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Abstract. In this paper we present PRISM-PSY, a novel tool that
performs precise GPU-accelerated parameter synthesis for continuous-
time Markov chains and time-bounded temporal logic specifications.
We redesign, in terms of matrix-vector operations, the recently formu-
lated algorithms for precise parameter synthesis in order to enable effec-
tive data-parallel processing, which results in significant acceleration on
many-core architectures. High hardware utilisation, essential for perfor-
mance and scalability, is achieved by state space and parameter space
parallelisation: the former leverages a compact sparse-matrix represen-
tation, and the latter is based on an iterative decomposition of the para-
meter space. Our experiments on several biological and engineering case
studies demonstrate an overall speedup of up to 31-fold on a single GPU
compared to the sequential implementation.

1 Introduction

Model checking of continuous-time Markov chains (CTMCs) against continuous
stochastic logic (CSL) formulae [1,27] has numerous applications in many areas
of science. In biochemistry, there is an interest in analysing hypotheses (for-
mulated using CSL) about reaction networks that can be adequately modelled
as CTMCs governed by the Chemical Master Equation [9,22,28]. In engineering
disciplines, CTMCs are used to study various reliability and performance aspects
of computer networks [5], communication [19] and security protocols [29].

Traditionally, stochastic model checking techniques assume that model para-
meters – namely, the transition rate constants – are known a priori. This is
often not the case and one has to consider ranges of parameter values instead,
for example, when the parameters result from imprecise measurements, or when
designers are interested in finding parameter values such that the model fulfils
a given specification. Such problems can be effectively formulated in the frame-
work of parameter synthesis for CTMCs [10,12,24]: given a time-bounded CSL
formula and a model whose transition rates are functions of the parameters, find
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parameter values such that the satisfaction probability of the formula meets a
given threshold, is maximised, or minimised. In [10,12] we developed synthesis
algorithms that yield answers that are precise up to within an arbitrarily small
tolerance value. The algorithms combine the computation of probability bounds
with the refinement and sampling of the parameter space.

The complexity of the synthesis algorithms depends mainly on the size of the
underlying model and on the number of parameter regions to analyse in order
to achieve the desired precision. However, existing techniques do not scale with
the model size and the dimensionality of the parameter space. For instance, as
reported in [12], the synthesis of two parameters for a model with 5.1 K states
requires the analysis of 5 K parameter regions and takes around 3.6 h.

In the last years, many-core graphical processing units (GPUs) have
been utilised as general purpose, high-performance processing resources in
computationally-intensive scientific applications. In light of this development, we
redesign the synthesis algorithms using matrix-vector operations so as to ensure
effective data-parallel processing and acceleration of the synthesis procedures on
many-core architectures. The novelty of our approach is a two-level parallelisa-
tion scheme that distributes the workload for the processing of the state space
and the parameter space, in order to optimally utilise the computational power
of the GPU. The state space parallelisation builds on a sparse-matrix encoding of
the underlying parametric CTMC. The parameter space parallelisation exploits
the fact that our synthesis algorithms require the analysis of a large number of
parameter regions during the parameter space refinement.

In this paper we present our new publicly available tool PRISM-PSY1 that
implements the data-parallel algorithms together with a number of optimisa-
tions of the sequential algorithms, and employs the front-end of the proba-
bilistic model-checker PRISM [26]. We systematically evaluate the performance
of PRISM-PSY and demonstrate the usefulness of our precise parameter syn-
thesis methods on several case studies, including survivability analysis of the
Google File System [2,16]. Our experiments show that the data-parallel synthe-
sis achieves on a single GPU up to a 31-fold speedup with respect to the optimised
sequential implementation and that our algorithms provide good scalability with
respect to the size of the model and the number of parameter regions to analyse.
As a result, PRISM-PSY enables the application of precise parameter synthesis
methods to more complex problems, i.e. larger models and higher-dimensional
parameter spaces.

The main contributions of this paper can be summarised as follows: (1)
improvement of the sequential algorithms of [10,12], leading in some cases to more
than 10-fold speedup; (2) formulation of a backward variant of the parametric tran-
sient analysis of [10] using matrix-vector operations, which enables data-parallel
implementation; (3) combination of the state space and parameter space paralleli-
sation in order to fully utilise the available computational power; (4) development
of the PRISM-PSY tool that enables precise parameter synthesis on many-core
architectures and (5) systematic experimental evaluation of the tool.

1 http://www.prismmodelchecker.org/psy/.

http://www.prismmodelchecker.org/psy/
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Related Work. The parameter synthesis problem for CTMCs and bounded
reachability specifications was first introduced in [24], where the authors resort
to the analysis of the polynomial function describing how the reachability prob-
ability depends on the parameter values. Due to the high degree of the polyno-
mials (determined by the number of uniformisation steps), only an approximate
solution is obtained through the discretisation of the parameter space.

The function describing how the satisfaction probability of a linear time-
bounded formula depends on the parameter values can be approximated through
statistical methods. A technique based on Gaussian Process regression is pre-
sented in [6] and implemented in the U-check tool [7]. In contrast to our app-
roach, statistical methods cannot provide guaranteed precision, and thus are not
suitable for safety-critical applications.

Parameter synthesis has also been studied for discrete-time Markovian mod-
els and unbounded temporal properties [15,23]. The synthesis algorithms are
based on constructing a rational function describing the satisfaction probabil-
ity by performing state elimination. This approach is implemented in the tool
PROPhESY [18] that supports incremental parameter synthesis using SMT tech-
niques, but is not suitable for time-bounded specifications and CTMCs.

Our tool builds on methods for the efficient GPU parallelisation of matrix-
vector multiplication [4] and probabilistic model checking [8,33]. In our previ-
ous work [3], we showed how the algorithms for LTL model checking can be
redesigned in order to accelerate verification on GPUs.

2 Precise Parameter Synthesis

In this section we summarise the parameter synthesis problem for CTMCs and
time-bounded CSL properties originally introduced in [12]. We also describe the
sequential synthesis algorithms of [10,12] and the improvements implemented in
the PRISM-PSY tool, which provide the foundation for the new data-parallel
algorithms (Sect. 3) and the baseline for evaluating the parallelisation speedup.

2.1 Problem Formulation

Parametric continuous-time Markov chains (pCTMCs) [24] extend the notion
of CTMCs by allowing transition rates to depend on parameters. We consider
pCTMCs with a finite set of states S and a finite set K of parameters ranging
over closed real intervals, i.e., [k⊥, k�] ⊆ R for k ∈ K. These induce a rectangular
parameter space P =

Ś

k∈K [k⊥, k�]. Subsets of P are referred to as parameter
regions or subspaces. Given a pCTMC and a parameter space P, we denote
with CP the set {Cp | p ∈ P}, where Cp is the instantiated CTMC obtained by
replacing the parameters in the parametric rate matrix R with the valuation p.

In the current implementation of the tool, we support only linear rate func-
tions of the following two forms: for any s, s′ ∈ S, R(s, s′) =

∑
k∈K k · ak,s,s′

(parametric rate) or R(s, s′) = bs,s′ (constant rate) where ak,s,s′ , bs,s′ ∈ R≥0.
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Such rate functions are sufficient to describe a wide range of systems, from bio-
logical to computer systems, as we will show in Sect. 4.

To specify properties over pCTMCs, we employ the time-bounded fragment
of Continuous Stochastic Logic (CSL) [1] extended with time-bounded reward
operators [27]. The current version of the tool considers only unnested formulae
given by the following syntax: Φ :: = P∼r[φ] | R∼r[C≤t] is a state formula,
φ :: = Ψ U I Ψ is a path formula, where Ψ :: = true | a | ¬Ψ | Ψ ∧Ψ , a is an atomic
proposition evaluated over states, ∼ ∈ {<,≤,≥, >}, r is a probability (r ∈ [0, 1])
or reward (r ∈ R≥0) threshold, t ∈ R≥0 is a time bound, and I is a time interval of
R≥0. The future operator, F I , can be derived as F I Ψ ≡ true U I Ψ . Let � denote
a satisfaction relation. Intuitively, a state s � P∼r[φ] iff the probability of the
set of paths starting in s and satisfying φ meets ∼ r. A path ω = s0t0s1t1 . . .
satisfies Φ UI Ψ iff there exists a time t ∈ I.(ω@t � Ψ ∧ ∀t′ ∈ [0, t).ω@t′ � Φ),
where ω@t denotes the state in ω at time t. A state s � R∼p[C≤t] iff the expected
rewards over the path starting in s cumulated until t time units satisfies ∼ p.
We remark that the synthesis algorithms can be adapted to support the full
fragment of time-bounded CSL including nested formulae, as shown in [10].

The satisfaction function captures how the satisfaction probability of a given
property relates to the parameters and initial state. Let φ be a CSL path formula,
CP be a pCTMC over a space P and s ∈ S. We denote with Λφ : P→S→ [0, 1]
the satisfaction function such that Λφ(p)(s) is the probability of the set of paths
(from state s) satisfying φ in Cp. The satisfaction function for reward formulae
can be defined analogously and is omitted to simplify the presentation.

We consider two parameter synthesis problems: the threshold synthesis prob-
lem that, given a threshold ∼ r and a CSL path formula φ, asks for the parame-
ter region where the probability of φ meets ∼ r; and the max synthesis problem
that determines the parameter region where the probability of the input formula
attains its maximum, together with probability bounds approximating that max-
imum. Solutions to the threshold synthesis problem admit parameter points left
undecided, while, in the max synthesis problem, the actual set of maximising
parameters is contained in the synthesised region. The min synthesis problem is
defined and solved in a symmetric way to the max case.

For CP , φ, an initial state s0, a threshold ∼ r and a volume tolerance ε > 0,
the threshold synthesis problem is finding a partition {T ,U ,F} of P, such that:
∀p ∈ T : Λφ(p)(s0) ∼ r; ∀p ∈ F : Λφ(p)(s0) �∼ r; and vol(U)/vol(P) ≤ ε, where
U is an undecided subspace and vol(A) =

∫

A
1dμ is the volume of A.

For CP , φ, s0, and a probability tolerance ε > 0, the max synthesis problem
is finding a partition {T ,F} of P and probability bounds Λ⊥

φ , Λ�
φ such that:

∀p ∈ T : Λ⊥
φ ≤ Λφ(p)(s0) ≤ Λ�

φ ; ∃p ∈ T : ∀p′ ∈ F : Λφ(p)(s0) > Λφ(p′)(s0); and
Λ�

φ − Λ⊥
φ ≤ ε.

Figure 1 depicts an example of threshold and max synthesis problems. On
the left, the satisfaction function describes the probability of the property (y-
axis) depending on the values of parameter k1 (x-axis). In the centre plot, we
highlight the parameter regions for which the threshold ≥ r is met (T , green), is
not met (F , red) and is undecided (U , yellow). On the right, the solution to the
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Fig. 1. Left: Example of a satisfaction function. Centre: Solution of the threshold
synthesis problem for ≥ r. Right: Solution of the max synthesis problem (Color figure
online).

max synthesis problem is the region (T , green) containing all the maximising
parameters and whose probability bounds meet the input tolerance ε.

2.2 Solution of the Synthesis Problems

The key ingredient for solving the aforementioned synthesis problems is a pro-
cedure that takes a pCTMC CP and CSL path formula φ, and provides safe
under- and over-approximations of the minimal and maximal probability that
CP satisfies φ: for all s ∈ S, it computes bounds Λmin(s) and Λmax(s) such
that Λmin(s) ≤ infp∈P Λφ(p)(s) and Λmax(s) ≥ supp∈P Λφ(p)(s). The procedure
builds on a parametric transient analysis that computes safe bounds for the
parametric transient probabilities in the discrete-time process derived from the
CTMC. This discretisation is obtained through standard uniformisation and the
Fox and Glynn algorithm [21] that is used to derive the required number of dis-
crete steps to consider (also called uniformisation steps or iterations) for a given
time bound2. See [10,27] for more details.

We now summarise the algorithms for threshold and max synthesis based on
the partitioning and iterative refinement of the parameter space [12]. Assume a
threshold synthesis problem for a path formula φ with threshold ≥ r. At each
step, the algorithm refines the undecided parameter subspace U , starting from
U = P: it generates a partition D of U and, for each R ∈ D, computes the
safe probability bounds ΛR

min and ΛR
max of the corresponding pCTMC CR. If

ΛR
min ≥ r, then the satisfaction of the threshold is guaranteed for the whole

region R, which is hence added to T . Otherwise, the algorithm tests whether R
can be added to F by checking if ΛR

max < r. If R is neither in T nor in F , it forms
an undecided subspace that is added to the set U . If the volume tolerance ε is
not met, the algorithm proceeds to the next iteration, where U is further refined.
The refinement procedure guarantees termination since the over-approximation
[ΛR

min, Λ
R
max] can be made arbitrarily precise by reducing the volume of R [13].

In the max synthesis case, the algorithm starts from T = P and iteratively
refines T until the tolerance ε is met. Let D be the partition of T at a generic
2 The Fox and Glynn algorithm returns a finite bound on the number of steps needed

to approximate transient probabilities up to a specified precision.
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step. The algorithm rules out from T subspaces that are guaranteed to be in F ,
by deriving an under-approximation M of the maximum satisfaction probability.
Indeed, for R ∈ D, ΛR

max < M implies that R is in F . M is derived by sampling
a set of parameter values from the region R with the highest ΛR

min and taking
the highest value of the satisfaction function over these values.

Improvements on the Sequential Algorithms. The PRISM-PSY tool introduces
several improvements on the prototype implementations used in [10,12]. Here
we present those having the most significant impact on performance.
(1) Backward computation of probabilistic bounds. In [10,12], the probability
bounds Λmin and Λmax are computed using a forward variant of the parametric
transient analysis, which requires a separate computation of the bounds for each
initial state. In our tool, we also implemented a more efficient solution that
requires only a single computation for all states, based on backward computation.
(2) Adaptive Fox-Glynn. While in previous implementations the number of uni-
formisation steps was fixed and obtained using the maximum exit rate (sum of
outgoing rates per a state) of the whole parameter space, the adaptive Fox-Glynn
technique computes the number of steps for each subregion separately, using the
maximum exit rate of the inspected subregion. For large parameter spaces, this
technique can significantly decrease the overall number of uniformisation steps,
improving the performance by more than a factor of two.
(3) Refinement Strategies. The tool employs improved refinement algorithms
that can decrease the total number of subregions to analyse. Specifically, for
threshold synthesis, at each step only the undecided subregions with the largest
volume are refined while, for max synthesis, only the regions with either the
lowest lower probability bound (Λ⊥

φ ) or the highest upper bound (Λ�
φ ).

3 Data-Parallel Algorithms for Parameter Synthesis

In this section we first introduce the basic concepts of the target hardware archi-
tecture, i.e. modern general-purpose GPUs. We then formulate the backward
variant of the parametric transient analysis using matrix-vector operations, and
describe the sparse-matrix representation of pCTMCs. Finally, we present a two-
level parallelisation of the synthesis algorithms. A detailed description of the
data-parallel algorithms for parameter synthesis can be found in [30].

3.1 Computational Model for Modern GPUs

Typical GPUs consist of multiple Streaming Multiprocessors (SMs), with each
SM following a single instruction multiple threads (SIMT) model. This approach
establishes a hierarchy of threads prior to the actual computation. Within this
hierarchy, threads are arranged into blocks that are assigned for parallel execu-
tion on SMs. Threads are hardwired into groups of 32 called warps, which form
a basic scheduling unit and execute instructions in a lock-step manner. If a suffi-
cient number of threads is dispatched, each SM maintains a set of active warps to
hide the memory access latency and maximise utilisation of its functional units.
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The SIMT approach supports code divergence within threads of the warp, but
this usually causes significant performance degradation due to the serialisation
of the execution. Another characteristic of GPUs that significantly affects their
performance is the way in which simultaneous memory requests from multiple
threads in a warp are handled. Requests exhibiting spatial locality are maximally
coalesced. Simply stated, accesses to consecutive addresses are served by a single
memory fetch as long as they are in the same memory segment.

A typical GPU program consists of a host code running on the CPU and a
device code running on the GPU. The device code is structured into kernels that
execute the same scalar sequential program in many independent data-parallel
threads. The combination of out-of-order CPU and data-parallel processing GPU
allows for heterogeneous computation.

3.2 Backward Computation of Probability Bounds

For a pCTMC CR over a region R =
Ś

k∈K [k⊥, k�] and a target set A ⊆ S, the
parametric backward analysis computes a series of vectors σmin

i and σmax
i such

that, for all s ∈ S, σmin
i (s) ≤ infp∈P σi,p(s) and σmax

i (s) ≥ supp∈P σi,p(s), where
σi,p(s) is the probability that, starting from the state s, a state in A is reached
after i discrete steps in Cp. From these vectors, the probability bounds Λmin(s)
and Λmax(s) are computed in a similar way to non-parametric CTMCs [27].

We define a matrix-vector operator 
 that computes the vector σmax
i+1 from

σmax
i and the parametric rate matrix R as σmax

i+1 (s) = (R 
 σmax
i )(s), where

σmax
0 (s) = 1 if s ∈ A and 0 otherwise. An analogous operator can be defined

for σmin
i+1 . Similarly to standard uniformisation, the definition of 
 exploits the

uniformised matrix, which is, in our case, parametric. For each s ∈ S, σmax
i+1 (s)

is first expressed by maximising the probability in s stepwise, i.e. after the i-th
step. Below, we expand the definition of the uniformised matrix using the uni-
formisation rate q given by the maximal exit rate and the time bound [21,27]:

σmax
i+1 (s) = max

p∈R

⎛

⎝
∑

s′∈S\{s}
σmax

i (s′)
Rp(s, s′)

q
+ σmax

i (s)

⎛

⎝1 −
∑

s′∈S\{s}

Rp(s, s′)
q

⎞

⎠

⎞

⎠ (1)

where Rp is the rate matrix instantiated with parameter p. The first sum rep-
resents the probability of entering a state s′ �= s and, from there, reaching A
in i steps. The second sum is the probability of staying in s and, from there,
reaching A in i steps. By expanding the parametric rate matrix R in Eq. 1 we
get:

σmax
i+1 (s) = σmax

i (s) +
∑

s′∈S\{s}

σmax
i (s′) − σmax

i (s)
q

·

⎧
⎨

⎩

∑

k∈K

k� · ak,s,s′ (2)

bs,s′ (3)

where k� = k� if σmax
i (s′) > σmax

i (s) and k⊥ otherwise. These equations allow
us to compute the vector σmax

i+1 using matrix-vector operations, as shown in the
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implementation of 
 in Algorithm 1. Note that Eq. 2 is used when the transition
from s to s′ has a parametric rate, while Eq. 3 is used when it has a constant
rate.

An approximation error is introduced because σmax
i+1 is computed by optimis-

ing σi+1,p locally, i.e. at each step and at each state, and the error accumulates at
each uniformisation step. We examine this error and its convergence in [13]. The
forward variant of the parametric transient analysis can also be formulated using
a vector-matrix operator [10], but the resulting code has more complex control
flow and higher branch divergence, which makes parallelisation less efficient.

3.3 Sparse-Matrix Representation of Parametric CTMCs

We introduce a sparse-matrix representation of parametric CTMCs that allows
us to implement the operator 
 in such a way that the resulting program has a
similar control flow and memory access pattern as the standard matrix-vector
multiplication, for which efficient data-parallel implementations exist [4,8,33].

We represent the data in a compact format based on the compressed sparse
row (CSR) matrix format. The CSR format stores only the non-zero values of
the rate matrix R using three arrays: non-zero values, their column indices, and
row beginnings. The CSR format is also used in the PRISM tool as the fastest
explicit representation for CTMCs [26].

To handle the non-parametric transitions separately in a more efficient way,
we decompose R into the non-parametric matrix, stored in the CSR format, and
the parametric matrix. To enable an efficient data-parallel implementation of the
operator 
, for a region R =

Ś

k∈K [k⊥, k�] and for each parametric transition
rate R(s, s′) two quantities, r⊥s,s′ =

∑
k∈K k⊥·ak,s,s′ and r�s,s′ =

∑
k∈K k�·ak,s,s′ ,

are stored. From Eq. 2, it is enough to test σmax
i (s′) − σmax

i (s) > 0 to decide
whether to use r�s,s′ or r⊥s,s′ in the multiplication, as illustrated in Algorithm1.

In the parallel version, we provide an additional implementation using data
structures based on the ELLPACK (ELL) sparse matrix representation [4]. The
advantage of ELL over CSR is that it provides a single-stride aligned access to the
data arrays, meaning that memory accesses within a single warp are reasonably
coalesced. ELL yields better performance than CSR for some problems.

3.4 GPU Parallelisation

We implemented PRISM-PSY in Open Computing Language (OpenCL) [32].
In contrast to other programming frameworks, OpenCL supports multiple plat-
forms and GPUs, and thus provides better portability. Moreover, its performance
is comparable with that of specialised frameworks (e.g. CUDA [20]).

The synthesis algorithms are executed in a heterogeneous way. The sequential
refinement procedure is executed on the CPU. For each parameter region R to
analyse, the CPU prepares a kernel that computes the probability bounds ΛR

min

and ΛR
max on the GPU, based on the backward parametric transient analysis

described above. Following [4,8,33], we implement a state space parallelisation,
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Algorithm 1. Kernel for two-level CSR parallelisation of the 
 operator
For all 0 ≤ n < |S| and 0 ≤ m < number of parallel regions, run in parallel:

1: e := number of non-zero elements in R
2: for j := matRowBeg[n]; j < matRowBeg[n + 1]; j := j + 1 do
3: dMax := σmax

i [m ∗ |S| + matCol[j]] − σmax
i [m ∗ |S| + n]

4: if dMax > 0 then σmax
i+1 [m ∗ |S| + n] += dMax ∗ matValTop[m ∗ e + j]

5: else σmax
i+1 [m ∗ |S| + n] += dMax ∗ matValBot[m ∗ e + j]

i.e. a single row of the rate matrix (corresponding to the processing of a single
state) is mapped to a single computational element. Note that the models we
consider typically have a balanced distribution of the state successors, and thus
yield a balanced distribution of non-zero elements in the rows of the matrix.
This ensures a good load balancing within the warps and blocks.

In the case of models with small numbers of states, this parallelisation is
not able to efficiently utilise all computational elements, since some of them
will be idle during the kernel execution. To overcome this potential performance
degradation, we combine state space parallelisation with parameter space paral-
lelisation that computes the probability bounds for multiple parameter regions
in parallel. As demonstrated in the experimental evaluation (Sect. 4), this two-
level parallelisation significantly improves performance on small models. In many
cases, this solution can improve the runtime of large models too, because it allows
the thread scheduler to better hide memory latency.

Since parallel kernel execution is unsupported by many GPU devices or it
may fundamentally decrease performance, we provide a way to perform, in a sin-
gle compute kernel, multiple matrix-vector operations over multiple parameter
regions. The solution exploits the fact that, in our case, the rate matrices for
different regions have the same structure and only differ in the values of r�s,s′ and
r⊥s,s′ . We extend the sparse-matrix representation of the pCTMC and store the
values r⊥s,s′ and r�s,s′ as well as σmax

i (s) and σmax
i+1 (s) for all regions. This allows

us to utilise m · |S| computational elements for m parallel regions. Algorithm1
illustrates the kernel for the two-level parallelisation using the CSR format. The
vectors matRowBeg and matCol, the same for all regions, keep the column indices
and row beginnings, respectively. The vectors matValTop and matValBot keep
the non-zero values of r�s,s′ and r⊥s,s′ , respectively. We store only the current σmax

i

and σmax
i+1 using two vectors and the vectors are swapped between the iterations.

Importantly, merging the computation for multiple regions requires modi-
fying the adaptive Fox-Glynn technique to consider the highest uniformisation
step among them. This means that the benefits of adaptive Fox-Glynn diminish
with the number of subspaces processed in parallel.

4 Experimental Evaluation

In this section we evaluate the performance of the data-parallel synthesis algo-
rithms on case studies of biological and computer systems. We discuss how model
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features affect parallelisation and show that parameter synthesis can be meaning-
fully employed to analyse various requirements, ranging from quality of service
to the reliability of synthetic biochemical networks.

All the experiments were run on a 4-core Linux workstation with an AMD
PhenomTM II X4 940 Processor @ 3 GHz, 8 GB DDR2 @ 1066 MHz RAM and
an NVIDIA GeForce GTX 480 GPU with 1.5 GB of GPU memory. The GPU
has 14 SMs, each having 32 cores and the capability to maintain up to 48 active
warps. Therefore, the GPU can simultaneously maintain and schedule up to
21504 active threads to maximise the utilisation of its computational elements.

In the following, Java denotes the optimised sequential implementation and
Csrn (Elln) the data-parallel implementation based on CSR (ELL) with n
subregions being processed in parallel. We report only an approximate value
for the number of final subregions, since it differs slightly in some experiments
due to parallel processing. We also report the results for the parameter space
parallelisation only up to the best performance is reached.

4.1 Google File System

We consider the performance evaluation case study of the replicated file system
used in the Google search engine known as Google File System (GFS). The model
was first introduced as a generalised stochastic Petri net (GSPN) [16] and then
translated to a CTMC [2]. Previous work on the model focused on survivability
analysis, i.e. the ability of the system to recover from disturbances or disasters,
and considers all model parameters to be fixed. Here, we work with a pCTMC
model and show how parameter synthesis can be used to examine survivability.

M soft d M hard d

M1 M up

m soft m hard

m fail

m hard re m soft re

replicate

destroy

keep

R present

C 1

R

R lost

C 2

c fail

C up
c soft c hard

C soft d

M

C hard d
c soft rec hard re

Fig. 2. Google File Sys-
tem from [2,16]. Transitions
can be immediate (grey) or
timed (white).

Figure 2 illustrates the GSPN model of the GFS.
Default values for stochastic rates can be found
in [2,16]. Files are divided into chunks of equal size.
Each chunk exists in several copies, located in differ-
ent chunk servers. There is one master server that
is responsible for keeping the locations of the chunk
copies, monitoring the chunk servers and replicat-
ing the chunks. The master can be: up and running
(token at M up); or failed (M1), due to a software
(M soft d) or hardware (M hard d) problem. The
model reproduces the life-cycle of a single chunk:
the numbers of available and lost copies are given
by places R present and R lost, respectively. Lost
chunks are replicated through transition replicate. R
is the maximum number of copies. We consider M
chunk servers whose behaviour is analogous to that
of the master. When a chunk server fails, a chunk
copy is lost (destroy) or not (keep) depending on
whether the server is storing the single chunk under
consideration. We set M = 60 and R = 3, yielding
a model with 21.6 K states and 145 K transitions.
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We first formulate a threshold synthesis problem for the CSL formula φGFS1 =
F [0,60] SL3, where SL3 = (M up = 1 and R present ≥ 3) is the QoS requirement
that the master is running and at least three chunk copies are available (service
level 3). The initial state models a severe hardware disaster: all the servers are
down due to hardware (C hard d = M and M hard d = 1) and all the chunk
copies have been lost (R lost = R). We are interested in synthesising the values
of parameter c hard re, that is, the rate at which chunk servers are repaired from
hardware failure. Importantly, c hard re can actually be controlled, e.g. by intensi-
fying the frequency of technical interventions. Figure 3(a) illustrates the synthesis
results for c hard re ∈ [0.5, 2] and probability threshold≥ 0.5. The property is met
for any c hard re above 1, and, in particular, SL3 is reached with high probability
for repair rates above 1.25.

We now evaluate a property requiring that SL3 is reached strictly within
the time interval [40, 60]: φGFS2 = ¬SL3 U [40,60] SL3. Although it is generally
sought to reach the required QoS as soon as possible, this property can be
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Fig. 3. Synthesis results for the GFS model. Each box denotes a parameter region
(width and depth) and its probability bounds (height). Colour code is as in Fig. 1.
(a) Threshold synthesis, property φGFS1 , threshold ≥ 0.5 (dashed line) and volume tol-
erance ε = 0.01. (b) Max synthesis, property φGFS2 and probability tolerance ε = 0.01.
(c) Threshold synthesis, property φGFS2 , threshold ≥ 0.5 (semi-transparent plane) and
ε = 0.1. Parameter domains are c hard re ∈ [0.5, 2] (a,b,c) and c fail ∈ [0.01, 1] (c).
Numbers of final regions are 8 (a), 24 (b) and 136 (c).

Table 1. Performance of the GFS model: 21.6K states, 145K transitions, and ≤47K
iterations per subregion. Details of the synthesis problems are reported in Fig. 3.

Threshold synthesis φGFS1 Max synthesis fφGFS2 Threshold synthesis φGFS2

Impl. Time (s) Speedup Impl. Time (s) Speedup Impl. Time (s) Speedup

Java 842 1.0 Java 3279 1.0 Java 12221 1.0

Csr1 56 15.0 Csr1 257 12.8 Csr1 764 16.0

Csr4 51 16.5 Csr4 239 13.7 Csr8 660 18.5

Csr16 51 16.5 Csr8 211 15.5 Csr64 636 19.2

Ell16 41 20.5 Ell32 207 15.8 Ell16 505 24.2
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used in scenarios like planned downtime, where the service does not need to
be up before the time scheduled for maintenance. In Fig. 3(b), we report the
results of max synthesis for parameter c hard re. The maximising parameters
(indicated with a black arrow) are found in the region approximately given by
c hard re ∈ [1.2, 1.23], since for high repair rates SL3 is reached too early.

In the last experiment, we introduce one additional parameter, c fail, i.e. the
rate at which any failure (hardware or software) occurs in a chunk server. Since
the GFS is designed to run on cheap commodity hardware, this rate can be
controlled indirectly through the reliability of the machines used. We consider
a threshold synthesis problem with property φGFS2 and threshold ≥ 0.5. Results
in Fig. 3(c) evidence that, interestingly, the satisfaction probability is almost
independent from the failure rate, except when c fail approaches 1, and thus
slightly higher repair rates are needed.

Table 1 reports the performance of the tool on the above experiments, namely,
the speedup achieved by the data-parallel algorithms. Although the state space
parallelisation utilises the GPU sufficiently (enough threads are dispatched), the
parameter space parallelisation further improves performance, providing up to
24-fold and 16-fold speedup with respect to the sequential algorithm for threshold
and max synthesis, respectively. The efficiency of the parameter space paralleli-
sation depends on the effective usage of GPU resources, and thus the speedup
does not scale with respect to the number of regions processed in parallel. In
this case the adaptive Fox-Glynn technique does not bring any benefit, since the
parameters we analyse do not affect the maximal exit rate.

4.2 Epidemic Model

We further consider the stochastic epidemic model we analysed in [12] using the
prototype implementation, in order to evaluate the enhancements of the sequen-
tial implementation presented in this paper. It describes the epidemic dynamics
of susceptible (S), infected (I) and recovered (R) individuals using the follow-
ing biochemical reactions network with mass action kinetics: S + I

ki−→ I + I and
I

kr−→ R. With a total population of 100 individuals and initial state S = 95, I = 5
and R = 0, the model has 5.1 K states and 10K transitions. We consider the
same max synthesis problem as in [12]: parameter space PSIR = ki × kr ∈
[0.005, 0.3] × [0.005, 0.2] and property φSIR(t1, t2) = (I > 0) U [t1,t2] (I = 0),
expressing that the infection lasts at least t1 time units but dies out before time
t2. As shown in [12], for t1 = 100 and t2 = 120, the prototype implementation
produced around 5 K final parameter subspaces and required 3.6 h.

Table 2 (left) lists the results obtained with PRISM-PSY on the same synthe-
sis problem. We can see that the optimised sequential implementation is about
14-fold faster (918 sec. vs 3.6 h.). This significant acceleration is explained by:
more sophisticated refinement strategy for max/min synthesis, which reduces the
number of final regions to 3K (∼2-fold speedup); the adaptive Fox-Glynn tech-
nique, which reduces the number of iterations (∼ 2.5-fold speedup); and more
efficient data structures that accelerate the computation of the probability
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Table 2. Max synthesis for the epidemic model: parameter space PSIR and probability
toleranceε = 1%. φSIR(100, 120): 5.1K states, 10K transitions and ≤ 3.1K iterations per
regionand ∼3.1K final regions. φSIR(100, 200): 20K states, 40K transitions and ≤12K
iterations per region and ∼826 final regions (depicted on the right).

φSIR(100, 120) φSIR(100, 200)

Impl. Time (s) Speedup Impl. Time (s) Speedup

Java 918 1.0 Java 3117 1.0
Csr1 363 2.5 Csr1 303 10.3
Csr4 269 3.4 Csr4 351 8.8
Csr16 207 4.4 Csr16 315 9.5
Csr128 167 5.5 Csr64 303 10.3
Ell128 162 5.6 Ell128 299 10.4 k i 10-3
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bounds as well as the refinement procedure (∼3-fold speedup). Note that the
actual benefits of these enhancements essentially depend on the structure of the
model and the synthesis problem. As the epidemic model is relatively small, the
state space parallelisation is not able to sufficiently utilise the GPU, and thus
the Csr1 implementation provides only a 2.5-fold speedup. The parameter space
acceleration further improves the speedup to 5.6 (ELL128 implementation).

We now consider a more complicated variant of the problem, where we double
the population size and extend the time horizon to t2 = 200. Results are pre-
sented in Table 2 (middle). In this case, the state space parallelisation sufficiently
utilises the GPU and for CSR1, we obtain a 10.3-fold speedup. On the other
hand, the parameter space parallelisation reduces the benefits of the adaptive
Fox-Glynn technique, and thus overall performance is improved only slightly.
Table 2 (right) depicts the results of max synthesis for the larger variant.

4.3 Signalling in Prokaryotic Cells

This model was introduced in [14,31] and describes a two-component signalling
pathway in prokaryotic cells with two signalling components both in phos-
phorylated and dephosphorylated forms: the histidine kinase H and Hp, and
the response regulator R and Rp. In this case, parameter synthesis is com-
putationally very demanding, since the model has 116 K states and 954 K
transitions. We consider a threshold synthesis problem that requires a rela-
tively small number of refinements, in order to demonstrate the benefits of
the state space parallelisation. We synthesise the production and degradation
rates (prodR and degrR) of R such that the input noise of response regula-
tors, defined as a quadratic deviation from the average population, is below
9 at least 80% of the time. This can be formalised as the cumulative reward
property ΦSIG = R≥0.8t[C≤t], where the reward in state is 1 if it satisfies
(R + Rp − avg)2 < 9, otherwise the reward is 0. We consider t = 10, avg = 30
and parameter space PSIG = prodR × degrR ∈ [0.1, 0.9] × [0.005, 0.02], which
reflects the setting in [14].
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Table 3. Threshold synthesis for the signalling model: property ΦSIG, parameter space
PSIG and ε = 9%. The variant from [14]: 116K states, 954K transitions, ≤ 19K itera-
tions per region and ∼70 final regions (depicted on the right). The larger variant: 424K
states, 3.6M transitions, ≤ 24K iterations per region, and ∼67 final regions.

The variant from [14] The larger variant

Impl. Time (s) Speedup Impl. Time (s) Speedup

Java 16482 1.0 Java 95466 1.0
Csr1 868 19.0 Csr1 3870 24.7
Csr2 890 18.5 Csr2 3949 24.2
Csr4 866 19.0 Csr4 3946 24.2
Ell4 666 24.7 Ell4 3065 31.1

As shown in Table 3, a speedup up to 24.7 is obtained using ELL4, which
further improves the GPU utilisation and the memory access pattern of the
pure state space parallelisation. We also consider a larger variant of the
model (about 3.6-times), for which we obtain an even better speedup (up to
31.1-fold), so demonstrating good scalability of the data-parallel algorithm.
Table 3 (right) depicts the synthesis results for the small variant, evidencing
the non-monotonicity of the satisfaction function for the reward property.

4.4 Approximate Majority

The next model describes a chemical reaction network that computes the approx-
imate majority – the asymptotically fastest way to approximate a common deci-
sion by all members of a population [11]. We consider the network AM3,3#39:

A+B
k1=92.9−−−−−→ X+X, A+X

k2=26.2−−−−−→ A+A and B+X
k3=23.3−−−−−→ B+B synthesised

in [17] as the best network utilising only 3 species. The structure of the network
has been synthesised using an approach based on bounded model checking and
the kinetic parameters estimated by Monte Carlo-based optimisation.

As in [17], we consider small numbers of input molecules (A = 10, B = 4
and X = 0), and thus the model has only 120 states and 273 transitions. This

(a) True region (b) Undecided region (c) False region

Fig. 4. Threshold synthesis for the approximate majority model and property ΦAM.
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experiment, in contrast to the previous case studies, allows us to demonstrate
the performance of our tool on very small models. We synthesised the parameters
such that the probability of the correct decision being made after 100 time units
is at least 95%. The property is formalised as ΦAM = P≥0.95[F [100,100] Ψcorrect]
and the parameter space is PAM = k1 × k2 × k3 ∈ [1, 100]3.

Table 4. Threshold synthesis for
the approximate majority: prop-
erty ΦAM, parameter space PAM and
ε = 10 %. 120 states, 273 transi-
tions, ≤ 700K iterations per region
and ∼911 final regions.

Runtime (s) Speedup
Java 1097 1.0
Csr1 11375 0.1
Csr4 3057 0.4
Csr16 951 1.2
Csr64 319 3.4
Csr128 195 5.6
Ell128 193 5.7

Due to the low number of states, the state
space parallelisation utilises only a small
portion of the computational elements of
the GPU. Therefore, the GPU parallelisa-
tion using a small number of parallel para-
meter regions slows down the computation,
as shown in Table 4. Increasing the num-
ber of parallel regions (up to 128) improves
the GPU utilisation, and hence performance,
yielding up to 5.7-fold speedup.

This experiment also demonstrates that,
in contrast to the Monte Carlo-based opti-
misation, precise parameter synthesis pro-
vides detailed information about the impact
of parameters on the probability of correct
decision, as shown in Fig. 4. Note that the
backward transient analysis implemented in
our tool computes the probability bounds for all the reachable states, in this
case all the inputs satisfying A + B = 14.

4.5 Workstation Cluster

Table 5. Threshold synthesis for
the cluster model: property ΦCLU,
parameter space PCLU and ε =
10%. 86K states, 415K transi-
tions, ≤9K iterations per region and
∼273 final regions.

Runtime (s) Speedup
Java 12074 1.0
Csr1 637 19.0
Csr4 674 17.9
Ell4 672 18.0

Finally, we consider a model describing a
cluster of workstations consisting of two sub-
clusters with N workstations in each, con-
nected in a star topology [25,34]. Both sub-
clusters have their own switch that connects
the workstations in the sub-cluster with a
central backbone. The cluster maintains the
minimum quality of service if at least 75 %
of the workstations are operational and con-
nected. We assume that one can control
the workstation inspection (ws check), repair
(ws repair) and failure (ws fail) rates.

We synthesise the parameters such that the minimum quality of service is
not maintained at most 0.1 % of the time. This is formalised as ΦCLU = R≤0.1·t
[C ≤ t], and associating a reward of 1 to states where the minimum quality of
service is not provided. In this experiment, we use t = 100 and parameter space
PCLU = ws check × ws repair × ws fail ∈ [5, 20] × [0.5, 5] × [0.001, 0.02].



382 M. Češka et al.

Table 5 presents the results for N = 48 (85K states and 415 K transitions).
In this model, the parameter space parallelisation considerably reduces the ben-
efits of the adaptive Fox-Glynn technique, and thus the CSR1 implementation
provides the best performance, leading to a 19-fold speedup.

4.6 Result Analysis

State space parallelisation improves the scalability of the computation with
respect to the model size. The experiments demonstrate that the speedup com-
pared to the sequential baseline tends to improve with the number of states (see
Tables 2 and 3). On the other hand, for smaller models, an insufficient number of
threads is dispatched, leading to performance degradation (see Table 4). In most
cases, the ELL format moderately outperforms the CSR format and it also works
better with the parameter space parallelisation due to the more coalesced mem-
ory access pattern. Since the refinement procedure (running solely on CPU) is
more complicated for max/min synthesis, for these instances the overall speedup
is lower than that for threshold synthesis.

Parameter space parallelisation allows us to efficiently utilise the GPU
even for small models. It scales well up to reaching the maximal number of
active threads that can be dispatched (see Table 4). In practice, performance
usually increases even beyond this point, since the parameter space parallelisa-
tion can improve the memory access locality. On the other hand, it mitigates
the advantage of the adaptive Fox-Glynn technique, which can lead to perfor-
mance degradation, as reported in Table 5. Importantly, PRISM-PSY can also be
configured to perform this parallelisation using multi-core CPUs (not discussed
here).

Our experiments clearly indicate that the tool is able to provide good scal-
ability with respect to the number of computational elements. Since
the two-level parallelisation can tune the GPU utilisation for various synthesis
problems, we expect that the execution of the tool on new generations of GPUs
with a larger number of cores will lead to a further improvement in acceleration.

5 Conclusion

We have introduced the tool PRISM-PSY that performs precise parameter syn-
thesis for CTMCs and time-bounded specifications. In order to overcome the high
computational demands, we have developed data-parallel versions of the algo-
rithms allowing us to significantly accelerate synthesis on many-core GPUs. As
a result, the tool provides up to 31-fold speedup with respect to the optimised
sequential implementation, and thus considerably extends the applicability of
precise parameter synthesis. In future we will extend the tool to support the full
fragment of time-bounded CSL and multi-affine rate functions [13].
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