
Mind the Gap! Automated Anomaly Detection
for Potentially Unbounded Cardinality-Based

Feature Models

Markus Weckesser1(B), Malte Lochau1, Thomas Schnabel1,
Björn Richerzhagen2, and Andy Schürr1

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
markus.weckesser@es.tu-darmstadt.de

2 Multimedia Communications Lab, TU Darmstadt, Darmstadt, Germany

Abstract. Feature models are frequently used for specifying variability
of user-configurable software systems, e.g., software product lines.
Numerous approaches have been developed for automating feature model
validation concerning constraint consistency and absence of anomalies.
As a crucial extension to feature models, cardinality annotations and
respective constraints allow for multiple, and even potentially unbounded
occurrences of feature instances within configurations. This is of particu-
lar relevance for user-adjustable application resources as prevalent, e.g.,
in cloud computing. However, a precise semantic characterization and
tool support for automated and scalable validation of cardinality-based
feature models is still an open issue. In this paper, we present a com-
prehensive formalization of cardinality-based feature models with poten-
tially unbounded feature multiplicities. We apply a combination of ILP
and SMT solvers to automate consistency checking and anomaly detec-
tion, including novel anomalies, e.g., interval gaps. We present evaluation
results gained from our tool implementation showing applicability and
scalability to larger-scale models.

Keywords: Software product lines · Cloud-based systems · Cardinality-
based feature models · Integer Linear Programming (ILP)

1 Introduction

Feature models become more and more established for specifying variability of
highly-configurable software, e.g., software product lines [11]. Feature models
are used during domain engineering to tailor configuration spaces of product
lines in terms of available configuration parameters (features) and respective
constraints, restricting their combinations within valid configurations. Each fea-
ture constitutes a user-visible (Boolean) configuration option from the problem
domain, being mapped onto variable implementation artifacts within the solu-
tion space. This way, customer-tailored products are derivable from a common
code base during application engineering. The FODA feature diagram notation
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 158–175, 2016.
DOI: 10.1007/978-3-662-49665-7 10

Anomaly Detection for Cardinality-Based Feature Models 159

is a frequently used graphical representation for feature models [6,22]. FODA
feature diagrams organize features as nodes in a tree-like layout to denote a
parent-child hierarchy. This feature tree is enriched with constructs to describe
logical dependencies among features. Semantically, a feature model specifies a
set of valid product configurations, i.e., those feature combinations satisfying all
constraints. Recent approaches to formalizing feature model semantics either use
algebraic representations [19,34], or transformations into equivalent constraint
problems, e.g., propositional formulas (SAT) [5,25], and CSP [7]. The latter
approach allows for applying off-the-shelf constraint-solvers for automatically
validating desirable semantic properties of feature models such as constraint
consistency and absence of anomalies, e.g., dead features [6].

However, FODA feature diagram notation is, in many cases, not expres-
sive enough for capturing all user-configurable properties of real-world applica-
tions. In particular, two major extensions to feature models have been proposed,
usually summarized under the term extended feature models (EFM), namely
(1) non-Boolean feature attributes and respective constraints to denote extra-
functional properties of features, and (2) UML-like feature multiplicities [32] in
terms of cardinality annotations and respective constraints to allow selections
of multiple feature instances (also referred to as copies), including (recursive)
clones of their corresponding sub-trees [14]. Semantically, both concepts impose
extensions to the notion of product configurations by means of (1) feature types
beyond Boolean, and (2) multi-sets of selected feature instances. Both exten-
sions complicate feature model semantics, thus automated consistency checking
and anomaly detection becomes even more important for their applicability in
practice. Concerning (1), various promising approaches have been proposed for
analyzing non-Boolean configuration constraints [7,9,20,23]. In contrast, con-
cerning (2), only preliminary attempts exist so far [12,14,26,29,30], although
cardinality-based variability modeling is emerging in nowadays applications and,
therefore, recently found its way into novel modeling approaches like CVL [16]
and Clafer [3]. As a prominent example, for cloud-based systems, not only the
type, but also the amount of available resources is explicitly configurable by the
user [28], especially including (virtually) unrestricted resources [35]. The result-
ing compound cardinality intervals lead to novel kinds of anomalies by means of
dead cardinality, cardinality interval gaps and false unbounded cardinality.

In this paper, we present a comprehensive formalization and automated val-
idation technique for cardinality-based feature models (CFM). We support car-
dinality annotations including compound cardinality intervals and unbounded
cardinality for singleton features, feature groups, as well as cross-tree constraints.
Our approach is motivated by a real-world cloud-based application [31]. We fur-
ther introduce a normal form for cardinality constraints and enhance established
notions of feature model consistency and anomaly to explicitly take feature car-
dinality constraints into account. Our tool implementation, presented in full
detail in an accompanying tool paper [33], combines ILP solvers for interval-
bound analysis and SMT solvers for interval-gap analysis to automate valida-
tion of cardinality-based feature models. We provide evaluation results from
experiments investigating applicability and scalability of our validation approach
for input models of varying sizes and complexity.

160 M. Weckesser et al.

Fig. 1. CFM for fan-out group configuration of the event dissemination system

2 Cardinality-Based Feature Models

2.1 Background

Our running example is part of a cloud-based mobile augmented reality (AR)
multi-player game scenario [31]. During a game, players (nodes) move and carry
devices according to a predefined goal. Players communicate via cellular con-
nections with a cloud-based service provider which delivers relevant game data
and disseminating events. Players interact with the physical environment and
other players located nearby. For this purpose, an Area of Interest (AoI) virtu-
ally surrounds each player’s physical location, where overlapping AoI may form
Fan-Out Groups to establish decentralized ad-hoc connections. This bypassing
of the service provider may reduce latency of the cellular network.

All components of an AR game are highly configurable, including dynamic
reconfigurations for run-time adaptation. Configuration decisions not only com-
prise presence or absence of functionality, but also the available amount of par-
ticular resources. Thus, CFM provide a suitable formalism to capture all relevant
configuration choices and respective constraints of AR games. Figure 1 shows the
CFM for configuring the Dissemination Strategy, the communication Interface
and Channel properties of a (potentially unbounded) number of Nodes forming
a Fan-Out Group. Similar to FODA notation [22], configuration parameters (fea-
tures) reside in a tree-like diagram denoting a feature decomposition hierarchy.
As a crucial extension, CFM differentiate between selectable/deselectable feature
types as usual and, additionally, for each selected feature type, the multiplicity of
occurrences of feature instances together with copies of their corresponding sub-
trees within configurations [14]. Restrictions on selections of both feature types
and instances are specified by cardinality intervals (l, u), where l denotes the
lower bound and u denotes the upper bound for the number of feature types or
instances [32]. In particular, the CFM language considered in this paper provides
the following constructs.

Anomaly Detection for Cardinality-Based Feature Models 161

– Feature instance cardinality, annotated as 〈l, u〉 on the left-most position on
top of each feature rectangle, restricts the minimum and maximum number of
feature instances selectable from the sub-tree clone of respective parent fea-
ture instances. In our example, 〈1, 1〉 denotes that exactly one Dissemination
Strategy is selectable, whereas 〈1, *〉 denotes that arbitrary many, but at least
one Node must be part of a Fan-Out Group.

– Feature group type cardinality, annotated as [l, u], restricts the minimum and
maximum number of types of feature instances selectable from the set of all
immediate sub-features of a selected feature instance. In our example, [1, 1]
denotes that either instances of WiFi, or of BT must be selected for the
Interface, whereas [2, 3] denotes that at least two types of Channels from the
given three options must be instantiated in a Fan-Out Group.

– Feature group instance cardinality, annotated as 〈l, u〉 at the right-hand
side of each group arc, restricts the minimum and maximum number of fea-
ture instances of any type selectable from the set of all immediate sub-feature
types. In our example, 〈3, *〉 denotes that arbitrary many, but at least three
Channel instances are required for each Node.

– Cross-tree edges by means of require- and exclude-edges annotated with 〈l, u〉
constraints at both the source and target feature rectangles [30], define con-
straints on the number of instances of arbitrary pairs of features. In our exam-
ple, if at least one instance of Reliable is selected in a sub-tree clone, then no
instance of Probabilistic Broadcast is allowed in the Fan-Out Group and vice
versa. In addition, if between 1 and 5 Nodes are selected in a Fan-Out Group,
then BT is used for all Nodes and WiFi, otherwise.

Combining different cardinality annotations in one CFM may lead to compli-
cated dependencies among feature types and their possible number of instances.
In order to provide a precise characterization of CFM configuration semantics, we
provide a CFM formalization in the following. We first define the abstract syn-
tax of CFM. Therefore, we introduce an interval language to express cardinality
intervals (l, u) as pairs of lower and upper cardinality bounds, both given by nat-
ural numbers, or, in case of upper bounds, also by the special symbol * denoting
unbounded cardinality. By convention, k < * holds for any k ∈ N0. Compound
cardinality intervals are defined as the union of multiple (non-overlapping) inter-
vals (l1, u1), (l2, u2), . . . , (ln, un).

Definition 1 (Cardinality Interval). The set of cardinality intervals is
defined as I ⊂ N0 × (N0 ∪ {*}), where (l, u) ∈ I iff l ≤ u holds. The set
L ⊂fin 2I of compound cardinality intervals contains all finite subsets L ∈ L of
I such that for all pairs (li, ui) ∈ L, (lj , uj) ∈ L, i �= j, either li > uj, or ui < lj
holds.

We further require compound intervals L ∈ L to be defined as concise as
possible, e.g., {(1, 4)} instead of {(1, 2), (3, 4)}. Intervals L ∈ L are used for all
kinds of cardinality annotations in a CFM as described above. A CFM consists
of a finite set F of features together with a hierarchy relation ≺F defining the
tree hierarchy on F such that f ≺F f ′ denotes f to be the parent feature of f ′.

162 M. Weckesser et al.

In addition, a feature instance cardinality interval λF
I (f) ∈ L is assigned to

every feature f ∈ F by a function λF
I , as well as a group type cardinality

interval λG
T (f) ∈ L by a function λG

T , and a group instance cardinality interval
λG
I (f) ∈ L by a function λG

I . Both λG
T (f) and λG

I (f) define cardinality intervals
on the set of direct sub-features of feature f with respect to ≺F , hence we do
not allow multiple direct sub-groups below one feature node. Furthermore, we
require for every non-leaf feature f ∈ F λF

I (f), as well as λG
T (f) and λG

I to
be properly defined, even if f only contains a singleton sub-feature f ′, e.g.,
by assuming default group cardinality constraints λG

T (f) = (0, 1) and λG
I (f) =

(0, *). Cross-tree edges consist of four components, i.e., the source feature and the
target feature and corresponding cardinality annotations restricting the number
of feature instances. Due to the binary nature of cross-tree edges, cardinality
intervals referring to feature types are meaningless and, therefore, not supported.

Definition 2 (CFM). A cardinality-based feature model (CFM) defined over
a non-empty, finite set F is a tuple (≺F , λF

I , λG
T , λG

I , ΦR, ΦX), where

– ≺F⊆ F × F is a feature decomposition relation,
– λF

I : F → L is a feature instance cardinality function,
– λG

T : F → L is a feature group type cardinality function,
– λG

I : F → L is a feature group instance cardinality function,
– ΦR ⊆ F × L × L × F is a feature instance require-edge cardinality relation,
– ΦX ⊆ F × L × L × F is a feature instance exclude-edge cardinality relation.

For a CFM to be syntactically well-formed, it must satisfy further properties.

– ≺F forms a finite rooted tree on F , i.e., ≺+
F is a strict partial order on F with

root feature fr ∈ F as unique minimal element, and for each f ∈ F , f �= fr,
there is exactly one direct predecessor node f ′ ∈ F with f ′ ≺F f .

– Root feature fr is a mandatory single-instance feature, i.e., λF
I (fr) = (1, 1).

– Leaf nodes have empty group cardinality intervals, i.e., for each f ∈ F with
� ∃f ′ ∈ F : f ≺F f ′, λI

G(f) = λT
G(f) = (0, 0) holds.

Further well-formedness criteria may be imposed, e.g., forbidding * as upper
bound for feature group type cardinality. However, these and far more compli-
cated cases are comprehensively treated by the normal form in Definition 6.

Obviously, CFM syntax constitutes a conservative extension to FODA fea-
ture diagrams [14,30]. However, concerning CFM semantics, the structure of
valid CFM configurations essentially differs from FODA configurations. In par-
ticular, a CFM configuration not only contains information about the presence,
or absence of features, but also the number of instances selected for each feature,
as well as their memberships to the cloned sub-tree related to its parent feature
instance. In this regard, one crucial semantic consideration for CFM concerns the
interpretation of cardinality intervals restricting the number of feature instances.
As already pointed out by Michel et al. in [26], one may either apply a local,
or a global interpretation. For illustration purposes, we use the artificial CFM
in Fig. 2 with sample configurations C1, C2, C3, and C4. Each feature instance
constitutes the root of a (recursively) cloned sub-tree which can be configured

Anomaly Detection for Cardinality-Based Feature Models 163

fo

f1 f2

f4

f2

f4

C1 C3

f1
f1

fo

f2f2

f4f4

f1
f1

f1
f1

f1
f1

fo

f2f2

f4

f1
f1

f1
f1

f4
f4

f1
f1

fo

f2f2

f4

f1
f1

f1
f1

f4
f4

C4C2

Fig. 2. CFM with sample configurations

individually for that instance. Considering, e.g., the require-edge from f4 to f1,
a global interpretation would require this constraint to hold for the entire set of
selected feature instances of f4 and f1, whereas in case of a local interpretation,
the constraint must hold for every individual sub-tree clone. As a result, C1 is
invalid in case of a global interpretation, as the overall number of instances of
f4 is 2, but there is only one instance of f1 in C1. Hence, C2 is valid as the
overall number of instances of f4 is 3 and, therefore, the precondition of the
require-edge does not hold. C3 is also valid as a sufficient number of instances
of f1 is selected. In contrast, in case of a local interpretation, C1, C2, and C3

are all valid as either the precondition of the require-edge is not satisfied by any
sub-tree clone of f2 (C1 and C3), or the number of instances of f1 is sufficient
(C2). Finally, although C2 and C4 have the same number of instances of each
feature type, C2 is valid for both interpretations, whereas C4 is invalid in both
cases as the feature instance cardinality of f4 is violated. This example shows
that the membership of feature instances to their corresponding parent feature
instance sub-tree clones is a crucial part of CFM configuration semantics.

Here, we apply the global interpretation, constituting – in our opinion –
the more intuitive and graspable CFM semantics. CFM configuration semantics
characterizes those valid feature sub-tree copies with corresponding parent-child
feature instance dependencies satisfying all cardinality constraints. Our CFM
semantics is based on multi-sets M over set F to denote the number of feature
instances selected in a configuration. A multi-set M : F → N0 over set F defines
a mapping from each element f ∈ F onto a natural number k = M(f), defining
the multiplicity of f , where k = 0 denotes absence of f in M . We write fk

i ∈
M , 1 ≤ k ≤ M(fi) for short to refer to the kth instance of feature fi ∈ F
within multi-set M with M(fi) > 0. Furthermore, given a compound interval
L = {(l1, u1), (l2, u2), . . . , (ln, un)} ∈ L and k ∈ N0, we write k
 L if (li, ui) ∈ L
such that li ≤ k ≤ ui holds. We further denote a relation ≺M

F ⊆ M × M on
multi-set M , relating child feature instances to parent feature instances.

Definition 3 (CFM Configuration). A configuration of a cardinality-based
feature model (≺F , λF

I , λG
I , λG

T , ΦR, ΦX) defined over a set F is a pair (M,≺M
F).

A configuration (M,≺M
F) is valid iff

– M(fr) = 1,
– if fk

i ≺M
F f l

j then fi ≺F fj and (≺M
F)+ forms a rooted tree on M ,

164 M. Weckesser et al.

– if fk
i ∈ M , then for each fj ∈ F with fi ≺F fj it holds that |{f l

j ∈ M |fk
i ≺M

F

f l
j}|
 λI

F (fj),
– if fk

i ∈ M , then it holds that |{f l
j ∈ M |fk

i ≺M
F f l

j}|
 λI
G(fi),

– if fk
i ∈ M , then it holds that |{fj ∈ F |∃f l

j ∈ M : fk
i ≺M

F f l
j}|
 λF

G(fi),
– if (fi, Li, Lj , fj) ∈ ΦR and M(fi)
 Li then M(fj)
 Lj, and
– if (fi, Li, Lj , fj) ∈ ΦX and M(fi)
 Li then M(fj) �
 Lj and vice versa.

By �CFM �, we refer to the set of all valid configurations of CFM.

2.2 Analysis of Cardinality-Based Feature Models

We are now able to characterize fundamental validity properties of CFM. In
particular, we define consistency of CFM in terms of the absence of inconsistent
cardinality constraints. By including * as cardinality bound, CFM allow to select
an a-priori unbounded number of feature instances and, therefore, a potentially
infinite number of configurations.

Definition 4 (Consistent and Bounded CFM). A CFM is consistent iff it
holds that �CFM � �= ∅. A CFM is bounded iff * does not occur in a cardinality
annotation. A CFM is false unbounded iff * occurs in at least one cardinality
annotation and |�CFM �| < ∞ holds, and CFM is unbounded, else.

False unboundedness is one example for an undesirable CFM property going
beyond syntactic well-formedness criteria. To generalize, we recall the notion of
anomaly to summarize undesirable semantic CFM properties. For FODA feature
models, several types of anomalies and accompanying validation techniques have
been proposed, e.g., dead features and false optional features [6]. First proposals
exist to lift the anomaly notion also to CFM, e.g., dead cardinality anomaly [30].

Definition 5 (Dead Feature Instance Cardinality). k
 λI
F (fi) is a dead

feature instance cardinality of fi ∈ F , if no (M,≺M
F) ∈ �CFM � with fk

j ∈ M

and fj ≺F fi exists such that |{f l
i ∈ M |fk

j ≺M
f f l

i}| = k holds.

For other kinds of cardinality intervals of a CFM, the notion of dead cardi-
nality can be defined, accordingly. Hence, for a feature f to be dead in a CFM,
every cardinality k
 λI

F (fi) must be dead, thus the actual feature cardinality
instance interval of f is (0, 0), and a CFM is inconsistent if all features are dead.

The example in Fig. 2 exhibits several subtle cases of CFM anomalies. For
example, the group instance cardinality 〈1, *〉 of f0 is false unbounded as the
maximum number of possible child-feature instances is 11. The same holds for
the interval 〈1, *〉 on the right-hand side of the exclude-edge between f1 and
f2 whose upper bound is actually limited to 2. In contrast, feature f5 is truly
unbounded thus making the entire CFM unbounded. Besides (false) unbounded
intervals, this CFM contains further anomalies concerning bounded cardinality
intervals. The lower bound 1 of the group instance cardinality interval 〈1, *〉
of f0 is a dead cardinality, as at least one instance of both f1 and f2 must

Anomaly Detection for Cardinality-Based Feature Models 165

be selected. Thus, lower bound 1 of group type cardinality [1, 3] of f0 is also
dead. In addition, the lower bound of the target feature node cardinality interval
〈2, 6〉 of the require-edge from f4 to f1 is actually 6 instead of 2. Besides CFM
anomalies affecting upper and/or lower bounds of cardinality intervals, a dead
cardinality might be also located within intervals, thus imposing interval gaps.
For example, the group instance cardinality of f0 contains a gap at (6, 6) as no
valid combination of feature instances of f1, f2, and f3 with an overall number
of 6 is possible. As an even more subtle case, feature instance cardinality interval
〈1, 7〉 of f1 contains the interval gap (2, 5).

Due to the predominant role of cardinality constraints in CFM, any kind of
potential semantic inconsistency can be explained through dead cardinality. To
this end, we define a normal form for any given CFM by narrowing its declared
cardinality intervals down to the actual ones, while preserving its feature-tree
layout and configuration semantics. In case of gaps, closed interval declarations
can be replaced by compound intervals, e.g., replacing group instance interval
(1, ∗) of f0 in Fig. 2 by {(2, 5), (7, 11)}. In this way, a normal form CFM charac-
terizes all dead cardinality anomalies compared to the original model CFM by
means of those (sub-)ranges of feature cardinality intervals being removed from
CFM to obtain CFM. Hence, a CFM with * occurring in some cardinality inter-
val, but having no * in its normal form is false unbounded. Furthermore, if a given
CFM is inconsistent, all feature cardinality intervals of CFM are narrowed down
to (0, 0) (if we permit λI

F (fr) = (0, 0)). Finally, to handle redundant cross-tree
edges, we have to allow removals of edges from CFM to obtain a semantically
equivalent normal form CFM. For example, the precondition of the require-edge
leading from f3 to f2 in Fig. 2 is not satisfiable thus making this edge redun-
dant in CFM. To formalize CFM normal form, we define an inclusion hierarchy
relation �⊆ L × L as

L � L′ :⇔ ∀k ∈ N0 : k
 L ⇒ k
 L′

thus requiring L to be a sub-range of L′.

Definition 6 (CFM Normal Form). CFM is a normal form of CFM if

– �CFM � = �CFM �,
– F = F , ≺F =≺F , ΦR ⊆ ΦR, ΦX ⊆ ΦX , and
– for each fi, fj ∈ F , λ

F

I (fi), λ
G

T (fi), λ
G

I (fi), as well as Li and Lj in each
(fi, Li, Lj , fj) ∈ ΦR and (fi, Li, Li, fj) ∈ ΦX are minimal with respect to �.

Applied to the CFM in Fig. 2, the resulting normal form is shown in Fig. 3(a).
The following property is a direct consequence of Definitions 5 and 6.

Theorem 1. For any CFM according to Definition 2, a normal form CFM exists
and CFM contains no dead cardinality.

In contrast, a normal form is, in general, not unique as removals of (mutually
depending) redundant cross-tree edges may yield ambiguous results. A proce-
dure for computing normal forms would allow for automatically consolidating

166 M. Weckesser et al.

Fig. 3. Sample CFM normal and ILP encoding of CFM semantics

and validating CFM, e.g., during domain analysis. However, constraint-solvers
for SAT and CSP, usually used for validating FODA feature models, are not
applicable for CFM validation due to the potentially unbounded search space.

3 Automated Anomaly Detection for CFM

We observe two potential causes for anomalies in CFM during normal form
computation due to faulty declarations of cardinality intervals: (1) unsatisfi-
able lower/upper bounds (including false unbounded), and (2) unsatisfiable sub-
ranges (gaps). For (1), we encode CFM semantics in an ILP representation and
use a respective ILP-solver for bound analysis, whereas for (2), we apply an
SMT-solver to find interval gaps. To keep the presentation concise, we focus
our considerations on input models CFM with non-compound cardinality inter-
vals L ∈ I.

Analysis of Interval Bounds. An ILP consists of a set of linear inequalities on
a set of k integer-valued decision variables. The resulting convex hull forms the
feasible region within a k-dimensional search space. An objective function states
that either lower (minimum), or upper (maximum) boundary integer values for
decision variables should be found by an ILP-solver. Encoding CFM semantics
as ILP thus enables automated detection of dead cardinality potentially located
at the boundary of cardinality intervals.

The ILP encoding of the CFM from Fig. 2 is given in Fig. 3(b). As decision
variables, we introduce for each feature fi ∈ F a feature multiplicity variable
fi ∈ N0, denoting the number M(fi) of instances of type fi being selected, and
a feature selection variable ti ∈ {0, 1}, denoting whether at least one instance
of fi is selected in a CFM configuration. Consistency between variables fi and
corresponding variables ti is enforced by constraints M · ti ≥ fi and ti ≤ fi
for all fi ∈ F , (cf. 2 in Fig. 3(b)). Here, we incorporate a coefficient M ,

Anomaly Detection for Cardinality-Based Feature Models 167

frequently referred to as big M in the literature [37], by means of a sufficiently
large number for coupling binary variables ti to integer variables fi. Coefficient
M is conservatively approximated by multiplying the maximum upper bounds of
cardinality intervals occurring in each branch of the feature tree and choosing the
overall maximum value. The upper bound is derived from the syntactic context
of the cardinality interval under consideration. Occurrences of * are replaced
in the same way. Due to monotonicity of aggregated cardinality interval bound
values imposed by the CFM tree structure (cf. Definition 3), the restriction of
the ILP search space to M, therefore, yields correct analysis results also for
unbounded CFM.

To encode CFM semantics of feature instance cardinality intervals and sub-
tree cloning, we introduce inequalities l · fi ≤ fj ≤ u · fi for all parent-child pairs
fi ≺F fj and (l, u) = λI

F (fj) for child feature fj ∈ F (cf. 3 in Fig. 3(b)). The
inequality restricting the upper bound u is only introduced if u is bounded which
does not hold, e.g., for feature f5 in our example. For root feature fr (denoted
f0), we have a special constraint f0 = 1. For group instance cardinality intervals,
we introduce inequalities

l · fi ≤
∑

fi∈F :fi≺F fj

fj ≤ u · fi

for all parent-child pairs fi ≺F fj and (l, u) = λI
G(fi) for parent feature fi ∈ F .

Again, in the unbounded case, we only restrict the lower bound. Semantics of
group type cardinality intervals can be encoded, accordingly. The resulting group
constraints for our example are depicted at 4 and 5 in Fig. 3(b), where the
constraint at 4 for f0 only contains one inequality due to unboundedness.

Finally, cross-tree edges constitute the most complicated part potentially
obstructing linearity of the ILP constraint set. To handle those cases, we use
additional decision variables by means of fresh interval selection variables rk ∈
{0, 1} denoting a particular interval being selected or not. For each cross-tree
edge (fi, Li, Lj , fj)k ∈ ΦY , Y ∈ {R,X}, we define inequalities for source and
target feature node intervals. For the source feature node fi, we introduce three
interval selection variables rk−1, rk, and rk+1 to encode selection conditions for
Li = (li, ui). We encode the lower bounds of matching conditions of interval
selection variables by

fi ≥ rk−1 + (li + 1) · rk + (ui + 2) · rk+1 − 1

and, for the upper bounds, by

fi ≤ (li − 1) · rk−1 + ui · rk + M · rk+1,

respectively. To this end, rk−1 indicates that the value of fi is below li, rk indi-
cates that the value of fi is within interval Li, and rk+1 indicates that value of fi
is above ui. If the source feature node cardinality interval is either unbounded,
or its lower bound equals 1, the inequality is adapted, accordingly. In addition,
the constraint ti = rk−1 + rk + rk+1 ensures the interval not be selected and

168 M. Weckesser et al.

deselected at the same time if fi is present. Applied to our example, the result-
ing encoding of source feature node cardinality intervals of the four cross-tree
edges is shown in Fig. 3(b) at 5.1 , 6.1 , 7.1 , and 8.1 . Due to symmetry of
exclude-edge semantics, target feature node cardinality intervals can be encoded
in the same way as shown at 8.2 . To ensure mutual exclusion, an inequality
such as at 8.3 is added for each exclude-edge. For encoding target feature
node cardinality intervals of require-edges (fi, Li, Lj , fj) ∈ ΦR with (lj , uj) = Lj ,
we introduce the constraint

lj − M · (1 − rk) ≤ fj ≤ uj + M · (1 − rk)

to ensure that if the source node condition holds (rk = 1), then fj is within Lj

(cf. 5.2 , 6.2 and 7.2 in Fig. 3(b)).
Based on this ILP encoding, CFM bound analysis can be performed for inter-

vals (l, u) ∈ I by employing a corresponding ILP objective function, i.e., either
minimization for lower bound analysis, or maximization for upper bound analy-
sis. In Fig. 3(b), we analyze the upper bound of the group instance cardinality
interval of f0 by using the objective function max f1 + f2 + f3 (cf. 1), which
returns 11. Considering unbounded cardinality intervals, we have two cases. In
case of false unbounded intervals, e.g., the upper bound of the group instance
cardinality of f0, the solver run returns a bounded result with an objective value
less than M . In case of a truly unbounded cardinality interval, e.g., the upper
bound of feature instance cardinality of f5, the solver either reports unbounded
but feasible, or returns a value equal to M . To sum up, ILP-based interval bound
analysis is sound in the sense that bounds of the search space reported feasible
do not contain any dead cardinality. Similarly, the technique is complete in the
sense that any dead cardinality at the bounds of the search space is detectable.

Detection of Interval Gaps. The ILP-based approach for interval-bound analy-
sis is not directly applicable for interval-gap analysis as gaps are, by definition,
not located at minima/maxima locations of the search space. For example, for
detecting the group instance cardinality interval gap at (6, 6) of f0 in Fig. 2,
we have to check whether (6, 6) is a feasible value for the corresponding fea-
ture multiplicity variables. Hence, detecting interval gaps does not constitute an
optimization problem, but rather a constraint satisfaction problem incorporat-
ing integer inequalities. To this end, an SMT-solver is applicable, being capable
of interpreting first-order logics equipped with linear Integer arithmetics theory
according to our ILP encoding of CFM semantics (cf. Fig. 3). For gap analysis,
every sub-range of all cardinality intervals of a CFM has to investigated, where
in case of unbounded intervals, analysis has to be performed up to M.

Normal Form Computation. We can now combine interval-bound analysis and
interval-gap analysis to compute CFM normal forms. By ILP(CFM,interval) we
denote ILP-solver calls to investigate a particular cardinality interval of CFM.
The call returns the actual lower and upper bound of that interval to poten-
tially replace the declared intervals within the normal form. For lower bounds
of cardinality intervals defined by λF

I , λG
I and λG

T , the result is either greater

Anomaly Detection for Cardinality-Based Feature Models 169

than, or equal to the declared lower bound. For upper bounds, the result is
either lower than, or equal to the declared upper bound. In case of unbounded
intervals, the call either returns a concrete value in case of false unboundedness,
or reports unboundedness. In case of infeasible intervals, the call returns (0, 0).
For interval-gap analysis, we denote SMT(CFM,interval,range) for respective
SMT-solver calls, where range is a sub-range of interval to be investigated. For
reducing the search space for gap detection, parameter range can be obtained
from ILP-based bound analysis. The SMT call reports invalid sub-ranges within
range leading to compound intervals within the normal form. Finally, for car-
dinality intervals Li, Lj of cross-tree edges (fi, Li, Lj , fj) ∈ ΦY , Y ∈ {R,X},
bound and gap analysis is, in general, performed as described above. In contrast,
infeasibility of source and/or target feature node intervals imposes incremental
removals of the corresponding edges from ΦY during normal form computation.

4 Experimental Evaluation

We implemented CFM bound analysis and gap detection in a tool providing
textual syntax for specifying input CFM models [33]. Here, we present evaluation
results gained from several experiments performed with our tool. We address the
following research questions.

(RQ1) Is CFM normal form computation applicable to real-world input models?
(RQ2) How does the size and complexity of CFM affect scalability of CFM

analysis?
(RQ3) How does the ILP-based feasibility check perform on FODA feature

models compared to a SAT-based satisfiability check?

To address (RQ1), we applied our tool to the real-world CFM in Fig. 1. To
address (RQ2) and (RQ3), we used synthetically generated CFM models by
extending the BeTTy tool [36] with cardinality interval generation capabilities
including adjustable maximum feature instance cardinality and unbounded inter-
val probability. We generated CFM by randomly varying all CFM generation cri-
teria using uniformly distributed random variables. Experiments were performed
on a Unix machine with Intel Core i5 (2,3 GHz, 8 GB RAM). For bound analysis,
we employed as ILP-solvers CPLEX [21], Gurobi [18], and GLPK [17]. For gap
detection, we used SMT-solver Z3 [27] and for (RQ3), we utilized Sat4j [24].

For (RQ1), we computed the normal form for the AR game CFM which
includes bound analysis for 27 intervals, thus requiring 54 ILP-solver calls. The
CPLEX ILP-solver took about 10 ms per call. Gap analysis included 27 intervals
which took about 15.71 s per call. The resulting normal form exposed a false
unbounded group instance interval anomaly for the Channels group, thus the
unbounded interval symbol * is replaced by 11.

Concerning (RQ2), we performed regression analysis to estimate influences
of model characteristics on CFM analysis performance metrics. To identify sig-
nificant coefficients, we applied multiple linear regression analysis on input data
sets by randomly varying all generation criteria. We applied t-tests to check

170 M. Weckesser et al.

Fig. 4. Evaluation results for (RQ2)

significance of regression coefficients. With significance level p < 0.05, we identi-
fied (a) number of features, and (b) cross-tree constraint ratio (CTCR), (c) ratio
of unbounded cardinality intervals, as well as (d) CFM feasibility as coefficients
with potentially high influences on run-time of ILP-based bound analysis. In
contrast, the influence of average number of feature instances is not significant.
Figure 4 contains the results of one bound analysis run for individual variation of
coefficients (a)–(d). The plots show that run-time of ILP-based bound analysis
is dominated by (a) and (b), as the size of the feature tree and the number of
cross-tree edges directly affects the number of decision variables and constraints.
The results show that ILP-based analysis of one particular bound for CFM with
5,000 features takes about 50 ms and thus about 21 min. for complete bound
analysis. This can be considered industrial strength. In contrast, for SMT-based
gap analysis, we were only able to obtain run-time analysis results for small-sized
(and mostly bounded) CFM up to at most 200 features. As expected, run-time
of SMT-based gap analysis tends to show exponential growth with increasing
average size of cardinality intervals. For (RQ3) we conducted multiple linear
regression to estimate influences of FODA feature model characteristics, i.e.,
with CFM restricted to cardinality intervals between 0 and 1, for comparing run-
time of satisfiability checks using SAT and ILP-solvers. We identified coefficients

Anomaly Detection for Cardinality-Based Feature Models 171

Fig. 5. Evaluation results for (RQ3)

number of features, CTCR and CFM feasibility as highly significant (p < 0.01).
For CPLEX, the maximum branching factor has no significant influence. As
shown in Fig. 4, the SAT-solver exhibits lower run-time metrics with increasing
model size compared to ILP. Nevertheless, ILP-solvers perform remarkably well,
with differences in run-time metrics by means of a constant factor only up to
models with 5,000 features (Fig. 5).

Threats to Validity. Threats to validity may arise from our experimental input
data selection. Concerning (RQ1), the cloud-based AR game is part of a major
research project and has already been used for experimental evaluation [31].
Similarly, our design choices for CFM syntax and semantics are derived from
requirements of cloud-domain experts. Concerning synthetic data for (RQ2) and
(RQ3), we employed the well-established BeTTy tool for generating FODA-like
feature trees, additionally augmented with cardinality intervals. The cardinality
interval test data is dimensioned according to characteristics of our case study in
order to obtain realistic models. To the best of our knowledge, there does neither
exist a fully-fledged CFM generator, nor related approaches for comprehensive
CFM analysis as in our approach. Hence, neither a qualitative, nor a quantitative
comparison to existing other approaches has been possible so far.

5 Related Work

Formalization of Cardinality-Based Feature Models. Riebisch et al. first propose
to extend FODA notation with UML-like multiplicities by means of feature group
cardinality [32]. Czarnecki et al. extend feature models with group and feature
cardinality, but forbid combinations of both [13]. Thereupon, Czarnecki et al.
define CFM semantics based on sub-tree clones and propose their translation
into a context-free grammar [14]. They also permit unbounded cardinality but
do no investigate their semantic impact. Quinton et al. introduce source and
target cardinality for require-edges [30]. However, their approach does neither
consider exclude-edges, nor combinations of feature instance and group cardinal-
ity. Quinton et al. also mention unbounded cardinality, but neither address it in

172 M. Weckesser et al.

CFM semantics, nor as part of CFM analysis. Michel et al. investigate semantic
ambiguities due to combinations of feature and group cardinality and distinguish
local clone-based from global feature-based interpretation of group type cardi-
nality intervals, being similar to our notion of group instance and group type
cardinality intervals [26]. However, they only consider global feature-based inter-
pretation being similar to our notion of group type cardinality intervals. Cordy
et al. allow combinations of feature and group cardinality, but for the latter only
consider group type cardinality intervals [12]. Again, neither Michel et al., nor
Cordy et al. handle unboundedness semantically and during CFM analysis.

Automated Analysis of Cardinality-Based Feature Models. Quinton et al. define
inconsistent CFM similar to our notion of dead cardinality anomaly and perform
inconsistency detection using CSP [28–30]. Cordy et al. in [12] and Zhang et al.
in [38] present BDD-based CFM consistency analysis. However, neither of these
approaches is able to handle unbounded configuration spaces and/or interval
gaps, nor provide a normal form for CFM.

Analyzing Models with Unbounded Cardinality. Other modeling languages also
employ the concept of cardinality to restrict instance multiplicities of model
entities. CVL [16] provide iterators to mimic cardinality in feature diagrams
including unbounded intervals, and the specification language Clafer combines
concepts from UML and feature modeling including group and feature instance
cardinality [2]. However, no systematic analysis of unbounded cardinality is pro-
vided yet. In addition, several approaches have been proposed for analyzing
multiplicities in UML class diagrams using Alloy [1], CSP [10], and ILP [15] but
none of them explicitly handles unboundedness. Balaban et al. present a graph-
based algorithm for tightening multiplicities in UML class diagrams [4]. How-
ever, the approach essentially differs from CFM normal form computation as no
(recursively) cloned sub-tree hierarchy, cross-tree edges and multiple cardinality
constraints per entities occur in class diagrams. Amongst others, Boufares et al.
consider inconsistency in cardinality constraints of data-base schema definitions
including unbounded cardinality, but do not take interval gaps into account [8].

6 Conclusion

We presented a comprehensive formalization of CFM configuration seman-
tics including unbounded cardinality intervals. We further presented evaluation
results gained from experiments conducted with our tool implementation for
computing normal forms of CFM. The results show the general applicability
and scalability of ILP-based bound analysis. For scalable gap analysis, we aim
at replacing the SMT-solver also by an ILP-solver in our future work. We also
plan to conduct further experiments including real-world case studies and alter-
native CFM semantics [26]. For integrating CFM into a fully-fledged engineering
process with accompanying tool support, we plan to develop a methodology for
mapping feature instances to solution space artifacts as, e.g., propagated by
CVL [16].

Anomaly Detection for Cardinality-Based Feature Models 173

Acknowledgment. This work was partially supported by the DFG (German
Research Foundation) as part of projects B01 and C02 within CRC 1053 – MAKI
and under SPP 1593: Design For Future – Managed Software Evolution.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

2. B ↪ak, K., Czarnecki, K., W ↪asowski, A.: Feature and meta-models in Clafer: mixed,
specialized, and coupled. In: Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 102–122. Springer, Heidelberg (2011)

3. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 1–35 (2014)

4. Balaban, M., Maraee, A.: Simplification and correctness of UML class diagrams –
focusing on multiplicity and aggregation/composition constraints. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 454–470. Springer, Heidelberg (2013)

5. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

7. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005)

8. Boufares, F., Bennaceur, H.: Consistency problems in ER-schemas for database
systems. Inf. Technol. 163(4), 263–274 (2004)

9. Bürdek, J., Lity, S., Lochau, M., Berens, M., Goltz, U., Schürr, A.: Staged config-
uration of dynamic software product lines with complex binding time constraints.
In: VaMoS 2014, pp. 16: 1–16: 8 (2014)

10. Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite model reasoning
on UML class diagrams via constraint programming. In: Basili, R., Pazienza, M.T.
(eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 36–47. Springer, Heidelberg (2007)

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc, Boston (2001)

12. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Beyond boolean product-line
model checking: dealing with feature attributes and multi-features. In: ICSE 2013,
pp. 472–481 (2013)

13. Czarnecki, K., Helsen, S.: Staged configuration using feature models. In: Nord,
R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

14. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Softw. Process Improv. Pract. 10(1), 7–29 (2005)

15. Falkner, A., Feinerer, I., Salzer, G., Schenner, G.: Computing product configura-
tions via UML and integer linear programming. Int. J. Mass Customisation 3(4),
351–367 (2010)

16. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Svendsen, A., Zhang, X.: Standard-
izing variability – challenges and solutions. In: Ober, I., Ober, I. (eds.) SDL 2011.
LNCS, vol. 7083, pp. 233–246. Springer, Heidelberg (2011)

174 M. Weckesser et al.

17. GNU Linear Programming Kit, Version 4.55. http://www.gnu.org/software/glpk/
glpk.html

18. Gurobi Optimization, I.: Gurobi Optimizer Reference Manual (2015). http://www.
gurobi.com

19. Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R.,
Classen, A.: Evaluating formal properties of feature diagram languages. IET Softw.
2(3), 281–302 (2008)

20. Hubaux, A., Heymans, P., Schobbens, P.-Y., Deridder, D.: Towards multi-view
feature-based configuration. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010.
LNCS, vol. 6182, pp. 106–112. Springer, Heidelberg (2010)

21. IBM ILOG CPLEX V12.6 User’s Manual for CPLEX. IBM Corp. (2015). http://
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

22. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, S.A.: Feature oriented
domain analysis (FODA). Technical report, CMU (1990)

23. Karataş, A.S., Oğuztüzün, H., Doğru, A.: Mapping extended feature models to
constraint logic programming over finite domains. In: Bosch, J., Lee, J. (eds.)
SPLC 2010. LNCS, vol. 6287, pp. 286–299. Springer, Heidelberg (2010)

24. Le Berre, D., Parrain, A.: The Sat4j Library, Release 2.2. J. Satisfiability Boolean
Model. Comput. 7, 59–64 (2010)

25. Mendonça, M., Wasowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: 13th SPLC, pp. 231–240 (2009)

26. Michel, R., Classen, A., Hubaux, A., Boucher, Q.: A formal semantics for feature
cardinalities in feature diagrams. In: VaMoS 2011, pp. 82–89 (2011)

27. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

28. Quinton, C., Romero, D., Duchien, L.: Automated selection and configuration of
cloud environments using software product lines principles. In: IEEE Cloud 2014,
pp. 144–151 (2014)

29. Quinton, C., Pleuss, A., Berre, D.L., Duchien, L., Botterweck, G.: Consistency
checking for the evolution of cardinality-based feature models. In: SPLC 2014, pp.
122–131 (2014)

30. Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with con-
straints: a pragmatic approach. In: SPLC 2013, pp. 162–166 (2013)

31. Richerzhagen, B., Stingl, D., Hans, R., Groß, C., Steinmetz, R.: Bypassing the
cloud: peer-assisted event dissemination for augmented reality games. In: P2P 2014,
pp. 1–10 (2014)

32. Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending feature diagrams
with UML multiplicities. In: 6th World Conference on Integrated Design & Process
Technology (IDPT) (2002)

33. Schnabel, T., Weckesser, M., Kluge, R., Lochau, M., Schürr, A.: CardyGAn: tool
support for cardinality-based feature models. In: VaMoS 2016 (2016) (to appear)

34. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: a survey and a
formal semantics. In: Proceedings of RE 2006, pp. 139–148 (2006)

35. Schroeter, J., Mucha, P., Muth, M., Jugel, K., Lochau, M.: Dynamic configuration
management of cloud-based applications. In: SPLC 2012, pp. 171–178 (2012)

36. Segura, S., Galindo, J., Benavides, D., Parejo, J., Ruiz-Cortés, A.: BeTTy: bench-
marking and testing on the automated analysis of feature models. In: VaMoS 2012,
pp. 63–71 (2012)

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.gurobi.com
http://www.gurobi.com
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Anomaly Detection for Cardinality-Based Feature Models 175

37. Williams, H.P.: Model Building in Mathematical Programming. John Wiley &
Sons, Hoboken (2013)

38. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-
enabled feature models’ constraints and customization. In: Mei, H. (ed.) ICSR
2008. LNCS, vol. 5030, pp. 186–199. Springer, Heidelberg (2008)

	Mind the Gap! Automated Anomaly Detection for Potentially Unbounded Cardinality-Based Feature Models
	1 Introduction
	2 Cardinality-Based Feature Models
	2.1 Background
	2.2 Analysis of Cardinality-Based Feature Models

	3 Automated Anomaly Detection for CFM
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

