Q, Γ,Δ).
More precisely, given a sequence of transitions θ ∈ Δ∗ and a set of configurations
C ⊆ Cf (M), we are interested in characterizing the set Postθ∗(C).

5.1 Computing the Effect of a Sequence of Transitions

Let M = (n,Q, Γ,Δ) be an MPDS and σ ∈ Δ∗ a sequence of transitions of
the form (q0, op0, q1)(q1, op1, q2) · · · (qm−1, opm−1, qm). Intuitively, we associate
to each stack i a pair (ui, vi) such that the effect of executing the sequence σ on
stack i is popping the word ui and then pushing the word vi on to it (i.e. the
stack content is transformed from uiw to viw for some w). To this end, for every
i ∈ [1..n], we introduce a partial function Effi : ((Γ ∗ × Γ ∗) × Δ∗) ⇀ (Γ ∗ × Γ ∗).
We first define Effi when the third argument is a transition. Roughly speaking,
assuming that we have already computed the effect of a transition sequence σ on
stack i to be (u, v), i.e. to pop u and push v, Effi((u, v), t) computes the effect
of σ.t on stack i. Given u, v ∈ Γ ∗ and t ∈ Δ, we define Effi((u, v), t) as follows:

– if Op(t) = popi(a) for some a ∈ Γ then
• Effi((u, ε), t) = (u · a, ε),
• If v = a · v′ for some v′ ∈ Γ ∗ then Effi((u, v), t) = (u, v′),
• Otherwise Effi((u, v), t) = ⊥.

– if Op(t) = pushi(a) for some a ∈ Γ , then Effi((u, v), t) = (u, a · v)
– If Op(t) = nopi or t ∈ Δ \ Δi, then Effi((u, v), t) = (u, v).

We extend the definition of Effi to sequence of transitions as expected: For
every two words u, v ∈ Γ ∗, we have (1) Effi((u, v), ε) = (u, v), and (2) for
every σ′ ∈ Δ∗ and t ∈ δ, we have Effi((u, v), σ′ · t) = Effi(Effi((u, v), σ′), t) if
Effi((u, v), σ′) �= ⊥ is defined, and Effi((u, v), σ′ · t) = ⊥ otherwise.

Our aim is to compute the complete effect of some sequence σ on stack i
and this is given by Effi((ε, ε), σ). We shall refer to this as Summ(i, σ). The next
lemma formalizes our intuition about Summ and characterizes precisely when a
sequence of transitions σ may be executed and computes its effect on all the
stacks (if it is executable).

Lemma 2. Let c = (q0, w1, . . . , wn) and c′ = (qm, w′
1, . . . , w

′
n) be two configura-

tions of M . c
σ−→ c′ iff for every i ∈ [1..n], we have wi = uiu

′
i and w′

i = viu
′
i for

some ui, vi, u
′
i ∈ Γ ∗ such that Summ(i, σ) = (ui, vi).

Now, we will characterize Summ(i, σj) with j ≥ 1, i.e., the effect of iterating
the sequence σ j-times, in terms of Summ(i, σ) for all i ∈ [1..n]. Observe that if
Summ(i, σ) = ⊥, then Summ(i, σj) = ⊥ for all j ≥ 1. Hence, let us assume that
Summ(i, σ) = (ui, vi) for some words ui, vi ∈ Γ ∗. First, let us consider the case
when the sequence σ can be iterated twice and compute its effect on all the stacks.
Now, using the definition of Summ it is not difficult to conclude that Summ(i, σσ)
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is defined iff either vi is a prefix of ui or ui is a prefix of vi. We can in fact say
more. If the former holds we let xi be the unique word such that ui = vixi and
yi = ε. In case of the latter we let yi be the unique word such that vi = uiyi and
xi = ε. Then, we have Summ(i, σσ) = (u′

i, v
′
i) for all i ∈ [1..n] where u′

i = uixi

and v′
i = viyi. We define a partial function Iter : ([1..n]×Δ∗) ⇀ (Γ ∗ ×Γ ∗) such

that Iter(i, σ) is the pair (xi, yi) as defined above when Summ(i, σσ) is defined,
and Iter(i, σ) = ⊥ otherwise. We can now generalize this computation of Summ
to any number of iterations of σ as shown below.

Lemma 3. Let i ∈ [1..n]. If Summ(i, σσ) is well-defined then Summ(i, σj) is
well-defined for all j ≥ 1. Furthermore, Summ(i, σj) = (uix

j−1
i , viy

j−1
i ) with

Summ(i, σ) = (ui, vi) and Iter(i, σ) = (xi, yi).

5.2 Acceleration of Regular/Rational Sets of Configurations
by Loops

In the following, we first state that the class of regular (resp. rational) sets of
configurations is not closed under Postθ∗ . Then, we show that the image by
Postθ∗ of any regular set of configurations is a rational one.

Theorem 2. There is an MPDS M = (n,Q, Γ,Δ), a regular (resp. rational)
set of its configurations C and a transition sequence θ ∈ Δ∗ such that the set of
configurations Postθ∗(C) is not regular (resp. rational).

However, whenever C is a regular set of configurations the set Postθ∗(C) has
a simple description. In what follows we fix a MPDS M = (n,Q, Γ,Δ).

Theorem 3. For every regular set of configurations C and transition sequence
θ ∈ Δ∗, the set Postθ∗(C) is rational and effectively constructible.

Let θ be a sequence of transitions of the form (q0, op0, q′
0)(q1, op1, q

′
1)

· · · (qm, opm, q′
m). Since Postθ∗(C1 ∪ C2) = Postθ∗(C1) ∪ Postθ∗(C2), we can

assume w.l.o.g that C is of the form {q} × L1 × · · · × Ln where each Lj is an
1-dim rational language over Γ accepted by a finite state automaton Aj for all
j ∈ [1..n]. The proof proceeds by cases.

Case 1: Let us assume q′
i �= qi+1 for some i ∈ [0..m − 1] or q0 �= q. In this case

the sequence of transitions cannot be executed and hence Postθ∗(C) = C.

Case 2: Let us assume q0 �= q′
m, q0 = q and q′

i = qi+1 for all i ∈ [0..m − 1]. In
this case, the sequence of transitions can not be iterated more than once and so
we have Postθ∗(C) = Postθ(C) ∪ C. We now examine the set Postθ(C). First,
let us assume that Summ(i, θ) = ⊥ for some i ∈ [1..n]. Then Postθ(C) = ∅ and
hence Postθ∗(C) = C.

Let us assume now that Summ(i, θ) = (ui, vi) is well-defined for all i ∈ [1..n].
We can apply Lemma 2, to show that Postθ(C) = {q′

m} × L′
1 × · · · × L′

n where
for every i ∈ [1..n], L′

i = {w′
i | ∃wi ∈ Γ ∗. w′

i = vi.wi ∧ uiwi ∈ Li}. It is easy to
see that L′

i is an 1-dim rational language and can be accepted by an automaton
A′

i whose size is polynomial in the size of Ai and the length of θ.
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Case 3: Let us assume q0 = q′
m, q0 = q and q′

i = qi for all i ∈ [0..m − 1]. In this
case, the sequence of transitions forms a loop in the control flow graph of M
and hence the sequence may possibly be iterated. Observe that if the function
Summ(i, θ) = ⊥ for some i ∈ [1..n], then Postθ∗(C) = C. Hence, let us assume that
Summ(i, θ) = (ui, vi) for all i ∈ [1..n] so that it is well-defined for each i. Lemma 3
suggests that we should examine when Summ(i, θθ) is defined for all i. Indeed,
if Summ(i, θθ) is undefined for some i ∈ [1..n], then Postθ∗(C) = Postθ(C) ∪ C
(which can be computed as shown in the previous case). So, let us further assume
that Summ(i, θθ) is well-defined for all i ∈ [1..n]. Hence, the function Iter(i, σ)
is also well-defined. Let us assume that Iter(i, σ) = (xi, yi)

Now, we can combine Lemma 3 with Lemma 2 to give a characterization of
when a sequence θ is iterable and its effect.

Lemma 4. Let j ≥ 1 and c = (q, w1, . . . , wn) and c′ = (q, w′
1, . . . , w

′
n) be two

configurations of M . c θj−−→ c′ iff for every i ∈ [1..n], we have wi = uix
j−1
i w′′

i and
w′

i = viy
j−1
i w′′

i for some w′′
i ∈ Γ ∗ with ui, vi, xi and yis defined as above.

With this lemma in place, let L be the (2n + 1)-dim language defined as the
set containing the exactly the words of the form

(q, u1x
j−1
1 w1, v1y

j−1
1 w1, u2x

j−1
2 w2, v2y

j−1
2 w2, . . . , unxj−1

n wn, vnyj−1
n wn)

with j ≥ 1 and wi ∈ Γ ∗ and where ui, vi, xi and yis are defined as above.
Observe that each element of L relates a pair of configurations such that from
the first we can execute the sequence θ a finite number of times to reach the
second. The starting configuration is given by the first and all the even num-
bered positions, while the ending configuration is given by all the odd numbered
positions (including the first). As a matter of fact elements of L relates exactly
all such pairs in this manner. This language L is rational and we can easily
compute an (2n + 1)-tape automaton A whose size is polynomial in the size of
θ and polynomial in the size of M . To compute an (n + 1)-tape automaton A′

accepting Postθ+(C), we proceed as follows: First, we define the regular language
L′ = {q}×L1×Γ ∗×· · ·×Ln×Γ ∗. Then, we compute an (2n+1)-tape automaton
A′′ accepting precisely the language resulting from the intersection of the regular
language L′ and L. This allows us to restrict the starting configurations to be
precisely those from C. The size A′′ is exponential in the number of stacks and
polynomial in the size of θ, and the finite state automata A1, . . . , An. Finally, we
need to project away the tapes concerning the starting stack configurations. We
let then A′ = Πι(A′′) with ι = {2i + 1 | i ∈ [0..n]}. We note that this step does
not result in any blow up and thus the size of A′ is exponential in the number
of stacks and polynomial in the size of θ and A1, . . . , An.

Since Postθ∗(C) = C∪Postθ+(C) and the class of rational / regular languages
is closed under union, this completes the proof of Theorem3.

6 Constrained Simple Regular Expressions

We now introduce the class of (1 dimensional) Constrained Simple Regular Expres-
sions (CSRE). CSRE definable languages form an expressive class equivalent to the
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bounded semi-linear languages defined in [18] and the class of languages accepted
by 1-CQDD introduced in [16]. To deal with configuration sets of MPDS we need n-
dimensional CSREs and so we lift these results to that setting. We then show that
the CSRE definable sets of configurations form a stable collection under acceler-
ation by loops. However, this class is not stable w.r.t. bounded context runs. We
begin by recalling some basics about Presburger arithmetic.

6.1 Presburger Arithmetic

Presburger arithmetic is the first-order theory of natural numbers with addition,
subtraction and order. We recall briefly its definition. Let V be a set of variables.
We use x, y, . . . to denote variables in V. The set of terms in Presburger arith-
metic is defined as follows: t ::= 0 | 1 |x | t − t | t + t. The set of formulae of the
Presburger arithmetic is defined to be ϕ ::= t ≤ t | ¬ϕ |ϕ ∨ ϕ | ∃x. ϕ.

We use the standard abbreviations: ϕ1 ∧ ϕ2 = ¬(ϕ1 ∨ ϕ2), ϕ1 ⇒ ϕ2 =
¬ϕ1 ∧ ϕ2, and ∀x. ϕ = ¬∃x.¬ϕ. The notions of free and bound variables, and
quantifier-free formula are as usual. An existential Presburger formula is one of
the form ∃x1∃x2 . . . ∃xn.ϕ where ϕ is a quantifier-free formula. We shall often
write positive boolean combinations of existential Presburger formulas in place
of an existential Presburger formula. Clearly, by an appropriate renaming of
the quantified variables, any such formula can be converted into an equivalent
existential Presburger formula. We write var(ϕ) ⊆ V to denote the set of free
variables of ϕ. Given a function μ from var(ϕ) to N, the meaning of μ satisfies
ϕ is as usual and we write μ |= ϕ to denote this. We write ϕ(x1, x2, . . . , xk) to
denote a Presburger formula ϕ whose free variables are (contained in) x1, . . . , xk.
Such a formula naturally defines a subset of Nk given by {(i1, i2, . . . , ik) | μ |=
ϕ(x1, x2, . . . , xk) where μ(xj) = ij , 1 ≤ j ≤ k}. We say that a subset S of Nk is
definable in Presburger arithmetic if there is a formula ϕ that defines it.

6.2 Constrained Simple Regular Expression (CSRE)

A Constrained Simple Regular Expression (CSRE) e over an alphabet Σ is
defined as a tuple of the form e = (w1, . . . , wm, ϕ(x1, x2, . . . , xm)) where
w1, . . . , wm is a non-empty sequence of words over Σ, and ϕ is an existential
Presburger formula. The language defined by the CSRE e, denoted by L(e),
is the set of words of the form wi1

1 wi2
2 · · · wim

m such that ϕ holds for the func-
tion μ defined by μ(xj) = ij for all j ∈ [1..m]. The size of e is defined by
|e| = |w1 · · · wm|+ |ϕ|. CSREs define the same class of languages as CQDDs [16]
(see [18]), however they have a much simpler presentation avoiding automata
altogether and as we shall see quite amenable to a number of operations.

Next, we present some closure and decidability results for the class of CSRE
definable languages. These results can be also deduced from [18] since CSREs
define bounded semilinear languages.

Lemma 5. The class of languages defined by CSREs is closed under intersec-
tion, union and concatenation. The emptiness, membership and inclusion prob-
lems for CSREs are decidable.
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From Lemma 4 it is clear that in order to compute the effect of the iteration
of a sequence θ on the content of stack i one has to left-quotient the content of
stack i by the sequence uix

j−1
i and then add the sequence viy

j−1
i (on the left).

With this in mind we now examine left-quotients of languages defined by CSREs
w.r.t. iterations of a given word. First we state a technical lemma.

Lemma 6. Let e be a CSRE over an alphabet Σ and w ∈ Σ∗ be a word.
Then, we can construct, in polynomial time in |w| + |e| , a CSRE e′ =
(w, u1, u2, . . . , uk, ϕ(y, y1, y2, . . . , yk)) such that for every i ∈ N, L(ei) =
{w′ |wiw′ ∈ L(e)} where ei = (ε, u1, u2, . . . , uk, (y = i ∧ ϕ(y, y1, y2, . . . , yk))).

The key point about the above lemma is that the left-quotient of L(e)
w.r.t wi, for some i ∈ N, can be precisely identified as L(ei). Thus, the
CSRE (ε, u1, u2, . . . , uk, ϕ(y, y1, y2, . . . , yk)) defines the left-quotient of L(e) w.r.t
{wi | i ∈ N}, giving us the following corollary.

Corollary 1. Let e be a CSRE over an alphabet Σ and w ∈ Σ∗ be a word.
Then, we can construct, in polynomial time in |w| + |e|, a CSRE e′ such that
L(e′) = {w′ | ∃i ∈ N. wiw′ ∈ L(e)}.

6.3 Multi-dimensional Constrained Simple Regular Expression

Let n ≥ 1. An n-dim CSRE e over an alphabet Σ is a of tuple of
the form ((u1, . . . , uk1), (uk1+1, . . . , uk2), . . . , (ukn−1+1, . . . , ukn

), ϕ(x1, . . . , xkn
))

where: (1) 1 ≤ k1 < k2 < · · · < kn and (2) for every i ∈ [1..kn], ui is a word over
Σ. An n-dim CSRE e accepts the n-dim language, denoted by L(e), consisting of
the n-dim words of the form (ui1

1 · · · uik1
k1

, · · · , u
ikn−1+1

kn−1+1 · · · uikn

kn
) such that ϕ holds

for the function μ defined by μ(xj) = ij for all j ∈ [1..kn]. In order to simply
the notations, we sometimes write e as follows (u1,u2, . . . ,un, ϕ(x1,x2, . . . ,xn))
where ui = (uki−1+1, . . . , uki

) and xi = (xki−1+1, . . . , xki
) for all i ∈ [1..n]. In

the following, we show that the class of languages accepted by n-dim CSREs
enjoys the same properties as the class of CSREs.

Lemma 7. Let n ≥ 1. The class of n-languages defined by n-CSREs is closed
under intersection, union and concatenation. The emptiness problem , member-
ship problem as well as inclusion problem are decidable for n-dim CSREs.

Next, we extend Lemma 6 to n-dim CSREs — n-dim CSREs are closed under
left quotienting by simultaneous iterations of a tuple of words wi, 1 ≤ i ≤ n, one
for each component. Even more, this can be achieved by constructing an n-CSRE
in which the number of iterations may be set parametrically.

Lemma 8. Let n ≥ 1. Let e be a n-dim CSRE over an alphabet Σ and
w = (w1, . . . , wn),wi ∈ Σ∗. Then, we can construct, in polynomial time in |e| +∑

i |wi|, an n-dim CSRE e[w] = (u1, . . . ,un, ϕ(x1, . . . ,xn)) such that ui[1] = wi,
for 1 ≤ i ≤ n and for every j ∈ N, L(e[w, j]) = {v |v[i ← wj

i v[i]] ∈ L(e)}, where
e[w, j] = (u1[1 ← ε], . . . ,un[1 ← ε], (

∧
1≤i≤n xi[1] = j ∧ ϕ(x1,x2, . . . ,xn))).
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We now have all the ingredients necessary to study the stability of sets of
configurations defined by n-dim CSREs. We say that a set C of configurations of
the MPDS M is CSRE representable if there is a function f that maps any state
q ∈ Q of M to an n-dim CSRE s.t. (q, w1, . . . , wn) ∈ C iff (w1, . . . , wn) ∈ L(f(q)).

6.4 Acceleration of CSRE Representable Set of Configurations

Let M = (n,Q, Γ,Δ) be an MPDS. We now examine the sets PostΔ∗
i
(C) and

Postθ∗(C) where Δi is a set of transitions on the i-th stack of M and θ ∈ Δ∗

where C is a CSRE representable set of configurations.

Theorem 4. For every transition sequence θ ∈ Δ∗, the class of CSRE repre-
sentable sets of configurations is effectively closed under Postθ∗ . Further post set
can be computed in time polynomial in the size of θ and |M |.
Proof. Let θ be a sequence of transitions of the form (q0, op0, q′

0)(q1, op1, q
′
1)

· · · (qm, opm, q′
m) and C be a CSRE representable set of configurations. Since

Postθ∗(C1 ∪ C2) = Postθ∗(C1) ∪ Postθ∗(C2), we can assume w.l.o.g that
C consists of configurations of the form (q, w1, . . . , wn) for some fixed q ∈
Q. Let f be a function from Q to n-dim CSREs such that L(f(p)) =
{(w1, . . . , wn) | (q, w1, . . . , wn) ∈ C} if p = q and L(f(p)) = ∅ otherwise. Next,
we assume that f(q) = (u1, . . . ,un, ϕ(x1, . . . ,xn)). The proof proceeds by cases.
Case 1: Let us assume q′

i �= qi for some i ∈ [0..m − 1] or q0 �= q. In this case the
sequence of transitions cannot be executed and hence Postθ∗(C) = C.
Case 2: Let us assume q0 �= q′

m, q0 = q and q′
i = qi for all i ∈ [0..m − 1]. In

this case, the sequence of transitions cannot be iterated more than once and
so we have Postθ∗(C) = Postθ(C) ∪ C. We now examine the set Postθ(C). If
Summ(i, θ) = ⊥ for some i ∈ [1..n], then Postθ(C) = ∅ and hence Postθ∗(C) = C.

Let us assume now that Summ(i, θ) = (ui, vi) is well-defined for all i ∈
[1..n]. We can construct a n-CSRE e′ such that (q′

m, w1, . . . , wn) ∈ Postθ∗(C)
iff (w1, . . . , wn) ∈ L(e′) in two steps: Let e1 = f(q)[(u1, u2, · · · , un), 1].
This left quotients component i by ui as required and the size of e1
is polynomial in the size of θ, M and f(q). Let us assume that e1 is
of the form ((ε, w2, . . . , w�1), . . . , (ε, w�n−1+2, . . . , w�n), ϕ′′(x1, . . . , x�n)). Next,
we simultaneously add the content vi to stack i, 1 ≤ i ≤ n as fol-
lows: Let the n-CSRE e′ be ((v1, ε, w2, . . . , w�1), . . . , (vn, ε, w�n−1+2, . . . , w�n),
ϕ′(y1, x1, . . . , xk1 , . . . , yn, x�n−1+1, . . . , x�n)) where ϕ′ = ϕ′′ ∧ ∧

1≤h≤n yi = 1.
Note that Postθ∗(C) is CSRE representable by the function f ′ s.t. f ′(q) =

f(q), f ′(q′
m) = e′, and L(f ′(p)) = ∅ for all p /∈ {q, q′

m}. Observe that the con-
struction of Postθ∗(C) is done in polynomial time in the sizes of θ, M and f(q).
Case 3: Let us assume q0 = q′

m, q0 = q and q′
i = qi for all i ∈ [0..m − 1]. In this

case, the sequence of transitions forms a loop in the control flow graph of M
and hence the sequence may possibly be iterated. Observe that if the function
Summ(i, θ) = ⊥ for some i ∈ [1..n], then Postθ∗(C) = C. Hence, let us assume
that Summ(i, θ) = (ui, vi) for all i ∈ [1..n] so that it is well-defined for each i.
Lemma 3 suggests that we should examine when Summ(i, θθ) is defined for all i.
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Indeed, if Summ(i, θθ) is undefined for some i ∈ [1..n], then Postθ∗(C) =
Postθ(C) ∪ C (which can be computed as shown in the previous case). So, let
us further assume that Summ(i, θθ) is well-defined for all i ∈ [1..n]. Hence, the
function Iter(i, σ) is also well-defined. Let us assume that Iter(i, σ) = (xi, yi)

We then construct a n-CSRE e′ such that (q′
m, w1, . . . , wn) ∈ Postθ+(C)

iff (w1, . . . , wn) ∈ L(e′) in a sequence of steps: First we construct the n-
CSRE expression e1 = f(p)[(u1, u2, · · · , un), 1]. Let us assume that e1 is of the
form ((ε, w2, . . . , w�1), . . . , (ε, w�n−1+2, . . . , w�n), ϕ1(x1, . . . , x�n)). Observe that
the size of e1 is polynomial in the sizes of θ, M and f(q) and it simultaneously
left quotients component i by ui. Now, we must simultaneously left-quotient
the ith component by xj

i , for a fixed j and then follow this by adding simul-
taneously yj

i to component i (for the same j) and then add simultaneously vi

to component i (1 ≤ i ≤ n). To achieve this we begin by applying Lemma8
to e1 to construct the n-CSRE expression e2 = e1[(x1, . . . , xn)]. Observe that
the size of e2 is also polynomial in the sizes of θ, M and f(q). Let us assume
that e2 is of the form ((ε, w′

2, . . . , w
′
j1

), . . . , (ε, w′
jn−1+2, . . . , w

′
jn

), ϕ2(z1, . . . , zjn)).
We now exploit the parametrized nature of e1[(x1, . . . , xn)] stated in
Lemma 8. We let e′ = ((v1, y1, ε, w′

2, . . . , w
′
j1

), . . . , (vn, yn, ε, w′
jn−1+2, . . . , w

′
jn

),
ϕ′(t1, t′1, z1, . . . , zk1 , . . . , tn, t′n, z�n−1+1, . . . , zjn)) where ϕ′ = ϕ2 ∧ ∧

1≤h≤n ti =
1 ∧ (z1 = zj1+1 =· · · = zzjn−1+1 = t′1 = t′2 = · · · = t′n).

Finally, it is easy to see that Postθ∗(C) is CSRE representable by the function
f ′ such that L(f ′(q)) = L(f(q))∪L(e′), and L(f ′(p)) = ∅ for all p /∈ {q}. Observe
that the size of f ′(q) is still polynomial in the sizes of θ, M and f(q). ��
Unfortunately, CSRE representable sets are not stable w.r.t. bounded context.

Theorem 5. For every i ∈ [1..n], the class of CSRE representable sets of con-
figurations is not closed under PostΔ∗

i
(C).

7 Acceleration of Bounded-Context Sets

In the following, we first introduce the class of constrained rational languages
(as an extension of constrained (or Parikh) automata languages [17,31] to the
settings of multi-dimensional words). Then, we present the class of bounded
context-switches sets as a generalization of loops and contexts. Finally, we show
that the class of constrained rational languages is stable with respect to accel-
eration by bounded context-switches sets.

7.1 Constrained Rational Languages

A constrained automaton is a finite-state automaton augmented with a semi-
linear set to filter (or restrict) the accepting runs. We assume that this semi-linear
set is described by an existential Presburger formula. In the following, we extend
this model to multi-dimensional words. Let n ≥ 1 and Σ1, . . . , Σn be n finite
alphabets. Formally, a n-tape constrained finite-state automaton over Σ1, . . . , Σn
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is defined as C = (A,ϕ) where A = (Q,Σ1, . . . , Σn, δ, q0, F ) is a n-tape finite-
state automaton and ϕ is an existential Presburger formula such that var(ϕ) = δ.
Furthermore, we assume w.l.o.g. that if (q,u, q′) is in δ then |u[1]·u[2] · · ·u[n] | ≤
1. The language of C, denoted by L(C), is the set of n-dim words w for which
there is an accepting run π of A over w such that Parikh(π) |= ϕ. A n-dim
language is constrained rational if it is the language of some n-tape constrained
automaton. Let us state some properties about constrained rational languages.
These properties can be inferred from the properties of rational languages [10]
and Parikh/constrained automata [17,31,42].

Lemma 9. The class of constrained rational languages is closed under union
and concatenation but not under intersection. The emptiness and membership
problems are decidable while the emptiness of intersection problem is undecidable.

We can extend the permutation, projection and composition operations to
the context of constrained rational languages in the straightforward manner. We
also show the same closure properties as in the case of rational languages.

Lemma 10. The class of constrained rational languages is closed under permu-
tation, projection, composition and intersection with regular languages.

The complexity of permutation, projection, composition is at most polyno-
mial in size of input automata whereas the intersection with regular languages
is at most exponential in the size of the description of the regular language and
polynomial in the size of constrained rational automaton.

7.2 Acceleration of Bounded Context-Switches Sets

Let M = (n,Q, Γ,Δ) be an MPDS. A bounded context-switches set over M is
defined by Λ = (τ0, τ1, . . . , τ2m) with m ∈ Nwhere (1) for every i ∈ [0..m], we have
τ2i ⊆ Δji for some ji ∈ [1..n] with j0 = j2m, and (2) for every i ∈ [0..(m − 1)],
|τ2i+1| = 1. The size of Λ is defined as the sum of the sizes of the finite sets τj for all
j ∈ [0..2m]. The set of sequences of transitions recognized by Λ, denoted by L(Λ),
is τ∗

0 τ1τ
∗
2 · · · τ∗

2m. Observe that when m = 0 and τ0 = Δi for some i ∈ [1..n], L(Λ)
corresponds to a context associated to the stack i. And whenever τ2i = ∅ for all
i ∈ [0..m], L(Λ) is a sequence of transitions. Thus, bounded context-switches sets
generalize both loops and contexts. Observe that dropping one of τ2i+1 from the
definition of Λ will allow the simulation of unbounded unrestricted context-switch
sequences and hence leads to the undecidability of the simple reachability problem.
Next, we state our main theorem:

Theorem 6. Let M be an MPDS and Λ = (τ0, τ1, . . . , τ2m) be a bounded
context-switches set over M . For every constrained rational set of configurations
C, PostL(Λ)∗(C) is a constrained rational set and effectively constructible.

The rest of this section is dedicated to the proof of Theorem 6. First we prove
an extension of Lemma 1 that shows that in addition to computing pairs of the
form (q, u, q′, u) such that there is a run π from (q, u) to (q′, u′) one may in
addition keep track of the number iterations of L(Λ) seen along π.
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Lemma 11. Let P = (1, P, Γ,R) be an PDS and Λ = (τ0, τ1, . . . , τ2m) be a
bounded context-switches set over P such that τj ⊆ R. Let � be a special symbol
not included in Γ . Then it is possible to construct, in exponential time in the sizes
of P and Λ, an 5-tape finite-state automaton T = (QT , Q, Γ,Q, Γ, {�}, δπ, q0, FT )
such that (q, u, q′, v, �m) ∈ L(T ) iff (q, u) π−→P(q′, v) for some sequence π ∈
(L(Λ))m. Furthermore, the size of T is exponential in the sizes of P and Λ.

The proof of this lemma is based on the combination of the proof of Lemma1
with the fact the Parikh images of context-free languages can be effectively realized
as regular languages.This ability to compute the number of iterations ofL(Λ) along
the run is important. It can be combined with the special structure of L(Λ), which
forces context-switches to occur at identified transitions and in a fixed sequence.
This allows us to prove Lemma 12, leading to the proof of Theorem6.

Now, one can construct a PDS Mi for each stack i, which simulates the
moves of M on the ith stack while guessing, non-deterministically, the effect
of the moves corresponding to the other stacks. Clearly, any run of M can be
decomposed in to a tuple of runs, one per Mi. However, because of the special
structure of L(Λ), a converse of this statement is true for runs of the form L(Λ)∗.
Any tuple of runs, one from each Mi, which agree on the number of iterations
of L(Λ) seen along the run, can be composed together to give a run M .

Let i ∈ [1..n]. For each transition t = (q, op, q′) ∈ Δ, we represent the effect
of the transition t on the stack i by the transition t|i defined as follows: t|i = t
if t ∈ Δi, and t|i = (q, nopi, q

′) otherwise. We extend this operation to sets of
transitions as follows: For a set T ⊆ Δ, T |i = {t|i | t ∈ T}.

Let Mi = (1, Q, Γ,
⋃

j∈[0..2m] τj |i) be a PDS simulating the i-th stack while
taking into account the effect transitions of the other stack operations. We
define also Λ|i to be the bounded context-switches set defined by the tuple
(τ0|i, τ1|i, . . . , τ2m|i). Let Ti be the 5-tape finite state automaton resulting from
the application of Lemma 11 to the PDA Mi and the bounded context-switches
set Λ|i. Then synchronizing the multi-tape automata Ti on the number of occur-
rences of the special symbol � provides a relation between any possible start-
ing configuration (q, u1, . . . , un) with any configuration (q′, v1, . . . , vn) reachable
from (q, u1, . . . , un) of M by firing a sequence of transitions in L(Λ)∗.

Lemma 12. Let m ∈ N. Then, (q, u1, . . . , un) π−→M(q′, v1, . . . , vn) for some
sequence π ∈ (L(Λ))m if and only if for every i ∈ [1..n], (q, ui, q

′, vi, �
m) ∈ L(Ti).

Now,we are ready to proveTheorem 6. Let us assume thatwe are given a (n+1)-
tape constrained automaton C = (A,φ) where A = (P,Q, Γ, . . . , Γ, δ, p0, F ) and
L(C) = C. In the following, we show how to compute a (n + 1)-tape constrained
automaton C′ accepting the set Post (L(Λ))∗(C). To do that, we proceed as follows:
We first compose C with the constrained automaton (T1, true), synchronizing the
second tape of T1 (containing the stack contents at the starting configuration of the
M1) with the second tape of A, to construct a (n+5)-tape constrained automaton
C1 = C ◦(2,2) (T1, true). We then need to synchronize the starting states (i.e., the
first tape of A with the first tape of T1). This can be done by intersecting C1 with the
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(regular) language
⋃

q∈Q{q}×(Γ ∗)n×{q}×Q×Γ ∗×({�})∗. Let C′
1 be the (n+5)-

tapes resulting of this intersection.Then,we project away the starting control state
occurring on the n+2-tape and the content of the second tape to obtain the (n+3)-
tape constrained automaton C′′

1 = Πι(C′
1) where ι = ([1..n + 5] \ {2, n + 2}).

Then, we need to compose C′′
1 with the constrained automaton (T2, true),

synchronizing the second tape of T2 (containing the stack contents at the starting
configuration of the M2) with the second tape of C′′

1 , to construct a (n+ 7)-tape
constrained automaton C2 = C′′

1 ◦(2,2) (T2, true). We then need to synchronize the
starting states (i.e., the first tape of C′′

1 with the first tape of T2). This can be
done by intersecting C2 with the (regular) language

⋃
q∈Q{q} × (Γ ∗)n−1 × Q ×

Γ ∗ × ({�})∗ ×{q}×Q×Γ ∗ × ({�})∗. Let C′
2 be the (n+7)-tapes resulting of this

intersection. Then, we project away the state occurring on the n + 4-tape and
the content of the second tape to obtain the (n+5)-tape constrained automaton
C′′
2 = Πι′(C′

2) where ι′ = ([1..n + 6] \ {2, n + 4}).
This procedure is then repeated for all the constrained automata (Ti, true),with

i ∈ [3..n], to obtain at the end the (3n + 1)-tape constrained automaton C′′
n. We

can also project away the state stored at the first tape from C′′
n since it is no longer

needed. So, let G = Π[2..3n](C′′
n) be the resulting (3n)-tape constrained automaton.

Now, we need to synchronize the automata (Ti, true) on their final states
stored respectively at the tapes 3(i − 1) + 1, with i ∈ [1..n], of G. To do that we
intersect G with the (regular) language

⋃
q∈Q{q}×Γ ∗×({�})∗×{q}×Γ ∗×({�})∗×

· · ·×{q}×Γ ∗ ×({�})∗. Let G′ be the (3n)-tapes resulting of this intersection. We
can then project away the copies of the final control states and only keep its first
occurrence to obtain (2n+1)-tape constrained automaton G′′ defined as follows:
G′′ = Πι′′(G′) where ι′′ = ([1..3n] \ {3i + 1 | i ∈ [1..n − 1]}). Let us assume that
G′′ is of the form (A′, φ′) where A′ = (P ′, Q, Γ, {�}, Γ, {�}, . . . , Γ, {�}, δ′, p′

0, F
′).

For every i ∈ [1..n], let δ′
i be the subset of δ′ containing only transitions of the

form (p,v, p′) ∈ δ′ s.t. v[2i + 1] = � (note that v[j] = ε for all j �= 2i + 1).
From Lemma 12, we need to ensure the same number of the special letters �

in all the tapes {2i + 1|i ∈ [1..n]} by augmenting the formula φ′ with additional
constraints. Let G′′′ = (A′, φ′′) where φ′′ = φ′ ∧ (

∑
t1∈δ′

1
t1 =

∑
t2∈δ′

2
t2 = · · · =

∑
tn∈δ′

n
tn). Finally, the n + 1-tape constrained finite state automaton C′ can be

constructed from G′′′ by projecting away the tapes with symbol � i.e. the tapes
{2i+1|i ∈ [1..n]}. Hence, C′ = Πι′′′(G′′′) where ι′′′ = ([1..n] \ {2i+1|i ∈ [1..n]}).

Using the complexity results for permutation, projection, composition and the
intersection with regular languages for constrained rational languages, we can
show that the size of C′ is at most double-exponential in the sizes of M and Λ.
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