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Abstract. We provide a new algorithm to determine stuttering equiv-
alence with time complexity O(m log n), where n is the number of
states and m is the number of transitions of a Kripke structure. This
algorithm can also be used to determine branching bisimulation in
O(m(log |Act | + log n)) time. Theoretically, our algorithm substantially
improves upon existing algorithms which all have time complexity O(mn)
[2,3,9]. Moreover, it has better or equal space complexity. Practical
results confirm these findings showing that our algorithm can outper-
form existing algorithms with orders of magnitude, especially when the
sizes of the Kripke structures are large.

1 Introduction

Stuttering equivalence [4] and branching bisimulation [8] were proposed as alter-
natives to Milner’s weak bisimulation [13]. They are very close to weak bisimula-
tion, with as essential difference that all states in the mimicking sequence τ∗a τ∗

must be related to either the state before or directly after the a from the first
system. This means that branching bisimulation and stuttering equivalence are
slightly stronger notions than weak bisimulation.

In [9] an O(mn) time algorithm was proposed for stuttering equivalence and
branching bisimulation, where m is the number of transitions and n is the number
of states in either a Kripke structure (for stuttering equivalence) or a labelled
transition system (for branching bisimulation). We refer to this algorithm as
GV. It is based upon the O(mn) algorithm for bisimulation equivalence in [11].
Both algorithms require O(m+n) space. They calculate for each state whether
it is bisimilar to another state.

The basic idea of the algorithms of [9,11] is to partition the set of states
into blocks. States that are bisimilar always reside in the same block. Whenever
there are some states in a block B′ from which a transition is possible to some
block B and there are other states in B′ from which such a step is not possible,
B′ is split accordingly. Whenever no splitting is possible anymore, the partition
is called stable, and two states are in the same block iff they are bisimilar.

There have been some attempts to come up with improvements of GV.
The authors of [2] observed that GV only splits a block in two parts at a time.
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They proposed to split a block in as many parts as possible, reducing moving
states and transitions to new blocks. Their worst case time and space complex-
ities are worse than that of GV, especially the space complexity O(mn), but
in practice this algorithm can outperform GV. In [3], the space complexity is
brought back to O(m+n). A technique to be performed on Graphics Process-
ing Units based on both GV and [2,3] is proposed in [19]. This improves the
required runtime considerably by employing parallelism, but it does not imply
any improvement to the single-threaded algorithm.

In [15] an O(m log n) algorithm is proposed for strong bisimulation as an
improvement upon the algorithm of [11]. The core idea for this improvement is
described as “process the smaller half” [1]. Whenever a block is split in two parts
the amount of work must be contributed to the size of the smallest resulting block.
In such a case a state is only involved in the process of splitting if it resides in a
block at most half the size of the block it was previously in when involved in split-
ting. This means that a state can never be involved in more than log2 n splittings.
As the time used in each state is proportional to the number of incoming or out-
going transitions in that state, the total required time is O(m log n).

In this paper we propose the first algorithm for stuttering equivalence and
branching bisimulation in which the “process the smaller half”-technique is used.
By doing so, we can finally confirm the conjecture in [9] that such an improve-
ment of GV is conceivable. Moreover, we achieve an even lower complexity, namely
O(m log n), than conjectured in [9] by applying the technique twice, the second
time for handling the presence of inert transitions. First we establish whether a
block can be split by combining the approach regarding bottom states from GV
with the detection approach in [15]. Subsequently, we use the “process the smaller
half”-technique again to split a block by only traversing transitions in a time pro-
portional to the size of the smallest subblock. As it is not known which of the two
subblocks is smallest, the transitions of the two subblocks are processed alternat-
ingly, such that the total processing time can be contributed to the smallest block.
For checking behavioural equivalences, applying such a technique is entirely new.
We are only aware of a similar approach for an algorithm in which the smallest
bottom strongly connected component of a graph needs to be found [5].

Compared to checking other equivalences the existing algorithms for branch-
ing bisimulation/stuttering equivalence were already known to be practically
very efficient. This is the reason that they are being used in multiple explicit-
state model checkers, such as Cadp [7], the mCRL2 toolset [10] and TVT [18].
In particular they are being used as preprocessing steps for other equivalences
(weak bisimulation, trace based equivalences) that are much harder to compute.
For weak bisimulation recently an O(mn) algorithm has been devised [12,16],
but until that time an expensive transitive closure operation of at best O(n2.373)
was required. The improvements of our new algorithm are not restricted to stut-
tering equivalence and branching bisimulation alone, but they can also impact
the computation time of all other behavioural equivalences.

Although our algorithm theoretically outperforms its predecessors substan-
tially, we wanted to know whether it would also do so in practice. We find that
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for dedicated examples our algorithm lives up to its theoretical improvement
outperforming the existing algorithms in accordance with the theory. For practi-
cal examples we see that our algorithm can always match the best running times
of existing algorithms, but especially when the Kripke structures and transition
systems get large, our algorithm tends to outperform existing algorithms with
orders of magnitude.

2 Preliminaries

We introduce Kripke structures and (divergence-blind) stuttering equivalence.
In Sect. 6 we explain branching bisimulation and its application to labelled tran-
sition systems.

Definition 1. A Kripke structure is a four tuple K = (S,AP , −→ , L), where

1. S is a finite set of states.
2. AP is a finite set of atomic propositions.
3. −→ ⊆ S × S is a total transition relation, i.e., for each s ∈ S there is an

s′ ∈ S s.t. s −→ s′.
4. L : S → 2AP is a state labelling.

We use n=|S| for the number of states and m=| −→ | for the number of transitions.
For a set of states B⊆S, we write s −→B s′ for s −→ s′ and s′ ∈ B.

Definition 2. Let K = (S,AP , −→ , L) be a Kripke structure. A symmetric rela-
tion R ⊆ S × S is a divergence-blind stuttering bisimulation iff for all s, t ∈ S
such that sRt:

1. L(s) = L(t).
2. for all s′ ∈ S if s −→ s′, then there are t0, . . . , tk ∈ S for some k ∈ N such

that t = t0, sRti, ti −→ ti+1, and s′Rtk for all i < k.

We say that two states s, t ∈ S are divergence-blind stuttering equivalent, nota-
tion s↔dbst, iff there is a divergence-blind stuttering equivalence relation R such
that sRt.

An important property of divergence-blind stuttering equivalence is that if states
on a loop all have the same label then all these states are divergence-blind
stuttering equivalent. We define stuttering equivalence in terms of divergence-
blind stuttering equivalence using the following Kripke structure.

Definition 3. Let K = (S,AP , −→ , L) be a Kripke structure. Define the Kripke
structure Kd = (S ∪ {sd},AP ∪ {d}, −→d , Ld) where d is an atomic proposition
not occurring in AP and sd is a fresh state not occurring in S. Furthermore,

1. −→d = −→ ∪ {〈s, sd〉 | s is on a cycle of states all labelled with L(s), or
s = sd}.

2. For all s ∈ S we define Ld(s) = L(s) and Ld(sd) = {d}.
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States s, t ∈ S are stuttering equivalent, notation s↔st iff there is a divergence-
blind stuttering bisimulation relation R on Sd such that sRt.

Note that an algorithm for divergence-blind stuttering equivalence can also
be used to determine stuttering equivalence by employing only a linear time
and space transformation. Therefore, we only concentrate on an algorithm for
divergence-blind stuttering equivalence.

3 Partitions and Splitters: A Simple Algorithm

Our algorithms perform partition refinement of an initial partition containing
the set of states S. A partition π = {Bi ⊆ S | 1 ≤ i ≤ k} is a set of non empty
subsets such that Bi ∩ Bj = ∅ for all 1 ≤ i < j ≤ k and S =

⋃
1≤i≤k Bi. Each

Bi is called a block.
We call a transition s −→ s′ inert w.r.t. π iff s and s′ are in the same block

B ∈ π. We say that a partition π coincides with divergence-blind stuttering
equivalence when s↔dbst iff there is a block B ∈ π such that s, t ∈ B. We
say that a partition respects divergence-blind stuttering equivalence iff for all
s, t ∈ S if s↔dbst then there is some block B ∈ π such that s, t ∈ B. The
goal of the algorithm is to calculate a partition that coincides with divergence-
blind stuttering equivalence. This is done starting with the initial partition π0

consisting of blocks B satisfying that if s, t ∈ B then L(s) = L(t). Note that this
initial partition respects divergence-blind stuttering equivalence.

We say that a partition π is cycle-free iff for each block B ∈ π there is no
state s ∈ B such that s −→B s1 −→B · · · −→B sk −→ s for some k ∈ N. It is easy to
make the initial partition π0 cycle-free by merging all states on a cycle in each
block into a single state. This preserves divergence-blind stuttering equivalence
and can be performed in linear time employing a standard algorithm to find
strongly connected components [1].

The initial partition is refined until it coincides with divergence-blind stut-
tering equivalence. Given a block B′ of the current partition and the union B
of some of the blocks in the partition, we define

split(B′,B) = {s0∈B′ | ∃k∈N, s1, .., sk∈S.si −→ si+1, si∈B′ for all i < k ∧ sk∈B}
cosplit(B′,B) = B′ \ split(B′,B).

Note that if B′ ⊆ B, then split(B′,B) = B′. It is common to split blocks under
single blocks, i.e., B corresponding with a single block B ∈ π [9,11]. However,
as indicated in [15], it is required to split under the union of some of the blocks
in π to obtain an O(m log n) algorithm. We refer to such groups of blocks as
constellations. In Sect. 4, we use constellations consisting of more than one block
when splitting.

We say that a block B′ is unstable under B iff split(B′,B) �= ∅ and
cosplit(B′,B) �= ∅. A partition π is unstable under B iff there is at least one
B′ ∈ π which is unstable under B. If π is not unstable under B then it is called
stable under B. If π is stable under all B, then it is simply called stable.
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A refinement of B′ ∈ π under B consists of two new blocks split(B′,B) and
cosplit(B′,B). A partition π′ is a refinement of π under B iff all unstable blocks
B′ ∈ π have been replaced by new blocks split(B′,B) and cosplit(B′,B).

The following lemma expresses that if a partition is stable then it coincides
with divergence-blind stuttering equivalence. It also says that during refinement,
the encountered partitions respect divergence-blind stuttering equivalence and
remain cycle-free.

Lemma 1. Let K = (S,AP , −→ , L) be a Kripke structure and π a partition of S.

1. For all states s, t ∈ S, if s, t ∈ B with B a block of the partition π, π is stable,
and a refinement of the initial partition π0, then s↔dbst.

2. If π respects divergence-blind stuttering equivalence then any refinement of π
under the union of some of the blocks in π also respects it.

3. If π is a cycle-free partition, then any refinement of π is also cycle-free.

Proof. 1. We show that if π is a stable partition, the relation R = {〈s, t〉 | s, t ∈
B, B ∈ π} is a divergence-blind stuttering equivalence. It is clear that R
is symmetric. Assume sRt. Obviously, L(s) = L(t) because s, t ∈ B and B
refines the initial partition. For the second requirement of divergence-blind
stuttering equivalence, suppose s −→ s′. There is a block B′ such that s′ ∈ B′.
As π is stable, it holds for t that t = t0 −→ t1 −→ · · · −→ tk for some k ∈ N,
t0, . . . , tk−1 ∈ B and tk ∈ B′. This clearly shows that for all i < k sRti,
and s′Rtk. So, R is a divergence-blind stuttering equivalence, and therefore
it holds for all states s, t ∈ S that reside in the same block of π that s↔dbst.

2. The second part can be proven by reasoning towards a contradiction. Let us
assume that a partition π′ that is a refinement of π under B does not respect
divergence-blind stuttering equivalence, although π does. Hence, there are
states s, t ∈ S with s↔dbst and a block B′ ∈ π with s, t ∈ B′ and s and
t are in different blocks in π′. Given that π′ is a refinement of π under B,
s ∈ split(B′,B) and t ∈ cosplit(B′,B) (or vice versa, which can be proven
similarly). By definition of split, there are s1, . . . , sk−1 ∈ B′ (k ∈ N) and sk ∈
B such that s −→ s1 −→ · · · −→ sk. Then, either k = 0 and B′ ⊆ B, but then
t /∈ cosplit(B′,B). Or k > 0, and since s↔dbst, there are t1, . . . , tl−1 ∈ B′

(l ∈ N) and tl ∈ B such that t −→ t1 −→ · · · −→ tl with siRtj for all 1 ≤ i < k,
1 ≤ j < l and skRtl. This means that we have t ∈ split(B′,B), again
contradicting that t ∈ cosplit(B′,B).

3. If π is cycle-free, this property is straightforward, since splitting any block
of π will not introduce cycles. 
�
This suggests the following simple algorithm which has time complexity

O(mn) and space complexity O(m+n), which was essentially presented in [9].

π := π0, i.e., the initial partition;
while π is unstable under some B ∈ π

π := refinement of π under B;

It is an invariant of this algorithm that π respects divergence-blind stuttering
equivalence and π is cycle-free. In particular, π = π0 satisfies this invariant



612 J.F. Groote and A. Wijs

initially. If π is not stable, a refinement under some block B exists, splitting at
least one block. Therefore, this algorithm finishes in at most n−1 steps as during
each iteration of the algorithm the number of blocks increases by one, and the
number of blocks can never exceed the number of states. When the algorithm
terminates, π is stable and therefore, two states are divergence-blind stuttering
equivalent iff they are part of the same block in the final partition. This end
result is independent of the order in which splitting took place.

In order to see that the time complexity of this algorithm is O(mn), we must
show that we can detect that π is unstable and carry out splitting in time O(m).
The crucial observation to efficiently determine whether a partition is stable
stems from [9] where it was shown that it is enough to look at the bottom states
of a block, which always exist for each block because the partition is cycle-free.
The bottom states of a block are those states that do not have an outgoing inert
transition, i.e., a transition to a state in the same block. They are defined by

bottom(B) = {s ∈ B | there is no state s′ ∈ B such that s −→ s′}.

The following lemma presents the crucial observation concerning bottom
states.

Lemma 2. Let K = (S,AP , −→ , L) be a Kripke structure and π be a cycle-free
partition of its states. Partition π is unstable under union B of some of the
blocks in π iff there is a block B′ ∈ π such that

split(B′,B) �= ∅ and bottom(B′) ∩ split(B′,B) ⊂ bottom(B′).

Here ⊂ is meant to be a strict subset.

Proof. ⇒ If π is unstable, then split(B′,B) �= ∅ and split(B′,B) �= B′. The first
conjunct corresponds with the first condition. If split(B′,B) �= B′, there
are states s/∈split(B′,B). As the blocks B′∈π do not have cycles, consider
such an s /∈ split(B′,B) with a smallest distance to a state sk∈bottom(B′),
i.e., s −→ s1 −→ · · · −→ sk with all si ∈ B′. If s itself is an element of
bottom(B′), the second part of the right hand side of the lemma follows.
Assume s/∈bottom(B′), there is some state s′∈B′ closer to bottom(B′) such
that s −→ s′. Clearly, s′ /∈split(B′,B) either, as otherwise s ∈ split(B′,B). But
as s′ is closer to bottom(B′), the state s was not a state with the smallest
distance to a state in bottom(B′), which is a contradiction.

⇐ It follows from the right hand side that split(B′,B) �= ∅, split(B′,B) �= B′.

�

This lemma can be used as follows to find a block to be split. Consider each B∈π.
Traverse its incoming transitions and mark the states that can reach B in zero
or one step. If a block B′ has marked states, but not all of its bottom states are
marked, the condition of the lemma applies, and it needs to be split. It is at most
needed to traverse all transitions to carry this out, so its complexity is O(m).
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If B is equal to B′, no splitting is possible. We implement it by marking
all states in B as each state in B can reach itself in zero steps. In this case
condition bottom(B′) ∩ split(B′,B) ⊂ bottom(B′) is not true. This is different
from [9] where a block is never considered as a splitter of itself, but we require
this in the algorithm in the next sections.

If a block B′ is unstable, and all states from which a state in B can be reached
in one step are marked, then a straightforward recursive procedure is required
to extend the marking to all states in split(B′, B), and those states need to be
moved to a new block. This takes time proportional to the number of transitions
in B′, i.e., O(m).

4 Constellations: An O(m logn) Algorithm

The crucial idea to transform the algorithm from the previous section into an
O(m log n) algorithm stems from [15]. By grouping the blocks in the current par-
tition π into constellations such that π is stable under the union of the blocks in
such a constellation, we can determine whether a block exists under which π is
unstable by only looking at blocks that are at most half the size of the constel-
lation, i.e., |B| ≤ 1

2 |B|, where |B| = ΣB′∈B|B′|, for a block B in a constellation
B. If a block B′ ∈ π is unstable under B, then we use a remarkable technique
consisting of two procedures running alternatingly to identify the smallest block
resulting from the split. The whole operation runs in time proportional to the
smallest block resulting from the split. We involve the blocks in B\B in the split-
ting without explicitly analysing the states contained therein (for convenience,
we write B \ B instead of B \ {B}).

Working with constellations in this way ensures for each state that whenever
it is involved in splitting, i.e., if it is part of a block that is used to split or
that is being split, this block is half the size of the previous block in which the
state resided when it was involved in splitting. That ensures that each state
can at most be log2(n) times involved in splitting. When involving a state, we
only analyse its incoming and outgoing transitions, resulting in an algorithm
with complexity O(m log n). Although we require quite a number of auxiliary
data structures, these are either proportional to the number of states or to the
number of transitions. So, the memory requirement is O(m+n).

In the following, the set of constellations also forms a partition, which we
denote by C. A constellation is a set of one or more blocks from the current
partition π. If a constellation contains only one block, it is called trivial. The
current partition π is stable with respect to each constellation in C.

If a constellation B∈C contains more than one block, we select one block
B∈B which is at most half the size of B, and move it to a new trivial constel-
lation B′. We check whether the current partition is stable under B and B \ B
according to Lemma 2 by traversing the incoming transitions of states in B and
marking the encountered states that can reach B in zero or one step. For all
blocks B′ that are unstable according to Lemma 2, we calculate split(B′, B) and
cosplit(B′, B), as indicated below.
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Fig. 1. After splitting B′ under C, B1 is not stable under B.

As noted in [15], cosplit(B′, B) is stable under B \B. Therefore, only further
splitting of split(B′, B) under B \ B must be investigated. If B′ is stable under
B because all bottom states of B′ are marked, it can be that B′ is not stable
under B \ B, which we do not address here explicitly, as it proceeds along the
same line.

There is a special list data structure to recall for any B′ and B which transi-
tions go from B′ to B. When investigating whether split(B′, B) is stable under
B we adapt this list to determine the transitions from split(B′, B) to B \ B and
we simultaneously tag the states in B′ that have a transition to B\B. Therefore,
we know whether there are transitions from split(B′, B) to B \ B and we can
traverse the bottom states of split(B′, B) to inspect whether there is a bottom
state without a transition to B. Following Lemma 2, this allows us to determine
whether split(B′, B) must be split under B \B in a time proportional to the size
of B. How splitting is carried out is indicated below.

There is one aspect that complicates matters. If blocks are split, the new
partition is not automatically stable under all constellations. This is contrary
to the situation in [15] and was already observed in [9]. Figure 1 indicates the
situation. Block B′ is stable under constellation B. But if B′ is split under block
C into B1 and B2, block B1 is not stable under B. The reason is, as exemplified
by the following lemma, that some states that were non-bottom states in B′

became bottom states in B1.

Lemma 3. Let K = (S,AP , −→ , L) be a Kripke structure with cycle free parti-
tion π with refinement π′. If π is stable under a constellation B, and B′ ∈ π is
refined into B′

1, . . . , B
′
k ∈ π′, then for each B′

i where the bottom states in B′
i are

also bottom states in B′, it holds that B′
i is also stable under B.

Proof. Assume B′
i is not stable under B. This means that B′

i is not an element
of B. Hence, there is a state s ∈ B′

i such that s −→ s′ with s′ ∈ B and there
is a bottom state t ∈ B′

i with no outgoing transition to a state in B. But as
B′ was stable under B, and s has an outgoing transition to a state in B, all
bottom states in B′ must have at least one transition to a state in B. Therefore,
t cannot be a bottom state of B′, and must have become a bottom state after
splitting B′. 
�

This means that if a block B′ is the result of a refinement, and some of
its states became bottom states, it must be made sure that B′ is stable under
the constellations. Typically, from the new bottom states a smaller number of
blocks in the constellation can be reached. For each block we maintain a list
of constellations that can be reached from states in this block. We match the
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outgoing transitions of the new bottom states with this list, and if there is a
block B′′ reachable from states in the constellation, but not from the bottom
states, B′ must be split by B′′.

The complexity of checking for additional splittings to regain stability when
states become bottom states is only O(m). Each state only becomes a bottom
state once, and when that happens we perform calculations proportional to the
number of outgoing transitions of this state to determine whether a split must
be carried out.

It remains to show that splitting can be performed in a time proportional to
the size of the smallest block resulting from the splitting. Consider splitting B′

under B∈B. While marking B′ four lists of all marked and non marked, bottom
and non bottom states have been constructed. We simultaneously mark states
in B′ either red or blue. Red means that there is a path from a state in B′ to
a state in B. Blue means that there is no such path. Initially, marked states are
red, and non marked bottom states are blue.

This colouring is simultaneously extended to all states in B′, spending equal
time to both. The procedure is stopped when the colouring of one of the colours
cannot be enlarged. We colour states red that can reach other red states via
inert transitions using a simple recursive procedure. We colour states blue for
which it is determined that all outgoing inert transitions go to a blue state (for
this we need to recall for each state the number of outgoing inert transitions)
and there is no direct transition to B. The marking procedure that terminates
first, provided that its number of marked states does not exceed 1

2 |B′|, has the
smallest block that must be split. Now that we know the smallest block we move
its states to a newly created block.

Splitting regarding B \ B only has to be applied to split(B′, B), or, if all
bottom states of B′ were marked, to B′. As noted before cosplit(B′, B) is stable
under B \ B. Define C := split(B′, B) or C := B′ depending on the situation.
We can traverse all bottom states of C and check whether they have outgoing
transitions to B \ B. This provides us with the blue states. The red states are
obtained as we explicitly maintained the list of all transitions from C to B \ B.
By simultaneously extending this colouring the smallest subblock of either red
or blue states is obtained and splitting can commence.

The algorithm is concisely presented in the box below. It is presented in full
detail in Sect. 5 as the bookkeeping details of the algorithm are far from trivial.

π := initial partition; C := {π};
while C contains a non trivial constellation B ∈ C

choose some B ∈ π such that B∈B and |B| ≤ 1
2 |B|;

C :=partition C where B is replaced by B and B \ B;
if π is unstable for B or B \ B

π′ := refinement of π under B and B \ B;
For each block C ∈ π′ with bottom states that were not bottom in π

split C until it is stable for all constellations in C;
π := π′
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5 Detailed Algorithm

This section presents the data structures and the algorithm in more detail.

5.1 Data Structures

As a basic data structure, we use (singly-linked) lists. For a list L of elements,
we assume that for each element e, a reference to the position in L preceding the
position of e is maintained, such that checking membership and removal can be
done in constant time. In some cases we add extra information to the elements
in the list. Moreover, for each list L, we maintain the size |L| and pointers to its
first and last element.

1. The current partition π consists of a list of blocks. Initially, it corresponds to
π0. All blocks are part of a single, initial constellation C0.

2. For each block B, we maintain the following:
(a) A reference to the constellation containing B.
(b) A list B.btm-sts of the bottom states and a list B.non-btm-sts of the

other states.
(c) A list B.to-constlns of structures associated with constellations reach-

able via a transition from some s∈B. Initially, it contains one element
associated with C0. Each element associated with some constellation C
in this list also contains the following:

– A reference trans-list to a list of all transitions from states in B to
states in C \ B (note that transitions between states in B, i.e., inert
transitions, are not in this list).

– When splitting the block B into B and B′ there is a reference in
each list element to the corresponding list element in B′.to-constlns
(which in turn refers back to the element in B.to-constlns).

– In order to check for stability when splitting produces new bottom
states, each element contains a list to keep track of which new bottom
states can reach the associated constellation.

(d) A reference B.inconstln-ref is used to refer to the element in B.to-constlns
associated with the constellation of B. It is used when a non-inert transi-
tion becomes inert and needs to be added to the trans-list of the element
associated with that constellation.

Furthermore, when splitting a block B′ in constellation B′ under a constel-
lation B and block B∈B, the following temporary structures are used, with
C the new constellation to which B is moved:
(a) A list B′.mrkd-btm-sts contains marked states in B′ with a transition to

B.
(b) A list B′.mrkd-non-btm-sts contains states that are marked, but are not

bottom states.
(c) A reference B′.constln-ref refers to the (new) element in B′.to-constlns

associated with constellation C, i.e., the new constellation of B.
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(d) A reference B′.coconstln-ref is used to refer to the element in B′.
to-constlns associated with constellationB, i.e., the old constellation of B.

(e) A list B′.new-btm-sts to keep track of the states that have become bottom
states when B′ was split. This is required to determine whether B′ is
stable under all constellations after a split.

3. Constellations are stored in two lists trivial-constlns and non-trivial-constlns.
The first contains constellations consisting of exactly one block, while the
latter contains the other constellations. Initially, if π0 consists of one block, C0

is added to trivial-constlns and nothing needs to be done, because the initial
partition is already stable. Otherwise C0 is added to non-trivial-constlns.

4. For each constellation, we maintain its list of blocks and its size (number of
states).

5. Each transition s −→ s′ refers with to-constln-cnt to the number of transitions
from s to the constellation in which s′ resides. For each state and constella-
tion, there is one such variable, provided there is a transition from this state
to this constellation.
Each transition s −→ s′ has a reference to the element associated with
B in the list B.to-constlns where s∈B and s′∈B. This is denoted as
(s −→ s′).to-constln-ref. Initially, it refers to the single element in B.to-constlns,
unless the transition is inert, i.e., both s∈B and s′∈B.
Furthermore, each transition s −→ s′ is stored in the list of transitions
from B to B. Initially, there is such a list for each block in the ini-
tial partition π0. From a transition s −→ s′, the list can be accessed via
(s −→ s′).to-constln-ref.trans-list.

6. For each state s∈B we maintain the following information:
(a) A reference to the block containing s.
(b) A static list s.Ttgt of transitions of the form s −→ s′ containing precisely

all the transitions from s.
(c) A static list s.Tsrc of transitions s′ −→ s containing all the transitions to

s. We write such transitions as s ← s′, to stress that these move into s.
(d) A counter s.inert-cnt containing the number of outgoing transitions

to a state in the same block as s. For any bottom state s, we have
s.inert-cnt = 0.

(e) Furthermore, when splitting a block B′ under B and B∈B, there are
references s.constln-cnt and s.coconstln-cnt to the variables that are used
to count how many transitions there are from s to B and from s to B\B.

Figure 2 illustrates some of the used structures. A block B1 in constellation
B contains bottom states s1, s′

2 and non-bottom state s2. For s1, we have
transitions s1 −→ s′

1, s1 −→ s′′
1 to constellation C. Both have the following ref-

erences:
(a) to-constln-cnt to the number of outgoing transitions from s1 to C.
(b) to-constln-ref to the element (C, •, •) in B1.to-constlns, where the •’s are

the (now uninitialized) references that are used when splitting.
(c) Via (C, •, •), a reference trans-list to the list of transitions from B1 to

C.
Note that for the inert transition s2 −→ s′

2, we only have a reference to the
number of outgoing transitions from s2 to B.
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Fig. 2. An example showing some of the data structures used in the detailed algorithm.

5.2 Finding the Blocks that Must Be Split

While non-trivial-constlns is not empty, we perform the algorithm listed in the
following sections. To determine whether the current partition π is unstable, we
select a constellation B in non-trivial-constlns, and we select a block B from B
such that |B| ≤ 1

2 |B|. We first check which blocks are unstable for B and B \B.

1. Move B to a new trivial constellation C. If |B.blocks|=1, make B trivial.
2. For each state s∈B, do the steps below for each s′∈B′ such that s ← s′ ∈

s.Tsrc , and B �= B′.
(a) If B′ has no marked states, put it in a list splittable-blks, let

B′.coconstln-ref refer to (s ← s′).to-constln-ref, B′.constln-ref to a new
element in B′.to-constlns.

(b) Mark s′.
(c) Let s′.constln-cnt be the number of transitions to B and s′.coconstln-cnt

the number of remaining outgoing transitions. All outgoing transitions
of s′ must refer to the appropriate counter.

(d) Move all visited transitions to B′.constln-ref.trans-list.
3. Next, check whether B itself can be split. Mark all states, add B to

splittable-blks and reset B.constln-ref and B.coconstln-ref. For each state s∈B,
do the steps below for each s′∈B′∈B′ such that s ← s′ ∈ s.Tsrc , and either
B′=B or B′=C.
(a) If B′=B, let B.coconstln-ref refer to (s −→ s′).to-constln-ref and

B.constln-ref and B.inconstln-ref to a new element for C in
B.to-constlns.

(b) Update s.constln-cnt and s.coconstln-cnt as in step 2(c).
4. For each B′∈splittable-blks, if all its bottom states are marked and

either there is no marked bottom state s with s.coconstln-cnt=0 or
B′.coconstln-ref.trans-list is empty, remove B′ from splittable-blks and remove
its temporary markings, i.e. unmark all states, reset the counters and refer-
ences.

5. If splittable-blks is not empty, start splitting (Sect. 5.3). Else, select another
non-trivial constellation B and block B∈B, and continuing with step 1. If
there are no non-trivial constellations left, the algorithm terminates.
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5.3 Splitting the Blocks

Splitting the splittable blocks is performed using the following steps, in which the
procedures used to simultaneously mark states when splitting a block are cru-
cial for the performance. We refer to the whole operation as the lockstep search
and call the two procedures detect1 and detect2. In the lockstep search, these
procedures alternatingly process a transition. The entire operation terminates
when one of the procedures terminates. If one procedure acquires more than
half the number of states in the block it works on, it is stopped and the other is
allowed to terminate. We present detect1 and detect2 below; both get a list of
states, D1 and D2, respectively, and a block K to work on as input. In addition,
detect2 takes a Boolean parameter indicating whether the splitting is a nested
one, i.e., whether it directly follows an earlier split of the same block.

detect1(D1,K ):

– Create empty stack Q, list L;
– While |L| ≤ 1

2 |K| and either Q �= ∅
or end of D1 not reached:

• If Q=∅ add next s∈D1 to Q and
L;

• Pop s from Q. For all s ← s′ ∈
s.Tsrc , if s′∈K ∧s′ �∈L, add s′ to
Q and L.

detect2(D2,K ,nested):

– Create empty priority queue P , list
L′;

– While |L′| ≤ 1
2 |K| and either P

has prio. 0 states or end of D2 not
reached:

• Take a state s from D2 or with
prio. 0 from P and add it to L′;

• For all s ← s′∈s.Tsrc , if
s′∈K \ (P∪L′), and s′ �∈
mrkd-non-btm-sts or if nested,
s′ does not have a transition
to B\B, add s′ with prio.
s′.inert-cnt to P ;

• If s′∈P , decrement priority of s′.

We walk through the blocks B′∈B′ in splittable-blks, which must be split
into two or three blocks under constellation B and block B. If all bottom states
are marked, then we have split(B′, B) = B′, and can start with step 3 below.

1. Launch a lockstep search with D1 the list of marked states in B′, D2 the list
B′.btm-sts, K = B′, and nested = false.

2. Depending on whether detect1 or detect2 terminated in the previous step,
one of the lists L or L′ contains the states to be moved to a new block B′′.
Below we refer to this list as N . For each s∈N , move s to B′′, and do the
following:
(a) For each s −→ s′∈Ttgt , do the following steps.

i. If (s −→ s′).to-constln-ref is initialized, check whether it refers to an
new element in B′′.to-constlns. If not, create it. If appropriate, set ref-
erences B′′.inconstln-ref, B′′.constln-ref and B′′.coconstln-ref. Move
s −→ s′ to the trans-list of the new element. If the related element in
B′.to-constlns no longer holds transitions, remove it.
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ii. Else, if s′∈B′ \ N (a transition becomes non-inert), decrement
s.inert-cnt. If s.inert-cnt=0, make s bottom, add s −→ s′ to
B′′.inconstln-ref.trans-list (if B′′.inconstln-ref does not exist, create
it first).

(b) For each s ← s′∈Tsrc , s′∈B′\N (an inert transition becomes non-inert),
perform steps similar to 2(a).ii.

3. Next, we split split(B′, B) under B\B. Define C=split(B′, B). C is stable
under B\B if C.coconstln-ref is uninitialized or holds an empty trans-list, or
for all s∈C.mrkd-btm-sts it holds that s.coconstln-cnt > 0. If this is not the
case, then we launch a lockstep search with D1 the list of states s occurring
in some s −→ s′ in split(B′, B).coconstln-ref.trans-list, D2 the list of states s
with s.coconstln-cnt = 0 in C.mrkd-btm-sts, K = C, and nested = true.
Finally, we split C by moving the states in either L or L′ to a new block B′′′,
depending on which list is the smallest.

4. Remove the temporary markings of each block C resulting from the splitting
of B′.

5. If the splitting of B′ resulted in new bottom states, check for those states
whether further splitting is required, i.e., whether from some of them, not all
constellations can be reached which can be reached from the block. For all
B̂∈{B′, B′′, B′′′}, new bottom states s, s −→ s′∈s.Ttgt , add s to the states list
of the element associated with B̄ in B̂.to-constlns, where s′∈B̄, and move the
element to the front of the list.

6. Perform the following steps for each block B̂ with new bottom states, as long
as there are such blocks.
(a) Walk through the elements in B̂.to-constlns. If the states list of an ele-

ment associated with a constellation B does not contain all new bottom
states, further splitting is required under B:
i. Launch a lockstep search with D1 the list of states s occurring

in some s −→ s′ with s′∈B in the list trans-list associated with
B∈B̂.to-constlns, D2 the list of states s∈B̂.new-btm-sts minus the
new bottom states that can reach B, K = B̂, and nested = true.

ii. Split B̂ by performing step 2 to produce a new block B̂′. Move all
states in B̂.new-btm-sts that have moved to B̂′ to B̂′.new-btm-sts,
and also move them from the states lists in the elements of
B̂.to-constlns to the corresponding elements of B̂′.to-constlns (those
elements refer to each other). If a states list becomes empty, move
that element to the back of its list.

iii. Perform step 5 for B̂ and B̂′.
(b) If no further splitting was required for B̂, empty B̂.new-btm-sts and clear

the remaining states lists in B̂.to-constlns.
7. If B′∈trivial-constlns, move it to non-trivial-constlns.

6 Application to Branching Bisimulation

We show that the algorithm can also be used to determine branching bisimu-
lation, using the transformation from [14,17], with complexity O(m(log |Act | +



An O(m log n) Algorithm for Stuttering Equivalence 621

log n)). Branching bisimulation is typically applied to labelled transition systems
(LTSs). An LTS is a three tuple A = (S,Act , −→ ), with S a finite set of states,
Act a finite set of actions including the internal action τ , and −→ ⊆ S ×Act ×S
a transition relation.

Definition 4. Consider the LTS A = (S,Act , −→ ). We call a symmetric rela-
tion R ⊆ S × S a branching bisimulation relation iff

∀s, t, s′∈S.∀a∈Act .sRt ∧ s
a−→ s′ =⇒

(a=τ ∧ s′Rt) ∨ (∃t′, t′′∈S.t � t′ a−→ t′′ ∧ sRt′ ∧ s′Rt′′),

where � is the transitive, reflexive closure of τ−→ .

States are branching bisimilar iff there is a branching bisimulation relation R
relating them.

Our new algorithm can be applied to an LTS by translating it to a Kripke
structure.

Definition 5. Let A = (S,Act , −→ ) be an LTS. We construct the embedding of
A to be the Kripke structure KA = (SA,AP , −→ , L) as follows:

1. SA = S ∪ {〈a, t〉 | s
a−→ t for some t ∈ S}.

2. AP = Act ∪ {⊥}.
3. → is the least relation satisfying (s, t∈S, a∈Act\τ): s

a−→ t
s −→ 〈a,t〉 , 〈a,t〉 −→ t and

s
τ−→ t

s −→ t .
4. L(s) = {⊥} for s ∈ S and L(〈a, t〉) = {a}.
The following theorem stems from [14].

Theorem 1. Let A be an LTS and KA its embedding. Then two states are
branching bisimilar in A iff they are divergence-blind stuttering equivalent in
KA.

If we start out with an LTS with n states and m transitions then its embed-
ding has at most m + n states and 2m transitions. Hence, the algorithm

Fig. 3. Runtime results for (a·τ)size sequences (left) and trees of depth size (right)
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Table 1. Runtime (in sec.) and memory use (in MB) results for GV, BO, and GW

Model n m min. n min. m time GV me. GV time BO me. BO time GW me. GW

vasy 40 40,006 60,007 20,003 40,004 142.77 65 762.69 62 0.34 93
vasy 65 65,537 2,621,480 65,536 2,621,440 239.67 437 47.88 645 20.07 2,481
vasy 66 66,929 1,302,664 51,128 1,018,692 7.42 208 16.16 356 9.05 853
vasy 69 69,754 520,633 69,753 520,632 3.98 155 12.65 171 4.53 493
vasy 116 116,456 368,569 22,398 87,674 3.84 95 15.73 128 2.68 142
vasy 157 157,604 297,000 3,038 12,095 6.98 97 6.80 110 1.08 129
vasy 164 164,865 1,619,204 992 3,456 3.89 251 20.20 316 5.38 246
vasy 166 166,464 651,168 42,195 197,200 21.60 153 6.20 177 3.89 376
cwi 214 214,202 684,419 478 1,612 0.87 140 29.92 197 2.64 140
cwi 371 371,804 641,565 2,134 5,634 42.70 179 17.37 261 3.12 168
cwi 566 566,640 3,984,157 198 791 1683.28 454 26.24 531 19.94 454
vasy 574 574,057 13,561,040 3,577 16,168 105.10 1,766 487.01 2,192 40.18 1,495
cwi 2165 2,165,446 8,723,465 4,256 20,880 80.56 1,403 387.93 2,409 59.49 1,948
cwi 2416 2,416,632 17,605,592 730 2,899 1,679.55 1,932 59.29 2,660 90.69 1,932
vasy 2581 2,581,374 11,442,382 704,737 3,972,600 2,592.74 1,690 463.52 2,344 76.16 5,098
vasy 4220 4,220,790 13,944,372 1,186,266 6,863,329 3,643.08 2,054 863.74 2,951 119.20 7,287
vasy 4338 4,338,672 15,666,588 704,737 3,972,600 5,290.54 2,258 587.87 3,026 109.21 6,927
vasy 6020 6,020,550 19,353,474 256 510 130.76 2,045 95.76 3,482 45.54 2,045
vasy 6120 6,120,718 11,031,292 2,505 5,358 546.11 1,893 291.30 2,300 81.05 3,392
cwi 7838 7,838,608 59,101,007 62,031 470,230 745.33 6,319 11,667.98 11,027 617.46 14,456
vasy 8082 8,082,905 42,933,110 290 680 288.45 6,098 677.28 7,824 200.72 6,108
vasy 11026 11,026,932 24,660,513 775,618 2,454,834 5,005.61 3,642 2,555.30 5,235 225.20 10,394
vasy 12323 12,323,703 27,667,803 876,944 2,780,022 5,997.26 4,068 2,068.52 5,770 256.70 11,575
cwi 33949 33,949,609 165,318,222 12,463 71,466 1,684.56 21,951 11,635.09 42,162 1,459.92 37,437
dining 14 18,378,370 164,329,284 228,486 2,067,856 1,264.67 20,155 3,010.17 31,201 1,100.91 20,155
1394-fin3 126,713,623 276,426,688 160,258 538,936 229,217.0 26,000 15,319.00 75,000 1,516.00 45,000

requires O(m log(n+m)) time. As m is at most |Act |n2 this is also equal to
O(m(log |Act |+ log n)).

As a final note, the algorithm can also be adapted to determine divergence-
sensitive branching bisimulation [8], by adding a τ -self loop to those states on a
τ -loop.

7 Experiments

The new algorithm has been implemented as part of the mCRL2 toolset [6],
which offers implementations of GV and the algorithm by Blom and Orzan [2]
that distinguishes states by their connection to blocks via their outgoing transi-
tions. We refer to the latter as BO. The performance of GV and BO can be very
different on concrete examples. We have extensively tested the new algorithm by
applying it to thousands of randomly generated LTSs and comparing the results
with those of the other algorithms.

We experimentally compared the performance of GV, BO, and the imple-
mentation of the new algorithm (GW). All experiments involve the analysis of
LTSs, which for GW are first transformed to Kripke structures using the transla-
tion of Sect. 6. The reported runtimes do not include the time to read the input
LTS and write the output, but the time it takes to translate the LTS to a Kripke
structure and to reduce strongly connected components is included.

Practically all experiments have been performed on machines running Cen-
tOS Linux, with an Intel E5-2620 2.0 GHz CPU and 64 GB RAM. Exceptions
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to this are the final two entries in Table 1, which were obtained by using a machine
running Fedora 12, with an Intel Xeon E5520 2.27 GHz CPU and 1 TB RAM.

Figure 3 presents the runtime results for two sets of experiments to demon-
strate that GW has the expected scalability. At the left are the results of
analysing single sequences of the shape (a·τ)n. As the length 2n of such a
sequence is increased, the results show that the runtimes of both BO and GV
increase at least quadratically, while the runtime of GW grows linearly. All algo-
rithms require n iterations, in which BO and GV walk over all the states in the
sequence, but GW only moves two states into a new block. At the right of Fig. 3,
the results are displayed of analysing trees of depth n that up to level n−1 corre-
spond with a binary tree of τ -transitions. Each state at level n−1 has a uniquely
labelled outgoing transition to a state in level n. BO only needs one iteration to
obtain the stable partition. Still GW beats BO by repeatedly splitting off small
blocks of size 2(k − 1) if a state at level k is the splitter.

Table 1 contains results for minimising LTSs from the VLTS benchmark set1

and the mCRL2 toolset2. These experiments demonstrate that also when applied
to actual state spaces of real models, GW generally outperforms the best of the
other algorithms, often with a factor 10 and sometimes with a factor 100. This
difference tends to grow as the LTSs get larger. GW’s memory usage is only
sometimes substantially higher than GV’s and BO’s, which surprised us given
the amount of required bookkeeping.
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