
FACT: A Probabilistic Model Checker
for Formal Verification with Confidence Intervals

Radu Calinescu1(B), Kenneth Johnson2, and Colin Paterson1

1 Department of Computer Science, University of York, York, UK
Radu.Calinescu@york.ac.uk

2 School of Computer and Mathematical Sciences,
Auckland University of Technology, Auckland, New Zealand

Abstract. We introduce FACT, a probabilistic model checker that com-
putes confidence intervals for the evaluated properties of Markov chains
with unknown transition probabilities when observations of these tran-
sitions are available. FACT is unaffected by the unquantified estimation
errors generated by the use of point probability estimates, a common prac-
tice that limits the applicability of quantitative verification.As such,FACT
can prevent invalid decisions in the construction and analysis of systems,
and extends the applicability of quantitative verification to domains in
which unknown estimation errors are unacceptable.

1 Introduction

The development of quantitative verification [8,11] over the past fifteen years
represents one of the most prominent recent advances in system modelling and
analysis. Given a Markov model that captures relevant states of a system and
the probabilities or rates of transition between these states, the technique can
evaluate key reliability and performance properties of the system. This capability
and the emergence of efficient probabilistic model checkers such as PRISM [10]
and MRMC [9] have led to adoption in a wide range of applications [14].

Despite the success of quantitative verification, the usefulness of its results
depends on the accuracy of the analysed models. Obtaining accurate Markov
models is difficult. Although model states and transitions are typically easy to
identify (e.g., through static code analysis for software systems), transition prob-
abilities and rates need to be estimated. The common practice is to obtain these
estimates through model fitting to log data or run-time observations [4,15], or
from domain experts. In either case, the values used in the analysed models
contain estimation errors. These errors are then propagated and may be ampli-
fied by quantitative verification (since Markov models are nonlinear), producing
imprecise results that can lead to invalid design or verification conclusions.

The FACT1 probabilistic model checker introduced in our paper is not
affected by this problem. As described in Sect. 2, FACT can compute confi-
dence intervals for the properties of a common class of parametric (discrete-
time) Markov chains for which observations of the transitions associated with
1 Formal verificAtion with Confidence inTervals.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 540–546, 2016.
DOI: 10.1007/978-3-662-49674-9 32

FACT: A Probabilistic Model Checker for Formal Verification 541

the unknown probabilities are available. The operation of FACT (presented in
Sect. 3) is underpinned by recent theoretical results from [2], and the tool inte-
grates the PRISM parametric quantitative verification engine (first introduced
in version 4.2 of PRISM), the MATLAB convex optimisation toolbox YALMIP
[13] and a purpose-built hill climbing optimiser. The modular architecture of the
tool (discussed in Sect. 4) makes it easy to replace these components with func-
tionally equivalent ones and to extend the tool. FACT and the models from the
case studies summarised in Sect. 5 are available on our project website http://
www-users.cs.york.ac.uk/∼cap/FACT.

2 Formal Verification with Confidence Intervals

FACT parametric Markov chains (PMCs) are specified in an extended version
of the PRISM high-level modelling language [10], which models a system as the
parallel composition of a set of modules. The state of a module is encoded by a set
of finite-range local variables, and its state transitions are defined by probabilistic
guarded commands that change these variables, and have the general form:

[action] guard −> e1 : update1 + e2 : update2 + . . . + en : updaten; (1)

In this command, guard is a boolean expression over all model variables. If guard
evaluates to true, the arithmetic expression ei, 1 ≤ i ≤ n, gives the probability
with which the updatei change of the module variables occurs. When action is
present, all modules comprising commands with this action have to synchronise
(i.e., to carry out one of these commands simultaneously). In a FACT PMC, the
expressions e1, e2, . . . , en can be unknown (constant) probabilities x1, x2, . . . , xn.
These model parameters are associated with a declaration:

param double x = t1 t2 . . . tn; (2)

Fig. 1. (a) PMC model of a service whose invocations succeed with probability x1 and
time out with probability x2 = 1 − x1, where timed-out invocations are retried with
probability 0.1; (b) FACT-generated confidence intervals for the property ‘What is the
probability that the service cannot be invoked successfully?’ for an instance of the service
that was observed completing successfully 3747 times and timing out 125 times.

http://www-users.cs.york.ac.uk/~cap/FACT
http://www-users.cs.york.ac.uk/~cap/FACT

542 R. Calinescu et al.

in which ti ∈ N, 1 ≤ i ≤ n, represents the number of transitions associated with
updatei that were observed during a period of time when all outgoing transitions
from states that satisfy guard were monitored and recorded. An example of a
simple PMC analysed using FACT is shown in Fig. 1.

FACT PMCs can have multiple sets of parameters (2). For example, the out-
going transitions from state ‘s = 2’ in Fig. 1a could be associated with unknown
probabilities pRetry1 and pRetry2. The only constraint is that the different sets
of parameters (2) are statistically independent. This constraint is satisfied by a
broad class of PMCs that includes, for instance, all the models used in the case
studies of the PROPhESY tool2 [5] for analysing parametric Markov chains.

FACT can establish confidence intervals for PMC properties expressed in
probabilistic computation tree logic (PCTL) [7] extended with rewards [1]. The
current version of FACT supports non-nested probabilistic PCTL properties of
the form P=?[Ψ], where the path formula Ψ is defined by the grammar:

Ψ :: = XΦ | Φ U Φ | Φ U≤k Φ
Φ:: = true | a | Φ ∧ Φ | ¬Φ

(3)

with k ∈ N, a an atomic proposition associated with states that satisfy a (e.g.,
timeout and success in Fig. 1a), p ∈ [0, 1], �� ∈ {≥, >,<,≤}, and Φ is a state
formula. FACT also supports all PCTL reward properties, i.e., the instantaneous,
cumulative, reachability and steady-state reward properties defined by:

Φ:: = R=?[I=k] | R=?[C≤k] | R=?[FΦ] | R=?[S]. (4)

Defining the semantics of PCTL is beyond the scope of this paper; details are
available from [1,7,10].

3 Using FACT

As shown in Fig. 2, FACT users provide a PMC, a PCTL property for analysis,
and a range of confidence levels. Given these inputs, the verification manager at
the core of our tool generates a confidence interval for each confidence level α
from the user-specified range in a four-step process. First, parametric quantitative
verification is used to obtain an algebraic expression for the analysed PCTL
property (step 1, executed only once for all confidence levels). This expression,
which is recorded in the FACT log, is a rational function of the PMC parameters,
e.g., 9x2

10x1+9x2
for the PCTL property analysed in Fig. 1b. In step 2, simultaneous

confidence intervals are calculated for each set of parameters (2) containing
elements that appear in the algebraic expression from step 1. If there are m such
parameter sets, then a confidence level of α1/m is used to calculate the parameter
confidence intervals, and these parameter confidence intervals have a “combined
confidence level” of (α1/m)m = α. Hence, step 3 uses them as input for a convex
optimisation problem whose solution represents an α confidence interval for the
analysed property—a formal proof of this result is available in [2].
2 http://moves.rwth-aachen.de/research/tools/prophesy/#benchmarks.

http://moves.rwth-aachen.de/research/tools/prophesy/#benchmarks

FACT: A Probabilistic Model Checker for Formal Verification 543

FACT users

Parametric

Markov chain

PCTL property,

e.g. P=?[F“fail”]

Range of confidence

levels, e.g. 0.95-0.99

Verification

manager

1. obtain

expression
2. get parameter

confidence intervals

Parametric

quantitative

verification engine

Simultaneous

confidence

interval calculator

Convex

optimisation

engine

Confidence interval

optimisation

heuristic

algebraic 3. synthesise property

confidence interval

Confidence intervals for property

[PRISM] [Kwong & Iglewicz] [YALMIP] [hill climbing]

FACT Tool

4. seek

confidence

alternative

levels

0.95 0.96 0.97 0.98 0.99

0.006

0.016

0.025

0.035

0.044

0.054

confidence level

Fig. 2. FACT operation and architecture; the technologies used by the current version
of the tool (shown in square brackets) can be replaced with alternative technologies

When m>1, using α1/m confidence intervals for each parameter set is unlikely
to yield the narrowest possible α confidence interval for the analysed property. For
two reasons, using confidence levels αi<α1/m<αj for the confidence intervals of
parameter sets i and j may produce a narrower α confidence interval:

1. If the number of state-transition observations associated with parameter set j
is larger than that for parameter set i, this choice of confidence levels may pro-
duce much narrower confidence intervals for parameter set i with an insignif-
icant widening of the confidence intervals for parameter set j;

2. If the analysed property is particularly sensitive to variations in the parameter
set i, reducing αi narrows the confidence intervals for parameter set i and may
also narrow the α confidence interval for the analysed property.

Therefore, step 4 uses a confidence interval optimisation heuristic to seek alterna-
tive confidence levels α1, α2, . . . , αm such that

∏m
i=1 αi = α and using αi confi-

dence intervals for the i-th parameter set, 1 ≤ i ≤ m, produces a narrower α con-
fidence interval for the analysed property. This optimisation can reduce the width
of property confidence intervals (e.g., by up to 14 % in the case studies from [2]),
but is time consuming since FACT steps 2 and 3 are repeated for each α1, α2, . . . ,
αm combination suggested by the heuristic. Hence step 4 is by default switched
off in FACT, and the user should switch it on explicitly if needed. There is one
typical scenario in which this need arises. This is when FACT is used to verify
whether the analysed property is above/below a threshold specified in the system
requirements (with some confidence level α), and the threshold falls inside the α
confidence interval without the heuristic search. In this scenario, the FACT user
should switch on the heuristic search by specifying a non-zero number of search
iterations, which may result in a narrower α confidence interval that does not con-
tain the threshold and enables a conclusion to be drawn.

544 R. Calinescu et al.

4 Architecture and Implementation

FACT has a modular architecture in which each step of the verification process
is carried out by a different module (Fig. 2). We implemented these modules in
Java, using the following technologies that can each be easily substituted with
alternative technologies (e.g., to extend FACT or to improve its efficiency):

1. The parametric quantitative verification engine is implemented on top of
PRISM [10], which it invokes in the background. An alternative implementa-
tion based on PARAM [6] is worth exploring.

2. The simultaneous confidence interval calculator implements the (conserva-
tive) solution proposed by Kwong and Iglewicz [12], which achieves a good
trade-off between computational complexity and precision. Several alternative
solutions that deserve investigating are mentioned in [2].

3. The convex optimisation engine uses the MATLAB convex optimisation tool-
box YALMIP [13], which it invokes in the background. An implementation
based on the non-commercial GNU Octave package (https://www.gnu.org/
software/octave/) is worth exploring.

4. The confidence interval optimisation heuristic currently used is hill climbing.
Numerous alternative heuristics can be substituted in this module.

5 Case Studies and Experimental Results

To evaluate FACT, we carried out case studies involving the synthesis of confi-
dence intervals for PCTL-encoded reliability, performance and cost properties of

Table 1. Experimental results for the case studies from Sect. 5

PMC psetsa paramsb PCTL property tcexp tdCI

Web 5 13 P=?[F HttpResponse] 0.75s 3.96s

P=?[¬(Database ∨FileServer)UHttpResponse] 0.84s 3.43s

Rcost
=? [F Done] 0.86s 3.31s

Rtime
=? [F Done] 0.89s 3.29s

TAS 3 6 P=?[F FailedAlarm] 0.24s 4.32s

P=?[¬Done U FailedService] 0.12s 2.82s

P=?[¬Done U FailedAlarm{MedicalAnalysis}] 0.11s 2.78s

LWB 1 2 Rpower
=? [S] 0.24s 3.03s

Renergy
=? [F StartedUp] 0.27s 2.98s

BRP 2 4 P=?[F SenderNoSuccessReport] 0.44s 31.6s

Z 2 4 RnumTests
=? [F DecisionMade] 0.15s 5.41s

aNumber of parameter sets (2) in the PMC
bTotal number of PMC parameters
cTime to compute algebraic expression
dTime to synthesise confidence interval

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/

FACT: A Probabilistic Model Checker for Formal Verification 545

parametric Markov chains modelling systems from different application domains.
Table 1 summarises the experimental results obtained for the PMCs of:

– a web application taken from [2] (Web);
– a tele-assistance service-based system adapted from [3,4] (TAS);
– the low-power wireless bus communication protocol taken from [2] (LWB);
– the bounded retransmission protocol from the PROPhESY [5] site (BRP);
– the Zeroconf IP address selection protocol from the PARAM [6] website (Z).

The timing results were obtained on a standard OS X 10.8.5 MacBook computer
with 1.3 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 RAM. The
models, PCTL property files, results and descriptions for all case studies are
available on our FACT website http://www-users.cs.york.ac.uk/∼cap/FACT.

These case studies demonstrated several key benefits of our probabilistic
model checker. First, FACT supports the analysis of systems for which state
transition probabilities are unknown, but observations of these transitions are
available from logs or run-time monitoring. Second, it enables the analysis of
reliability, performance and other non-functional properties of systems at the
required confidence level. This approach is better aligned with the current indus-
trial practice than traditional quantitative verification. Third, it can prevent
invalid design and verification decisions. In many scenarios, the quantitative
analysis of Markov models built using point estimates of the unknown transition
probabilities misleadingly suggested that requirements were met. In contrast,
FACT showed that this was only the case with low confidence levels that are
typically deemed unacceptable in practice. Last but not least, our case studies
showed that FACT can be used to analyse systems from multiple domains.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2003)

2. Calinescu, R., Ghezzi, C., Johnson, K., Pezze, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. PP(99), 1–16 (2015)

3. Calinescu, R., Johnson, K., Rafiq, Y.: Developing self-verifying service-based sys-
tems. In: ASE 2013, pp. 734–737 (2013)

4. Calinescu, R., Rafiq, Y., Johnson, K., Bakir, M.E.: Adaptive model learning for
continual verification of non-functional properties. In: ICPE 2014, pp. 87–98 (2014)

5. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Heidelberg (2015)

6. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

7. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

http://www-users.cs.york.ac.uk/~cap/FACT

546 R. Calinescu et al.

8. Haverkort, B.R., Katoen, J.-P., Larsen, K.G.: Quantitative verification in practice.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp.
127–127. Springer, Heidelberg (2010)

9. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

11. Kwiatkowska, M.Z.: Quantitative verification: models, techniques and tools. In:
ESEC-FSE 2007, pp. 449–458 (2007)

12. Kwong, K.-S., Iglewicz, B.: On singular multivariate normal distribution and its
applications. Comput. Stat. Data Anal. 22(3), 271–285 (1996)

13. Löfberg, J.: Automatic robust convex programming. Optim. Methods Softw. 27(1),
115–129 (2012)

14. Norman, G., Parker, D.: Quantitative verification: formal guarantees for timeliness,
reliability and performance. Technical report, London Mathematical Society and
the Smith Institute for Industrial Mathematics and System Engineering (2014)

15. Su, G., Rosenblum, D.S.: Asymptotic bounds for quantitative verification of per-
turbed probabilistic systems. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS,
vol. 8144, pp. 297–312. Springer, Heidelberg (2013)

	FACT: A Probabilistic Model Checker for Formal Verification with Confidence Intervals
	1 Introduction
	2 Formal Verification with Confidence Intervals
	3 Using FACT
	4 Architecture and Implementation
	5 Case Studies and Experimental Results
	References

