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Abstract. This paper contributes to a theory of the behaviour of “finite-
state” systems that is generic in the system type. We propose that such
systems are modeled as coalgebras with a finitely generated carrier for
an endofunctor on a locally finitely presentable category. Their behav-
iour gives rise to a new fixpoint of the coalgebraic type functor called
locally finite fixpoint (LFF). We prove that if the given endofunctor pre-
serves monomorphisms then the LFF always exists and is a subcoalgebra
of the final coalgebra (unlike the rational fixpoint previously studied by
Adámek, Milius and Velebil). Moreover, we show that the LFF is char-
acterized by two universal properties: 1. as the final locally finitely gen-
erated coalgebra, and 2. as the initial fg-iterative algebra. As instances
of the LFF we first obtain the known instances of the rational fixpoint,
e.g. regular languages, rational streams and formal power-series, regular
trees etc. And we obtain a number of new examples, e.g. (realtime deter-
ministic resp. non-deterministic) context-free languages, constructively
S-algebraic formal power-series (and any other instance of the general-
ized powerset construction by Silva, Bonchi, Bonsangue, and Rutten)
and the monad of Courcelle’s algebraic trees.

1 Introduction

Coalgebras capture many types of state based system within a uniform and math-
ematically rich framework [39]. One outstanding feature of the general theory
is final semantics which gives a fully abstract account of system behaviour. For
example, coalgebraic modelling of deterministic automata (without a finiteness
restriction on state sets) yields the set of all formal languages as a final model,
and restricting to finite automata one precisely obtains the regular languages
[38]. This correspondence has been generalized to locally finitely presentable
categories [8,20], where finitely presentable objects play the role of finite sets,
leading to the notion of rational fixpoint that provides final semantics to all mod-
els with finitely presentable carrier [30]. It is known that the rational fixpoint
is fully abstract (identifies all behaviourally equivalent states) as long as finitely
presentable objects agree with finitely generated objects in the base category
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[12, Proposition 3.12]. While this is the case in some categories (e.g. sets, posets,
graphs, vector spaces, commutative monoids), it is currently unknown in other
base categories that are used in the construction of system models, for exam-
ple in idempotent semirings (used in the treatment of context-free grammars
[43]), in algebras for the stack monad (used for modelling configurations of stack
machines [23]); or it even fails, for example in the category of finitary monads on
sets (used in the categorical study of algebraic trees [7]), or Eilenberg-Moore cat-
egories for a monad in general (the target category of generalized determinization
[41], in which the above examples live). Coalgebras over a category of Eilenberg-
Moore algebras over Set in particular provide a paradigmatic setting: automata
that describe languages beyond the regular languages consist of a finite state
set, but their transitions produce side effects such as the manipulation of a
stack. These can be described by a monad, so that the (infinite) set of system
states (machine states plus stack content) is described by a free algebra (for
that monad) that is generated by the finite set of machine states. This is for-
malized by the generalized powerset construction [41] and interacts nicely with
the coalgebraic framework we present.

Technically, the shortcoming of the rational fixpoint is due to the fact that
finitely presentable objects are not closed under quotients, so that the rational
fixpoint itself may fail to be a subcoalgebra of the final coalgebra and so identi-
fies too little behaviour. The main conceptual contribution of this paper is the
insight that also in cases where finitely presentable and finitely generated do
not agree, the locally finite fixpoint provides a fully abstract model of finitely
generated behaviour. We give a construction of the locally finite fixpoint, and
support our claim both by general results and concrete examples: we show that
under mild assumptions, the locally finite fixpoint always exists, and is indeed
a subcoalgebra of the final coalgebra. Moreover, we give a characterization of
the locally finite fixpoint as the initial iterative algebra. We then instantiate our
results to several scenarios studied in the literature.

First, we show that the locally finite fixpoint is universal (and fully abstract)
for the class of systems produced by the generalized powerset construction over
Set: every determinized finite-state system induces a unique homomorphism to the
locally finite fixpoint, and the latter contains precisely the finite-state behaviours.

Applied to the coalgebraic treatment of context-free languages, we show that
the locally finite fixpoint yields precisely the context-free languages, and real-
time deterministic context-free languages, respectively, when modelled using
algebras for the stack monad of [23]. For context-free languages weighted in
a semiring S, or equivalently for constructively S-algebraic power series [36], the
locally finite fixpoint comprises precisely those, by phrasing the results of Winter
et al. [44] in terms of the generalized powerset construction. Our last example
shows the applicability of our results beyond categories of Eilenberg-Moore alge-
bras over Set, and we characterize the monad of Courcelle’s algebraic trees over
a signature [7,16] as the locally finite fixpoint of an associated functor (on a
category of monads), solving an open problem of [7].

The work presented here is based on the third author’s master thesis in [45].
Most proofs are omitted; they can be found in the full version [33] of our paper.
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2 Preliminaries and Notation

Locally Finitely Presentable Categories. A filtered colimit is the colimit of
a diagram D → C where D is filtered (every finite subdiagram has a cocone in
D) and directed if D is additionally a poset. Finitary functors preserve filtered
(equivalently directed) colimits. Objects C ∈ C are finitely presentable (fp) if
the hom-functor C(C,−) preserves filtered (equivalently directed) colimits, and
finitely generated (fg) if C(C,−) preserves directed colimits of monos (i.e. colimits
of directed diagrams where all connecting morphisms are monic). Clearly any
fp object is fg, but not vice versa. Also, fg objects are closed under strong epis
(quotients) which fails for fp objects in general. A cocomplete category is locally
finitely presentable (lfp) if the full subcategory Cfp of finitely presentable objects
is essentially small, i.e. is up to isomorphism only a set, and every object C ∈ C
is a filtered colimit of a diagram in Cfp. We refer to [8,20] for further details.

It is well known that the categories of sets, posets and graphs are lfp with
finitely presentable objects precisely the finite sets, posets, graphs, respectively.
The category of vector spaces is lfp with finite-dimensional spaces being fp.
Every finitary variety is lfp (i.e. an equational class of algebras induced by finite-
arity operations or equivalently the Eilenberg-Moore category for a finitary Set-
Monad, see Sect. 4.1 later). The finitely generated objects are the finitely gener-
ated algebras, and finitely presentable objects are algebras specified by finitely
many generators and relations. This includes the categories of groups, monoids,
(idempotent) semirings, semi-modules, etc. Every lfp category has mono/strong
epi factorization [8, Proposition 1.16], i.e. every f factors as f = m · e with m
mono (denoted by �), e strong epi (denoted by �), and we call the domain
Im(f) of e the image of f . Any strong epi e has the diagonal fill-in property, i.e.
m · g = h · e with m mono and e strong epi gives a unique d such that m · d = h
and g = d · e.

Coalgebras. If H : C → C is an endofunctor, H-coalgebras are pairs (C, c) with
c : C → HC, and C is the carrier of (C, c). Homomorphisms f : (C, c) → (D, d)
are maps f : C → D such that Hf · c = d · f . This gives a category denoted by
CoalgH. If its final object exists then this final H-coalgebra (νH, τ) represents a
canonical domain of behaviours of H-typed systems, and induces for each (C, c)
a unique homomorphism, denoted by c†, giving semantics to the system (C, c).
The final coalgebra always exists provided C is lfp and H is finitary. The forgetful
functor CoalgH → C creates colimits and reflects monos and epis. A morphism
f in CoalgH is mono-carried (resp. epi-carried) if the underlying morphism in
C is monic (resp. epic). Strong epi/mono factorizations lift from C to CoalgH
whenever H preserves monos yielding epi-carried/mono-carried factorizations.
A directed union of coalgebras is the colimit of a directed diagram in CoalgH
where all connecting morphisms are mono-carried.

The Rational Fixpoint. For C lfp and H : C → C finitary let CoalgfpH denote
the full subcategory of CoalgH of coalgebras with fp carrier, and CoalglfpH the
full subcategory of CoalgH of coalgebras that arise as filtered colimits of coal-
gebras with fp carrier [30, Corollary III.13]. The coalgebras in CoalglfpH are
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called lfp coalgebras and for C = Set those are precisely the locally finite coal-
gebras (i.e. those coalgebras where every element is contained in a finite sub-
coalgebra). The final lfp coalgebra exists and is the colimit of the inclusion
CoalgfpH ↪→ CoalgH, and it is a fixpoint of H (see [6]) called the rational fix-
point of H. Here are some examples: the rational fixpoint of a polynomial set
functor associated to a finitary signature Σ is the set of rational Σ-trees [6],
i.e. finite and infinite Σ-trees having, up to isomorphism, finitely many subtrees
only, and one obtains rational weighted languages for Noetherian semirings S
for a functor on the category of S-modules [12], and rational λ-trees for a func-
tor on the category of presheaves on finite sets [2] or for a related functor on
nominal sets [34]. If the classes of fp and fg objects coincide in C, then the ratio-
nal fixpoint is a subcoalgebra of the final coalgebra [12, Theorem 3.12]. This is
the case in the above examples, but not in general, see [12, Example 3.15] for
a concrete example where the rational fixpoint does not identify behaviourally
equivalent states. Conversely, even if the classes differ, the rational fixpoint can
be a subcoalgebra, e.g. for any constant functor.

Iterative Algebras. If H : C → C is an endofunctor, an H-algebra (A, a :
HA → A) is iterative if every flat equation morphism e : X → HX + A where
X is an fp object has a unique solution, i.e. if there exists a unique e† : X → A
such that e† = [a, idA] · (He† +idA) ·e. The rational fixpoint is also characterized
as the initial iterative algebra [6] and is the starting point of the coalgebraic
approach to Elgot’s iterative theories [18] and to the iteration theories of Bloom
and Ésik [3,4,6,11].

3 The Locally Finite Fixpoint

The locally finite fixpoint can be characterized similarly to the rational fixpoint,
but with respect to coalgebras with finitely generated (not finitely presentable)
carrier. We show that the locally finite fixpoint always exists, and is a subcoalge-
bra of the final coalgebra, i.e. identifies all behaviourally equivalent states. As a
consequence, the locally finite fixpoint provides a fully abstract notion of finitely
generated behaviour. From now on, we rely on the following:

Assumption 3.1. Throughout the rest of the paper we assume that C is an lfp
category and that H : C → C is finitary and preserves monomorphisms.

As for the rational fixpoint, we denote the full subcategory of CoalgH comprising
all coalgebras with finitely generated carrier by CoalgfgH and have the following
notion of locally finitely generated coalgebra.

Definition 3.2. A coalgebra X
x−→ HX is called locally finitely generated (lfg)

if for all f : S → X with S finitely generated, there exist a coalgebra p : P → HP
in CoalgfgH, a coalgebra morphism h : (P, p) → (X,x) and some f ′ : S → P
such that h · f ′ = f . CoalglfgH ⊆ CoalgH denotes the full subcategory of lfg
coalgebras.
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Equivalently, one can characterize lfg coalgebras in terms of subobjects and
subcoalgebras, making it a generalization of of local finiteness in Set, i.e. the
property of a coalgebra that every element is contained in a finite subcoalgebra.

Lemma 3.3. X
x−→ HX is an lfg coalgebra iff for all fg subobjects S

f
X, there

exist a subcoalgebra h : (P, p) � (X,x) and a mono f ′ : S � P with h · f ′ = f ,
i.e. S is a subobject of P .

Proof. (⇒) Given some mono f : S � X, factor the induced h into some strong
epi-carried and mono-carried homomorphisms and use that fg objects are closed
under strong epis. (⇐) Factor f : S → X into an epi and a mono g : Im(f) � X
and use the diagonal fill-in property for g. ��
Evidently all coalgebras with finitely generated carriers are lfg. Moreover, lfg
coalgebras are precisely the filtered colimits of coalgebras from CoalgfgH.

Proposition 3.4. Every filtered colimit of coalgebras from CoalgfgH is lfg.

Proof (Sketch). One first proves that directed unions of coalgebras from
CoalgfgH are lfg. Now given a filtered colimit ci : Xi → C where Xi

are coalgebras in CoalgfgH, one epi-mono factorizes every colimit injection:

ci = (Xi Ti Cei mi ). Using the diagonalization of the factorization one sees
that the Ti form a directed diagram of subobjects of C. Furthermore C is the
directed union of the Ti and therefore an lfg coalgebra as desired. ��
Proposition 3.5. Every lfg coalgebra (X,x) is a directed colimit of its subcoal-
gebras from CoalgfgH.

Proof. Recall from [8, ProofIofTheorem 1.70] that X is the colimit of the diagram
of all its finitely generated subobjects. Now the subdiagram given by all sub-
coalgebras of X is cofinal. Indeed, this follows directly from the fact that (X,x)
is an lfg coalgebra: for every subobject S � X, S fg, we have a subcoalgebra of
(X,x) in CoalgfgH containing S. ��
Corollary 3.6. The lfg coalgebras are precisely the filtered colimits, or equiva-
lently directed unions, of coalgebras with fg carrier.

As a consequence, a coalgebra is final in CoalglfgF if there is a unique morphism
from every coalgebra with finitely generated carrier.

Proposition 3.7. An lfg coalgebra L is final in CoalglfgH iff for every for every
coalgebra X in CoalgfgH there exists a unique coalgebra morphism from X to L.

The proof is analogous to [30, Theorem 3.14]; the full argument can be found
in [33]. Cocompleteness of C ensures that the final lfg coalgebra always exists.

Theorem 3.8. The category CoalglfgH has a final object, and the final lfg coal-
gebra is the colimit of the inclusion CoalgfgH ↪→ CoalglfgH.
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Proof. By Corollary 3.6, the colimit of the inclusion CoalgfgH ↪→ CoalglfgH is
the same as the colimit of the entire CoalglfgH. And the latter is clearly the final
object of CoalglfgH. ��
This theorem provides a construction of the final lfg coalgebra collecting precisely
the behaviours of the coalgebras with fg carriers. In the following we shall show
that this construction does indeed identify precisely behaviourally equivalent
states, i.e. the final lfg coalgebra is always a subcoalgebra of the final coalgebra.
Just like fg objects are closed under quotients – in contrast to fp objects – we
have a similar property of lfg coalgebras:

Lemma 3.9. Lfg coalgebras are closed under strong quotients, i.e. for every
strong epi carried coalgebra homomorphisms X � Y, if X is lfg then so is Y.

The failure of this property for lfp coalgebras is the reason why the rational
fixpoint is not necessarily a subcoalgebra of the final coalgebra and in particu-
lar the rational fixpoint in [12, Example 3.15] is an lfp coalgebra for which the
property fails.

Theorem 3.10. The final lfg H-coalgebra is a subcoalgebra of the final H-
coalgebra.

Proof. Let (L, �) be the final lfg coalgebra. Consider the unique coalgebra mor-
phism L → νH and take its factorization:

(L, �) (I, i) (νH, τ)
e

id
m

i†
, with e strong epi in C.

By Lemma 3.9, I is an lfg coalgebra and so by finality of L we have the coalgebra
morphism i† such that idL = i† · e. It follows that e is monic and therefore
an iso. ��
In other words, the final lfg H-coalgebra collects precisely the finitely generated
behaviours from the final H-coalgebra. We now show that the final lfg coalgebra
is a fixpoint of H which hinges on the following:

Lemma 3.11. For any lfg coalgebra C
c−→ HC, the coalgebra HC

Hc−−→ HHC is lfg.

Proof. Consider f : S → HC with S finitely generated. As C is lfp we know
that HC is the colimit of its fg subobjects, and so f : S → HC factors through
some subobject inq : Q � HC with Q fg and f = inq · f ′. On the other hand,
(C, c) is lfg, i.e. the directed union of its subcoalgebras from CoalgfgH. Then,
since H is finitary and mono-preserving, HC

c−→ HHC is also a directed union
and the morphism inq : Q → HC factors through some HP

Hp−−→ HHP with
(P, p) ∈ CoalgfgH via inp : (P, p) � (C, c), i.e. H inp · q = inq. Finally, we can
construct a coalgebra with fg carrier

Q + P
[q,p]−−−→ HP

Hinr−−−→ H(Q + P )

and a coalgebra homomorphism H inp · [q, p] : Q + P → HC. In the diagram
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S HC HHC

HP HHP

Q Q + P HP H(Q + P )

f

f ′

Hc

Hp

H inp HHinp

inq

q

inl [q,p]

[q,p]

H inr

H[q,p]

H(H inp·[q,p])

every part trivially commutes, so H inp · [q, p] is the desired homomorphism. ��
So with a proof in virtue to Lambek’s Lemma [28, Lemma 2.2], we obtain the
desired fixpoint:

Theorem 3.12. The carrier of the final lfg H-coalgebra is a fixpoint of H.

We denote the above fixpoint by (ϑH, �) and call it the locally finite fixpoint
(LFF) of H. In particular, the LFF always exists under Assumption 3.1, provid-
ing a finitary corecursion principle.

Remark 3.13. As we mentioned in the introduction the rational fixpoint of the
finitary functor H is the initial iterative algebra for H. A similar algebraic char-
acterization is possible for the LFF. One simply replaces the fp object X in the
definition of a flat equation morphism by an fg object to obtain the notion of an
fg-iterative algebra.

Theorem 3.14. The LFF is the initial fg-iterative H-algebra.

For details, see the full version [33] of our paper or [45].

Relation to the Rational Fixpoint. There are examples, where the rational
fixpoint is not a subcoalgebra of the final coalgebra. In categories, where fp and
fg objects coincide, the rational fixpoint and the LFF coincide as well (cf. the
respective colimit-construction in Sect. 2 and Theorem 3.8). In this section we
will see, under slightly stronger assumptions, that fg-carried coalgebras are quo-
tients of fp-carried coalgebras, and in particular the locally finite fixpoint is a
quotient of the rational fixpoint: namely its image in the final coalgebra.

Assumption 3.15. In addition to Assumption 3.1, assume that in the base cat-
egory C, every finitely presentable object is a strong quotient of a finitely pre-
sentable strong epi projective object and that the endofunctor H also preserves
strong epis.

The condition that every fg object is the strong quotient of a strong epi projective
often is phrased as having enough strong epi projectives [14]. This assumption is
apparently very strong but still is met in many situations:

Example 3.16

– In categories in which all (strong) epis are split, every object is projective and
any endofunctor preserves epis, e.g. in Set or VecK .
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– In the category of finitary endofunctors Funf(Set), all polynomial functors
are projective. The finitely presentable functors are quotients of polynomial
functors HΣ , where Σ is a finite signature.

– In the Eilenberg-Moore category SetT for a finitary monad T , strong epis are
surjective T -algebra homomorphisms, and thus preserved by any endofunctor.
In SetT , every free algebra TX is projective; this is easy to see using the
projectivity of X in Set. Every finitely generated object of SetT is a strong
quotient of some free algebra TX with X finite. For more precise definitions,
see Sect. 4.1 later.

Proposition 3.17. Every coalgebra in CoalgfgH is a strong quotient of a coal-
gebra with finitely presentable carrier.

Theorem 3.18. ϑH is the image of the rational fixpoint 	H in the final coalgebra.

Proof. Consider the factorization (	H, r)
e� (B, b)

m� (νH, τ). Since 	H is the
colimit of all fp carried H-coalgebras it is an lfg coalgebra by Proposition 3.4 using
that fp objects are also fg. Hence, by Lemma 3.9 the coalgebra B is lfg, too. By
Proposition 3.7 it now suffices to show that from every (X,x) ∈ CoalgfgH there
exists a unique coalgebra morphism into (B, b). Given (X,x) in CoalgfgH, it is the
quotient q : (P, p) � (X,x) of an fp-carried coalgebra by Proposition 3.17. Hence,
we obtain a unique coalgebra morphism p† : (P, p) → (	H, r). By finality of νH,
we have m ·e ·p† = x† ·q (with x† : (X,x) → (νH, τ)). So the diagonal fill-in prop-
erty induces a homomorphism (X,x) → (B, b), being the only homomorphism
(X,x) → (B, b) by the finality of νH and because m is monic. ��

4 Instances of the Locally Finite Fixpoint

We will now present a number of instances of the LFF. First note, that all the
known instances of the rational fixpoint (see e.g. [6,12,30] are also instances
of the locally finite fixpoint, because in all those cases the fp and fg objects
coincide. For example, the class of regular languages is the rational fixpoint of
2× (−)Σ on Set. In this section, we will study further instances of the LFF that
are most likely not instances of the rational fixpoint and which – to the best of
our knowledge – have not been characterized by a universal property yet:

1. Behaviours of finite-state machines with side-effects as considered by the gen-
eralized powerset construction (cf. Sect. 4.1), particularly the following.
(a) Deterministic and ordinary context-free languages obtained as the behav-

iours of deterministic and non-deterministic stack-machines, respectively.
(b) Constructively S-algebraic formal power series, i.e. the “context-free” sub-

class of weighted languages with weights from a semiring S, yielded from
weighted context-free grammars.

2. The monad of Courcelle’s algebraic trees.
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4.1 Generalized Powerset Construction

The determinization of a non-deterministic automaton using the powerset con-
struction is an instance of a more general framework, described by Silva, Bonchi,
Bonsangue, and Rutten [41] based on an observation by Bartels [10] (see also
Jacobs [26]). In that generalized powerset construction, an automaton with side-
effects is turned into an ordinary automaton by internalizing the side-effects in
the states. The LFF interacts well with this construction, because it precisely
captures the behaviours of finite-state automata with side effects. The notion of
side-effect is formalized by a monad, which induces the category, in which the
LFF is considered.

In the following we assume that readers are familiar with monads and
Eilenberg-Moore algebras (see e.g. [29] for an introduction). For a monad T
on C we denote by CT the category of Eilenberg-Moore algebras. Recall from [8,
Corollary 2.75] that if C is lfp (in most of our examples C is Set) and T is finitary
then CT is lfp, too, and for every fp object X the free Eilenberg-Moore algebra
TX is fp in CT . In all the examples we consider below, the classes of fp and fg
objects either provably differ or it is still unknown whether these classes coincide.

Example 4.1. In Sects. 4.4 and 4.5 we are going to make use of Moggi’s exception
monad transformer (see e.g. [15]). Let us recall that for a fixed object E, the
finitary functor (−) + E together with the unit ηX = inl : X → X + E and
multiplication μX = idX + [idE , idE ] : X + E + E → X + E form a finitary
monad, the exception monad. Its algebras are E-pointed objects, i.e. objects
X, together with a morphism E → X, and homomorphisms are morphisms
preserving the pointing. So the induced Eilenberg-Moore category is just the
slice category C(−)+E ∼= E/C.

Now, given any monad T we obtain a new monad T (− + E) with obvious
unit and multiplication. An Eilenberg-Moore algebra for T (− + E) consists of
an Eilenberg-Moore algebra for T and an E-pointing, and homomorphisms are
T -algebra homomorphisms preserving the pointing [25].

Now an automaton with side-effects is modelled as an HT -coalgebra, where
T is a finitary monad on C providing the type of side-effect. For example, for
HX = 2×XΣ , where Σ is an input alphabet, 2 = {0, 1} and T the finite powerset
monad on Set, HT -coalgebras are non-deterministic automata. However, the
coalgebraic semantics using the final HT -coalgebra does not yield the usual
language semantics of non-deterministic automata. To obtain this one considers
the final coalgebra of a lifting of H to CT . Denote by U : CT → C the canonical
forgetful functor.

Definition 4.2. For a functor H : C → C and a monad T : C → C, a lifting of
H is a functor HT : CT → CT such that H · U = U · HT .

If such a (not necessarily unique) lifting exists, the generalized powerset con-
struction transforms an HT -coalgebra into a HT -coalgebra on CT : For a coal-
gebra x : X → HTX, HTX carries an Eilenberg-Moore algebra, and one uses
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freeness of the Eilenberg-Moore algebra TX to obtain a canonical T -algebra
homomorphism x� : (TX, μT ) → HT (TX, μT ). The coalgebraic language seman-
tics of (X,x) is then given by X

ηX−−→ TX
x�†
−−→νHT , i.e. by composing the unique

coalgebra morphism induced by x� with ηX . This construction yields a func-
tor T ′ : Coalg(HT ) → CoalgHT mapping coalgebras X

x−→ HTX to x� and
homomorphisms f to Tf (see e.g. [12, ProofofLemma 3.27] for a proof).

Now our aim is to show that the LFF of HT characterizes precisely the
coalgebraic language semantics of all fp-carried HT -coalgebras. As the right
adjoint U preserves monos and is faithful, we know that HT preserves monos,
and as T is finitary, filtered colimits in CT are created by the forgetful functor to
C, and we therefore see that HT is finitary. Thus, by Theorem3.8, ϑHT exists
and is a subcoalgebra of νHT . By [37] and [10, Corollary 3.4.19], we know that
νHT is carried by νH equipped with a canonical algebra structure.

Now let us turn to the desired characterization of ϑHT . Formally, the coalge-
braic language semantics of all fp-carried HT -coalgebras is collected by forming

the colimit k : K → HK of the diagram CoalgfgHT
T ′
−→ CoalgHT U−→ CoalgH.

This coalgebra K is not yet a subcoalgebra of νH (for C = Set that means, not
all behaviourally equivalent states are identified in K), but taking its image in
νH we obtain the LFF:

Proposition 4.3. The image (I, i) of the unique coalgebra morphism k† : K →
νHT is precisely the locally finite fixpoint of the lifting HT .

One can also directly take the union of all desired behaviours, for C = Set:

Theorem 4.4. The locally finite fixpoint of the lifting HT comprises precisely
the images of determinized HT -coalgebras:

ϑHT =
⋃

x:X→HTX
X finite

x�†[TX] =
⋃

x:X→HTX
X finite

x�† · ηT
X [X] ⊆ νHT . (1)

This result suggests that the locally finite fixpoint is the right object to consider
in order to represent finite behaviour. We now instantiate the general theory
with examples from the literature to characterize several well-known notions as
LFF.

4.2 The Languages of Non-deterministic Automata

Let us start with a simple standard example. We already mentioned that non-
deterministic automata are coalgebras for the functor X 
→ 2 × Pf(X)Σ . Hence
they are HT -coalgebras for H = 2 × (−)Σ and T = Pf the finite powerset
monad on Set. The above generalized powerset construction then instantiates
as the usual powerset construction that assigns to a given non-deterministic
automaton its determinization.

Now note that the final coalgebra for H is carried by the set L = P(Σ∗) of
all formal languages over Σ with the coalgebra structure given by o : L → 2 with
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o(L) = 1 iff L contains the empty word and t : L → LΣ with t(L)(s) = {w |
sw ∈ L} the left language derivative. The functor H has a canonical lifting HT

on the Eilenberg-Moore category of Pf, viz. the category of join semi-lattices.
The final coalgebra νHT is carried by all formal languages with the join semi-
lattice structure given by union and ∅ and with the above coalgebra structure.
Furthermore, the coalgebraic language semantics of x : X → HTX assigns
to every state of the non-deterministic automaton X the language it accepts.
Observe that join semi-lattices form a so-called locally finite variety, i.e. the
finitely presentable algebras are precisely the finite ones. Hence, Theorem 4.4
states that the LFF of HT is precisely the subcoalgebra of νHT formed by all
languages accepted by finite NFA, i.e. regular languages.

Note that in this example the LFF and the rational fixpoint coincide since
both fp and fg join semi-lattices are simply the finite ones. Similar character-
izations of the coalgebraic language semantics of finite coalgebras follow from
Theorem 4.4 in other instances of the generalized powerset construction from [41]
(cf. e.g. the treatment of the behaviour of finite weighted automata in [12]).

We now turn to examples that, to the best of our knowledge, cannot be
treated using the rational fixpoint.

4.3 The Behaviour of Stack Machines

Push-down automata are finite state machines with infinitely many configu-
rations. It is well-known that deterministic and non-deterministic pushdown
automata recognize different classes of context-free languages. We will character-
ize both as instances of the locally finite fixpoint, using the results from [23] on
stack machines, which can push or read multiple elements to or from the stack
in a single transition, respectively.

That is, a transition of a stack machine in a certain state consists of reading an
input character, going to a successor state based on the stack’s topmost elements
and of modifying the topmost elements of the stack. These stack operations are
captured by the stack monad.

Definition 4.5 (Stack monad, [22, Proposition 5]). For a finite set of stack
symbols Γ , the stack monad is the submonad T of the store monad (− × Γ ∗)Γ ∗

for which the elements 〈r, t〉 of TX ⊆ (X × Γ ∗)Γ ∗ ∼= XΓ ∗ × (Γ ∗)Γ ∗
satisfy the

following restriction: there exists k depending on r, t such that for every w ∈ Γ k

and u ∈ Γ ∗, r(wu) = r(w) and t(wu) = t(w)u.

Note that the parameter k gives a bound on how may of the topmost stack cells
the machine can access in one step.

Using the stack monad, stack machines are HT -coalgebras, where H = B ×
(−)Σ is the Moore automata functor for the finite input alphabet Σ and the set
B of all predicates mapping (initial) stack configurations to output values from
2, taking only the topmost k elements into account: B = {p ∈ 2Γ ∗ | ∃k ∈ N0 :
∀w, u ∈ Γ ∗, |w| ≥ k : p(wu) = p(w)} ⊆ 2Γ ∗

.
The final coalgebra νH is carried by BΣ∗

which is (modulo power laws) a
set of predicates, mapping stack configurations to formal languages. Goncharov
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et al. [23] show that H lifts to SetT and conclude that finite-state HT -coalgebras
match the intuition of deterministic pushdown automata without spontaneous
transitions. The languages accepted by those automata are precisely the real-
time deterministic context-free languages; this notion goes back to Harrison and
Havel [24]. We obtain the following, with γ0 playing the role of an initial symbol
on the stack:

Theorem 4.6. The locally finite fixpoint of HT is carried by the set of all maps
f ∈ BΣ∗

such that for any fixed γ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a real-time
deterministic context-free language.

Proof. By [23, Theorem 5.5], a language L is a real-time deterministic context-free
language iff there exists some x : X → HTX, X finite, with its determinization
x� : TX → HTX and there exist s ∈ X and γ0 ∈ Γ such that f = x�† · ηT

X(s) ∈
BΣ∗

and f(w)(γ0) = 1 for all w ∈ Σ∗. The rest follows by (1). ��
Just as for pushdown automata, the expressiveness of stack machines increases
when equipping them with non-determinism. Technically, this is done by consid-
ering the non-deterministic stack monad T ′, i.e. T ′ denotes a submonad of the
non-deterministic store monad Pf(−×Γ ∗)Γ ∗

, as described in [23, Sect. 6]. In the
non-deterministic setting, a similar property holds, namely that the determinized
HT ′-coalgebras with finite carrier describe precisely the context-free languages
[23, Theorem 6.5]. Combine this with (1):

Theorem 4.7. The locally finite fixpoint of HT ′
is carried by the set of all maps

f ∈ BΣ∗
such that for any fixed γ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a context-

free language.

4.4 Context-Free Languages and Constructively S-Algebraic Power
Series

One generalizes from formal (resp. context-free) languages to weighted formal
(resp. context-free) languages by assigning to each word a weight from a fixed
semiring. More formally, a weighted language – a.k.a. formal power series – over
an input alphabet X is defined as a map X∗ → S, where S is a semiring. The set
of all formal power series is denoted by S〈〈X〉〉. Ordinary formal languages are
formal power series over the boolean semiring B = {0, 1}, i.e. maps X∗ → {0, 1}.

An important class of formal power series is that of constructively S-algebraic
formal power series. We show that this class arises precisely as the LFF of the
standard functor for deterministic Moore automata H = S × (−)Σ , but on an
Eilenberg-Moore category of a Set monad. As a special case, constructively B-
algebraic series are the context-free weighted languages and are precisely the
LFF of the automata functor in the category of idempotent semirings.

The original definition of constructively S-algebraic formal power series goes
back to Fliess [19], see also [17]. Here, we use the equivalent coalgebraic charac-
terization by Winter et al. [44].

Let S〈X〉 ⊆ S〈〈X〉〉 the subset of those maps, that are 0 for all but finitely
many w ∈ X∗. If S is commutative, then S〈−〉 yields a finitary monad and
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thus also T = S〈− + Σ〉 by Example 4.1. The algebras for S〈−〉 are associative
S-algebras (over the commutative semiring S), i.e. S-modules together with a
monoid structure that is a module morphism in both arguments. The algebras
for T are Σ-pointed S-algebras. The following notions are special instances of
S-algebras.

Example 4.8. For S = B = {0, 1}, one obtains idempotent semirings as B-
algebras, for S = N semirings, and for S = Z ordinary rings.

Winter et al. [44, Proposition 4] show that the final H-coalgebra is carried by
S〈〈Σ〉〉 and that constructively S-algebraic series are precisely those elements of
S〈〈Σ〉〉 that arise as the behaviours of those coalgebra c : X → HS〈X〉 with finite
X, after determinizing them to some c� : S〈X〉 → HS〈X〉 (see [44, Theorem 23]).

However, this determinization is not directly an instance of the generalized
powerset construction. We shall show that the same behaviours can be obtained
by using the standard generalized powerset construction with an appropriate
lifting of H to T -algebras. Having an S-algebra structure on A and a Σ-pointing
j : Σ → A we need to define another S-algebra structure and Σ-pointing on
HA = S ×AΣ . While the S-module structure is just point-wise, we need to take
care when multiplying two elements from HA. To this end we first we define the
operation [−,−] : S × AΣ → A by

[o, δ] := i(o) +
∑

b∈Σ

(
j(b) · δ(b)

)
,

where i : S → A is the canonical map with i(s) = s ·1 with 1 the neutral element
of the monoid on A. The idea is that [o, δ] acts like a state with output o and
derivation δ. The multiplication on HA = S × AΣ is then defined by

(o1, δ1) ∗ (o2, δ2) :=
(
o1 · o2, a 
→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

)
. (2)

The Σ-pointing is the obvious: a 
→ (0, 	a) where 	a(a) = 1 and 	a(b) = 0 for
a �= b.

Lemma 4.9. For any w ∈ A in SetT and any HT -coalgebra structure c : A →
HT A, w and [c(w)] are behaviourally equivalent in Set.

Given a coalgebra c : X → HS〈X〉, Winter et al. [44, Proposition 14] determinize
c to some ĉ = 〈ô, δ̂〉 : S〈X〉 → HS〈X〉 with the property that for any v, w ∈
S〈X〉,

ô(v ∗ w) = ô(v) · ô(w) and δ̂(v ∗ w, a) = δ̂(v, a) ∗ w + ô(v) ∗ δ̂(w, a), (3)

and such that ĉ is a S-module homomorphism. However, the generalized powerset
construction w.r.t. T yields a coalgebra c� : S〈X +Σ〉 → HS〈X +Σ〉. The above
property, together with Lemma 4.9 and (2) implies that ĉ and c� are essentially
the same coalgebra structures:
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Lemma 4.10. In Set, u ∈ (S〈X〉, ĉ) and S〈inl〉(u) ∈ (S〈X + Σ〉, c�) are behav-
iourally equivalent.

It follows that ĉ† = c�† · S〈inl〉 and thus their images in νH are identical. Hence,
a formal power series is constructively S-algebraic iff it is in the image of some
c�† · S〈inl〉, and by (1), iff it is in the locally finite fixpoint of HT .

4.5 Courcelle’s Algebraic Trees

+
z +

×
� z

+
×

� ×
� z

...

Fig. 1. Solution of
ϕ(z) = z +ϕ(�×z)

For a fixed signature Σ of so called givens, a recursive pro-
gram scheme (or rps, for short) contains mutually recur-
sive definitions of new operations ϕ1, . . . , ϕk (with respec-
tive arities n1, . . . , nk). The recursive definition of ϕi may
involve symbols from Σ, operations ϕ1, . . . , ϕk and ni vari-
ables x1, . . . , xni

. The (uninterpreted) solution of an rps
is obtained by unravelling these recursive definitions, pro-
ducing a possibly infinite Σ-tree over x1, . . . , xni

for each
operation ϕi. Figure 1 shows an rps over the signature
Σ = {�/0, ×/2,+/2} and its solution. In general, an alge-
braic Σ-tree is a Σ-tree which is definable by an rps over
Σ (see Courcelle [16]). Generalizing from a signature to a finitary endofunctor
H : C → C on an lfp category, Adámek et al. [7] describe an rps as a coalgebra
for a functor Hf on H/Mndf(C), in which objects are finitary H-pointed monads
on C, i.e. finitary monads M together with a natural transformation H → M .
They introduce the context-free monad CH of H, which is an H-pointed monad
that is a subcoalgebra of the final coalgebra for Hf and which is the monad of
Courcelle’s algebraic Σ-trees in the special case where C = Set and H is a poly-
nomial functor associated to a signature Σ. We will prove that this monad is
the LFF of Hf, and thereby we characterize it by a universal property – solving
the open problem in [7].

The setting is again an instance of the generalized powerset construction,
but this time with Funf(C) as the base category in lieu of Set. Let C be an lfp
category in which the coproduct injections are monic and consider a finitary,
mono-preserving endofunctor H : C → C. Denote by Funf(C) the category of
finitary endofunctors on C. Then H induces an endofunctor H · (−) + Id on
Funf(C), denoted Ḣ and mapping an endofunctor V to the functor X 
→ HV X +
X. This functor Ḣ gets precomposed with a monad on Funf(C) as we now explain.

Proposition 4.11 (Free monad, [5,9]). For a finitary endofunctor H, free
H-algebras ϕX : HFHX → FHX exist for all X ∈ C. FH itself is a finitary
monad on C, more specifically it is the free monad on H.

For example, if H is a polynomial functor associated to a signature Σ, then
FHX is the usual term algebra that contains all finite Σ-trees over the set of
generators X. Proposition 4.11 implies that H 
→ FH is the object assignment
of a monad on Funf(C). The Eilenberg-Moore category of F (−) is easily seen to
be Mndf(C), the category of finitary monads on C. Here, fp and fg objects differ,
see [45, Sect. 5.4.1] for a proof.
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Similarly as in the case of context-free languages, we will work with the
monad E(−) = FH+(−), so we get H-pointed finitary monads as the E(−)-
algebras. This category is equivalent to a slice category: the universal property
induced by F (−) states, that for any finitary monad B the natural transforma-
tions H → B are in one-to-one correspondence with monad morphisms FH → B;
so the category H/Mndf(C) of finitary H-pointed monads on C is isomorphic to
the slice category FH/Mndf(C). This finishes the description of the base category
and we now lift the functor Ḣ to this category.

Consider an H-pointed monad (B, β : H → C) ∈ H/Mndf(C). By [21], the
endofunctor H · B + Id carries a canonical monad structure. Furthermore, we
have an obvious pointing inl · HηB : H → H · B + Id. By [32], this defines an
endofunctor on H-pointed monads, Hf : H/Mndf(C) → H/Mndf(C), which is a
lifting of Ḣ. In order to verify that Hf is finitary, we first need to know how
filtered colimits look in H/Mndf(C).

Lemma 4.12. The forgetful U : Mndf(C) → Funf(C) creates filtered colimits.

Clearly, the canonical projection functor H/Mndf(C) → Mndf(C) creates fil-
tered colimits, too. Therefore, filtered colimits in the slice category H/Mndf(C)
are formed on the level of Funf(C), i.e. object-wise. The functor Ḣ is finitary
on Funf(C) and thus also its lifting Hf is finitary. So all requirements from
Assumption 3.1 are met: we have a finitary endofunctor Hf on the lfp cate-
gory H/Mndf(C), and by [7, Corollary 2.20] Hf preserves monos since H does.
By Theorem 3.8, Hf has a locally finite fixpoint.

Remark 4.13. The final Hf-coalgebra is not of much interest, but that of a related
functor. Hf generalizes to a functor H : H/Mndc(C) → H/Mndc(C) on H-pointed
countably accessible1 monads. For any object X ∈ C, the finitary endofunctor
H(−) + X has a final coalgebra; call the carrier TX. Then T is a monad [1], is
countably accessible [7] and is the final H-coalgebra [32].

Adámek et al. [7] characterize a (guarded) recursive program scheme as a natural
transformation V → H · EV + Id with V fp (in Funf(C)), or equivalently, via the
generalized powerset construction w.r.t. the monad E(−) as an Hf-coalgebra
on the carrier EV (in Mndf(C)). These Hf-coalgebras on carriers EV where V ∈
Funf(C) is fp form the full subcategory EQ ⊆ CoalgHf. They show two equivalent
ways of constructing the monad of Courcelle’s algebraic trees for the case C = Set:
as the image of EQcolim in the final coalgebra T of Remark 4.13, and as the colimit
of EQ2, where EQ2 is the closure of EQ under strong quotients. We now provide
a third characterization, and show that the monad of Courcelle’s algebraic trees
is the locally finite fixpoint of Hf.

To this end it suffices to show that EQ2 is precisely the diagram of Hf-
coalgebras with an fg carrier. This is established with the help of the following
two technical lemmas. We now assume that C = Set.

1 A colimit is countably filtered if its diagram has for every countable subcategory a
cocone. A functor is countably accessible if it preserves countably filtered colimits.
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Lemma 4.14. Hf maps strong epis to morphisms carried by strong epi natural
transformations.

We have the following variation of Proposition 3.17:

Lemma 4.15. Any Hf-coalgebra b : (B, β) → Hf(B, β), with B fg, is the strong
quotient of a coalgebra from EQ.

The proof of Lemma 4.15 makes use of Lemma 4.14 as well as the following
properties:

– The fp objects in Funf(Set) are the quotients of polynomial functors.
– The polynomial functors are projective. That means that for a polynomial

functor P and any natural transformation n : K → L with surjective com-
ponents we have the following property: for every f : P → L there exists
f ′ : P → K with n · f ′ = f .

– Any fg object in H/Mndf(Set) is the quotient of some EV with V fp in
Funf(Set) and thus also of some EP with P a polynomial functor.

Note that the last property holds because H/Mndf(Set) is an Eilenberg-Moore
category and EV is the free Eilenberg-Moore algebra on the fp object V . It
follows from Lemma 4.15 that CoalgfgHf is the same category as EQ2; thus their
colimits in CoalgHf are isomorphic and we conclude:

Theorem 4.16. The locally finite fixpoint of Hf : HΣ/Mndf(Set) →
HΣ/Mndf(Set) is the monad of Courcelle’s algebraic trees, sending a set to the
algebraic Σ-trees over it.

5 Conclusions and Future Work

We have introduced the locally finite fixpoint of a finitary mono-preserving end-
ofunctor on an lfp category. We proved that this fixpoint is characterized by two
universal properties: it is the final lfg coalgebra and the initial fg-iterative alge-
bra for the given endofunctor. And we have seen many instances where the LFF
is the domain of behaviour of finite-state and finite-equation systems. In partic-
ular all previously known instances of the rational fixpoint are also instances of
the LFF, and we have obtained a number of interesting further instances not
captured by the rational fixpoint.

On a more technical level, the LFF solves a problem that sometimes makes
the rational fixpoint hard to apply. The latter identifies behaviourally equiv-
alent states (i.e. is a subcoalgebra of the final coalgebra) if the classes of fp
and fg objects coincide. This condition, however, may be false or unknown (and
sometimes non-trivial to establish) in a given lfp category. But the LFF always
identifies behaviourally equivalent states.

There are a number of interesting topics for future work concerning the LFF.
First, it should be interesting to obtain further instances of the LFF, e.g. analyz-
ing the behaviour of tape machines [23] may perhaps lead to a description of the
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recursively enumerable languages by the LFF. Second, syntactic descriptions of
the LFF are of interest. In works such as [12,35,40,42] Kleene type theorems and
axiomatizations of the behaviour of finite systems are studied. Completeness of
an axiomatization is then established by proving that expressions modulo axioms
form the rational fixpoint. It is an interesting question whether the theory of the
LFF we presented here may be of help as a tool for syntactic descriptions and
axiomatizations of further system types.

As we have mentioned already the rational fixpoint is the starting point for
the coalgebraic study of iterative and iteration theories. A similar path could
be followed based on the LFF and this should lead to new coalgebraic iter-
ation/recursion principles, in particular in instances such as context-free lan-
guages or constructively S-algebraic formal power series.

Another approach to more powerful recursive definition principles are
abstract operational rules (see [27] for an overview). It has been shown that
certain rule formats define operations on the rational fixpoint [13,31], and it
should be investigated whether a similar theory can be developed based on the
LFF.

Finally, in the special setting of Eilenberg-Moore categories one could base
the study of finite systems on free finitely generated algebras (rather than all fp
or all fg algebras). Does this give a third fixpoint capturing behaviour of finite
state systems with side effects besides the rational fixpoint and the LFF? And
what is then the relation between the three fixpoints? Also the parallelism in the
technical development between rational fixpoint and LFF indicates that there
should be a general theory that is parametric in a class of “finite objects” and
that allows to obtain results about the rational fixpoint, the LFF and other
possible “finite behaviour domains” as instances.
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21. Ghani, N., Lüth, C., Marchi, F.D.: Monads of coalgebras: rational terms and term
graphs. Math. Struct. Comput. Sci. 15, 433–451 (2005)

22. Goncharov, Sergey: Trace Semantics via Generic Observations. In: Heckel, Reiko,
Milius, Stefan (eds.) CALCO 2013. LNCS, vol. 8089, pp. 158–174. Springer, Hei-
delberg (2013)

23. Goncharov, Sergey, Milius, Stefan, Silva, Alexandra: Towards a Coalgebraic Chom-
sky Hierarchy. In: Diaz, Josep, Lanese, Ivan, Sangiorgi, Davide (eds.) TCS 2014.
LNCS, vol. 8705, pp. 265–280. Springer, Heidelberg (2014)

24. Harrison, M.A., Havel, I.M.: Real-time strict deterministic languages. SIAM J.
Comput. 1(4), 333–349 (1972)

25. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theoret.
Comput. Sci. 357(1–3), 70–99 (2006)

26. Jacobs, Bart: A Bialgebraic Review of Deterministic Automata, Regular Expres-
sions and Languages. In: Futatsugi, Kokichi, Jouannaud, Jean-Pierre, Meseguer,
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