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Abstract. Profinite equations are an indispensable tool for the alge-
braic classification of formal languages. Reiterman’s theorem states that
they precisely specify pseudovarieties, i.e. classes of finite algebras closed
under finite products, subalgebras and quotients. In this paper Reit-
erman’s theorem is generalised to finite Eilenberg-Moore algebras for a
monad T on a variety D of (ordered) algebras: a class of finite T-algebras
is a pseudovariety iff it is presentable by profinite (in-)equations. As an
application, quasivarieties of finite algebras are shown to be presentable
by profinite implications. Other examples include finite ordered algebras,
finite categories, finite ∞-monoids, etc.

1 Introduction

Algebraic automata theory investigates the relationship between the behaviour
of finite machines and descriptions of these behaviours in terms of finite algebraic
structures. For example, regular languages of finite words are precisely the lan-
guages recognised by finite monoids. And Schützenberger’s theorem [26] shows
that star-free regular languages correspond to aperiodic finite monoids, which
easily leads to the decidability of star-freeness. A generic correspondence result
of this kind is Eilenberg’s variety theorem [11]. It gives a bijective correspondence
between varieties of languages (classes of regular languages closed under boolean
operations, derivatives and homomorphic preimages) and pseudovarieties of
monoids (classes of finite monoids closed under finite products, submonoids and
quotients). Another, more syntactic, characterisation of pseudovarieties follows
from Reiterman’s theorem [23] (see also Banaschewski [6]): they are precisely
the classes of finite monoids specified by profinite equations.

In the meantime Eilenberg-type correspondences have been discovered for
other kinds of algebraic structures, including ordered monoids [19], idempotent
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semirings [21], associative algebras over a field [24] and Wilke algebras [27],
always with rather similar proofs. This has spurred recent interest in generic
approaches to algebraic language theory that can produce such correspondences
as instances of a single result. Bojańczyk [9] extends the classical notion of
language recognition by monoids (viewed as algebraic structures over the cate-
gory of sets) to algebras for an arbitrary monad on many-sorted sets. He also
presents an Eilenberg-type theorem at this level of generality, interpreting a
result of Almeida [5] in categorical terms. Our previous work in [1–3,10] takes
an orthogonal approach: one keeps monoids but considers them in categories D
of (ordered) algebras such as posets, semilattices and vector spaces. Analysing
the latter work it becomes clear that the step from sets to more general cate-
gories D is necessary to obtain the right notion of language recognition by finite
monoids; e.g. to cover Polák’s Eilenberg-type theorem for idempotent semirings
[21], one needs to take the base category D of semilattices. On the other hand,
from Bojańczyk’s work it is clear that one also has to generalise from monoids
to other algebraic structures if one wants to capture such examples as Wilke
algebras.

The present paper is the first step in a line of work that considers a common
roof for both approaches, working with algebras for a monad T on an arbitrary
variety D of many-sorted, possibly ordered algebras.

Finite T-algebras
in D

������
������

Finite T-algebras
in SetS

(Bojańczyk [9])
����

�

Finite monoids
in D

(Adámek et. al. [1,3])
�����

Finite monoids
in Set

(Classical)

Our main contribution is a generalisation of Reiterman’s theorem, stating
that pseudovarieties of finite algebras are presentable by profinite equations, to
the more general situation of algebras for a monad. Starting with a variety D ,
we form the pro-completion of the full subcategory Df of finite algebras,

̂D := Pro-Df .

For example, for D = sets, posets and monoids we get ̂D = Stone spaces, Priest-
ley spaces and profinite monoids. Next, we consider a monad T on D and asso-
ciate to it a monad ̂T on ̂D , called the profinite monad of T. For example, if
D = Set and T is the finite word monad (whose algebras are precisely monoids),
then ̂T is the monad of profinite monoids on the category of Stone spaces; that
is, ̂T associates to each finite Stone space (= finite set) X the space ̂X∗ of profi-
nite words on X. Similarly, for the monad T of finite and infinite words on Set
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(whose algebras we call ∞-monoids) the profinite monad ̂T constructs the space
of profinite ∞-words.

The classical profinite equations for monoids, used for presenting pseudova-
rieties of monoids, are generalised to profinite equations u = v that are pairs of
elements of ̂TΦ̂X , where Φ̂X is the free profinite D-algebra on a finite set X of
variables. Our main result is that profinite equations present precisely classes of
finite T-algebras closed under finite products, subalgebras, and quotients.

We will additionally study a somewhat unusual concept of profinite equa-
tion where in lieu of finite sets X of variables we use finite algebras X ∈ Df

of variables. The classes of finite T-algebras presented by such profinite equa-
tions are then precisely those closed under finite products, subalgebras, and
split quotients. These two variants are actually instances of a general result
(Theorem 4.12) that is parametric in a class X of “algebras of variables” in D .

The above results hold if D is a variety of algebras. In case that D is a
variety of ordered algebras, we obtain the analogous two results, working with
profinite inequations u ≤ v instead of equations. As instances we recover Reiter-
man’s original theorem [23] and its version for ordered algebras due to Pin and
Weil [20]. Another consequence of our theorem is the observation that quasiva-
rietes of finite algebras in D , i.e. subclasses of Df closed under finite products
and subalgebras, are presentable by profinite implications. Moreover, we obtain
a number of new Reiterman-type results. For example, for the monad of finite
and infinite words on Set, our Reiterman theorem shows that a class of finite ∞-
monoids is a pseudovariety iff it can be presented by equations between profinite
∞-words. Finally, we can also treat categories of T-algebras that are not vari-
eties. E.g. by taking for D the category of graphs and T the free-category monad
we essentially recover a result of Jones on pseudovarieties of finite categories [15].

2 Preliminaries

In this section we review the necessary concepts from category theory, universal
algebra and topology we will use throughout the paper. Recall that for a fini-
tary many-sorted signature Γ a variety of Γ -algebras is a full subcategory of
AlgΓ , the category of Γ -algebras, specified by equations s = t between Γ -terms.
By Birkhoff’s HSP theorem varieties are precisely the classes of algebras closed
under products, subalgebras, and quotients (= homomorphic images). Similarly,
ordered Γ -algebras are posets equipped with order-preserving Γ -operations,
and their morphisms are order-preserving Γ -homomorphisms. A quotient of an
ordered algebra B is represented by a surjective morphism e : B � A, and a
subalgebra of B is represented by an order-reflecting morphism m : A � B,
i.e. mx ≤ my iff x ≤ y. A variety of ordered Γ -algebras is a full subcategory
of Alg≤Γ , the category of ordered Γ -algebras, specified by inequations s ≤ t
between Γ -terms. By Bloom’s HSP theorem [8], varieties of ordered algebras are
precisely the classes of ordered algebras closed under products, subalgebras and
quotients.
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Remark 2.1. For notational simplicity we restrict our attention to single-sorted
varieties. However, all definitions, theorems and proofs that follow are easily
adapted to a many-sorted setting. See also Remark 5.7 and Example 5.8.

Definition 2.2. Let D be a variety of algebras or ordered algebras.

(a) A topological D-algebra is a topological space endowed with a D-algebraic
structure such that every operation is continuous with respect to the product
topology. Morphisms of topological D-algebras are continuous D-morphisms.

(b) A topological D-algebra is profinite if it is a cofiltered limit of finite D-
algebras with discrete topology.

Notation 2.3. Throughout this paper we fix a variety D of algebras or ordered
algebras, equipped with the factorisation system of quotients and subalgebras.
We denote by ̂D the category of profinite D-algebras. We use the forgetful func-
tors

Df
�� Ĵ ��

̂D
V �� D

where V forgets the topology and Ĵ views a finite D-algebra as a profinite D-
algebra with discrete topology. We will often identify A ∈ Df with ĴA.

Example 2.4. 1. ̂Set is the category Stone of Stone spaces, i.e. compact spaces
such that any two distinct elements can be separated by a clopen set.

2. Let Pos be the category of posets and monotone maps, viewed as the variety
of ordered algebras over the empty signature. Then ̂Pos is the category Priest
of Priestley spaces [22], i.e. ordered compact spaces such that for any two
elements u, v with u �≤ v there is a clopen upper set containing u but not v.

3. For the variety Mon of monoids, the category ̂Mon consists of all monoids in
Stone; that is, a topological monoid is profinite iff it carries a Stone topology.
Analogous descriptions of ̂D hold for most familiar varieties D over a finite
signature, e.g. groups, semilattices, vector spaces over a finite field; see [14].

Remark 2.5. By [14, Remark VI.2.4] the category ̂D is the pro-completion, i.e.
the free completion under cofiltered limits, of Df . Hence ̂D is dual to a locally
finitely presentable category [4], which entails the following properties:

(i) Every object A of ̂D is the cofiltered limit of all morphisms h : A → A′ with
finite codomain. More precisely, if (A ↓ Df ) denotes the comma category of
all such morphisms h, the diagram

(A ↓ Df ) → ̂D , h �→ A′,

has the limit A with limit projections h.
(ii) Given a cofiltered limit cone πi : A → Ai (i ∈ I) in ̂D , any morphism f : A →

B with finite codomain factors through some πi.

Lemma 2.6. ̂D has the factorisation system of surjective morphisms and injec-
tive (resp. order-reflecting) morphisms.
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Definition 2.7. The profinite completion of an object D ∈ D is the limit D̂ ∈ ̂D
of the cofiltered diagram

(D ↓ Df ) → ̂D , (h : D → D′) �→ D′

We denote the limit projection corresponding to h : D → D′ by ĥ : D̂ → D′.
Observe that D̂ = D for any D ∈ Df , and ̂h = h for any morphism h in Df .

Proposition 2.8. The maps D �→ D̂ and h �→ ĥ extend to a left adjoint for the
forgetful functor V , denoted by

·̂ : D → ̂D .

Remark 2.9. We will frequently use the following facts:

(a) Homomorphism theorem. Given morphisms e : A � B and f : A → C in D
with e surjective, there exists a morphism f ′ with f ′ · e = f iff e(a) = e(a′)
implies f(a) = f(a′) (resp. e(a) ≤ e(a′) implies f(a) ≤ f(a′)) for all a, a′ ∈
A. Moreover, if A,B,C are topological D-algebras with a compact Hausdorff
topology and e and f are continuous D-morphisms, then f ′ is continuous.

(b) The forgetful functor |−| : D → Set has a left adjoint assigning to each set
X the free D-algebra ΦX on X.

(c) Free D-algebras are projective: for any morphism f : ΦX → B and any
surjective morphism e : A � B in D there exists a morphism f ′ : ΦX → A
with e · f ′ = f . Indeed, choose a function m : |B| → |A| with e · m = id .
Then the restriction of m · f to X extends to a morphism f ′ : ΦX → A of D
with f = f ′ · e, since the morphisms on both sides agree on the generators
X.

Notation 2.10. For a monad T = (T, η, μ) on D , we write DT for the category
of T-algebras and T-homomorphisms, and DT

f for the full subcategory of finite
T-algebras. The forgetful functors are denoted by

U : DT
f → Df and UT : DT → D .

Recall that UT has a left adjoint mapping D ∈ D to its free T-algebra (TD, μD).

Remark 2.11. If T preserves surjective morphisms, the homomorphism theo-
rem applies to T-algebras. That is, if A,B,C in Remark 2.9(a) are T-algebras
and e and f are T-homomorphisms, so is f ′. Moreover the factorisation system of
D lifts to DT: every T-homomorphism h : (A,α) → (B, β) can be factorised into
a surjective T-homomorphism followed by an injective (resp. order-reflecting)
one. Quotients and subalgebras of T-algebras are taken w.r.t. this factorisation
system.

Example 2.12. We are mainly interested in monads representing structures in
algebraic language theory.
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(a) Finite words. The classical example is the free-monoid monad T on D = Set,

TX = X∗ =
∐

n<ω

Xn.

The importance of the monad T is that functions TX → {0, 1} correspond
to languages of finite words over the alphabet X, and regular languages are
precisely the languages recognized by finite T-algebras (= finite monoids).
Bojańczyk [9] recently gave a generalisation of the classical Eilenberg the-
orem to arbitrary monads T on Set, relating pseudovarieties of finite T-
algebras to varieties of T-recognisable languages.

(b) Finite words over semilattices. From the perspective of algebraic language
theory it is natural to study monoids in algebraic categories beyond Set. For
example, let D = JSL be the variety of join-semilattices with 0, considered
as a monoidal category w.r.t. the usual tensor product. The free-monoid
monad on JSL is given by

TX = X� =
∐

n<ω

X⊗n,

the coproduct of all finite tensor powers of X, and T-algebras are precisely
idempotent semirings. In case X = PfX0 is the free semilattice on a set
X0 one has TX = PfX∗

0 , the semilattice of all finite languages over X0.
Hence semilattice morphisms from TX into the two-chain 0 < 1 correspond
again to formal languages over X0. This setting allows one to study disjunc-
tive varieties of languages in the sense of Polák [21], see [1–3]. Note that
although the variety of idempotent semirings can also be represented by
the free idempotent semiring monad T ′X = PfX∗ on Set, functions from
T ′X = PfX∗ to {0, 1} do not correpond to formal languages over X.

(c) Infinite words. The monad

TX = X∞ = X∗ + Xω

on D = Set represents languages of finite and infinite words. The unit
ηX : X → X∗ is given by inclusion, and the multiplication μX : (X∞)∞ →
X∞ is concatentation: μX(w0w1w2 . . .) = w0w1w2 . . . if all words wi are
finite, and otherwise μX(w0w1w2 . . .) = w0w1w2 . . . wj for the smallest j
with wj infinite. T-algebras are ∞-monoids, i.e. monoids with an addi-
tional ω-ary multiplication and the expected mixed associative laws. Again,
functions from TX to {0, 1} correspond to languages (of finite and infinite
words), and ω-regular languages are precisely the languages recognised by
finite ∞-monoids. This was observed by Bojańczyk [9], who also derived an
Eilenberg-type theorem for varieties of ω-regular languages and pseudovari-
eties of ∞-monoids along the lines of Wilke [27]. As in (b) one can replace
∞-monoids in Set by “idempotent ∞-semirings”, viewed as algebras for a
suitable monad on JSL, and thus extend Polák’s theorem [21] from finite
word languages to ω-regular languages. We leave the details for future work.
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(d) In contrast to the previous examples, the category DT is not always monadic
over Set resp. Pos. To see this, let D = Set0,1 be the variety of sets with two
constants, that is, the category of all algebras over the signature with two
constant symbols 0, 1. The full subcategory Set0 �=1, consisting of singletons
and sets with distinct constants 0 �= 1, is reflective and hence monadic over
Set0,1. However, it is not monadic over Set.

3 Profinite Monads

In this section we introduce profinite monads, our main tool for the investigation
of profinite equations and Reiterman’s theorem for T-algebras in Sect. 4.

Assumption 3.1. As in the previous section let D be a variety of algebras or
ordered algebras. Moreover, let T = (T, η, μ) be a monad on D such that T
preserves surjective morphisms.

Recall that the right Kan extension of a functor F : A → C along K : A → B
is a functor R : B → C with a universal natural transformation ε : RK → F ,
i.e. for every functor G : B → C and every natural transformation γ : GK → F
there exists a unique natural transformation γ† : G → R with γ = ε · γ†K. In
case F = K, the functor R carries a natural monad structure: the unit is given
by η̂ = (idK)† : Id → R and the multiplication by μ̂ = (ε · Rε)† : RR → R. The
monad (R, η̂, μ̂) is called the codensity monad of K, see e.g., [17].

Definition 3.2. The profinite monad of T is the codensity monad ̂T = (T̂ , η̂, μ̂)
of the functor

K = ĴU : DT
f → Df → ̂D .

Remark 3.3. A related concept was recently studied by Bojańczyk [9] who
associates to every monad T on Set a monad T on Set (rather than ̂Set =
Stone as in our setting!). Specifically, T is the monad induced by the composite
right adjoint Stone

̂T → Stone V−→ Set. Its construction also appears in the
work of Kennison and Gildenhuys [16] who investigated codensity monads for
Set-valued functors and their connection with profinite algebras.

Remark 3.4.(a) One can compute T̂X for X ∈ ̂D via the limit formula for
right Kan extensions, see e.g. [18, Theorem X.3.1]. Letting (X ↓ ĴU) denote
the comma category of all arrows f : X → A with (A,α) ∈ DT

f , the object
T̂X is the limit of the diagram

(X ↓ ĴU) → ̂D , f �→ A.

(b) For D ∈ D a morphism f : D̂ → A with (A,α) ∈ DT
f corresponds to a T-

homomorphism h : (TD, μD) → (A,α), since (TD, μD) is the free T-algebra
on D. Hence to compute T̂ D̂ one can replace (D̂ ↓ ĴU) by the category of
all h : (TD, μD) → (A,α) with (A,α) ∈ DT

f . We denote the limit cone by

h+ : T̂ D̂ → Â. (3.1)

One can restrict the diagram defining T̂ D̂ to surjective T-homomorphisms:
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Proposition 3.5. For all D ∈ D the object T̂ D̂ is the cofiltered limit of all
finite T-algebra quotients e : (TD, μD) � (A,α).

Example 3.6 (Profinite words). For the monad TX = X∗ on D = Set the
profinite monad ̂T assigns to every finite set (= finite Stone space) X the space
T̂X = ̂X∗ of profinite words over X. This is the limit in Stone of all finite
(discrete) quotient monoids of X∗. Similarly, for TX = X∞ the profinite monad
̂T constructs the space T̂X of “profinite ∞-words” over X.

Lemma 3.7. (a) T̂ preserves cofiltered limits and surjections.

(b) Given a cofiltered limit cone hi : A → Ai (i ∈ I) in ̂D
̂T, any ̂T-

homomorphism h : A → B with finite codomain factors through some hi.

Remark 3.8. (a) Since T̂ preserves surjections, the factorisation system of ̂D

lifts to ̂D
̂T, so we can speak about quotients and subalgebras of ̂T-algebras.

Moreover, the homomorphism theorem holds for ̂T-algebras, cf. Remark 2.11.

(b) Lemma 3.7(b) exhibits a crucial technical difference between our profinite
monad ̂T and Bojańczyk’s T, see Remark 3.3. For example, for the identity
monad T on Set, the monad T is the ultrafilter monad whose algebras are
compact Hausdorff spaces, and the factorisation property in the lemma fails.

Remark 3.9. For each finite T-algebra (A,α) the morphism α is itself a T-
homomorphism α : (TA, μA) � (A,α), and thus yields the limit projection

α+ : T̂ Â → Â

of (3.1). The unit η̂D̂ and multiplication μ̂D̂ of ̂T are determined by the following
commutative diagrams for all T-homomorphisms h : (TD, μD) → (A,α):

D̂
η̂D̂ ��

̂hηD ��
��

��
��

��
T̂ D̂

h+

��

T̂ T̂ D̂
μ̂D̂ ��

T̂ h+

��

T̂ D̂

h+

��

Â T̂ Â
α+

�� Â

(3.2)

Hence (Â, α+) is a ̂T-algebra: the unit and associative law for ̂T-algebras follow
by putting D = A and h = α in (3.2). Moreover, (3.2) states precisely that
h+ : (T̂ D̂, μ̂D̂) → (A,α+) is the unique ̂T-homomorphism extending the map
̂hηD for every h as above.

Proposition 3.10. The maps (A,α) �→ (Â, α+) and h �→ ̂h define an isomor-
phism between the categories of finite T-algebras and finite ̂T-algebras:

DT
f

∼= ̂D
̂T
f .
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4 Reiterman’s Theorem for T-Algebras

Reiterman’s theorem [6,23] states that, for any variety D of algebras, a class
of finite algebras in D is a pseudovariety, i.e. closed under finite products, sub-
objects and quotients, iff it is presented by profinite equations. Later Pin and
Weil [20] proved the corresponding result for varieties D of ordered algebras:
pseudovarieties are precisely the classes of finite algebras in D presented by
profinite inequations. In our categorical setting these two theorems represent the
case where T is chosen to be the identity monad on D . In Sect. 4.1 we intro-
duce pseudovarieties and profinite (in-)equations for arbitrary monads T on D ,
a straightforward extension of the original notions. In Sect. 4.2 we present a fur-
ther generalisation and prove the main result of this paper, Reiterman’s theorem
for finite T-algebras.

4.1 Pseudovarieties and Profinite (In-)equations

Let us start with extending the classical concept of a pseudovariety to T-algebras.

Definition 4.1. A pseudovariety of T-algebras is a class of finite T-algebras
closed under finite products, subalgebras and quotients.

Notation 4.2. Recall from Remark 2.9 the forgetful functor |−| : D → Set
and its left adjoint X �→ ΦX . For any finite T-algebra (A,α) to interpret variables
from a finite set X in A means to give a morphism h0 : ΦX → A in D , or
equivalently a T-homomorphism h : (TΦX , μΦX

) → (A,α). The corresponding
̂T-homomorphism is denoted h+ : T̂ Φ̂X → A, see Remarks 3.4 and 3.9.

Definition 4.3. 1. Let D be a variety of unordered algebras. By a profinite
equation over a finite set X of variables is meant a pair u, v ∈ T̂ Φ̂X , denoted
u = v. A finite T-algebra (A,α) satisfies u = v provided that

h+(u) = h+(v) for all T-homomorphisms h : TΦX → A.

2 Let D be a variety of ordered algebras. A profinite inequation over a finite set
X of variables is again a pair u, v ∈ T̂ Φ̂X , denoted u ≤ v. A finite T-algebra
(A,α) satisfies u ≤ v provided that

h+(u) ≤ h+(v) for all— T-homomorphisms h : TΦX → A.

A class E of profinite (in-)equations presents the class of all finite T-algebras
that satisfy all (in-)equations in E.

Lemma 4.4. Every class of finite T-algebras presented by profinite (in-)
equations forms a pseudovariety.

The proof is an easy verification. In the following subsection we show the converse
of the lemma: every pseudovariety is presented by profinite equations.
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4.2 Reiterman’s Theorem for T-algebras

The concept of profinite (in-)equation as introduced above only considers the free
finitely generated objects ΦX of D as objects of variables. A natural variation is
to admit any finite object X ∈ Df as an object of variables. That is, we define
a profinite equation over X as a pair u, v ∈ T̂ X̂, and say that a finite T-algebra
(A,α) satisfies u = v if for every T-homomorphism h : (TX, μX) → (A,α) the ̂T-
homomorphism h+ : T̂ X̂ → A merges u, v; analogously for inequations. A class
of finite T-algebras presented by such profinite equations is still closed under
finite products and subalgebras, but not necessarily under quotients. However,
it is closed under U -split quotients for the forgetful functor U : DT

f → Df , where
a surjective morphism e in DT

f is called U -split if there is a morphism m in Df

with Ue · m = id .
More generally, we introduce below for a class X of objects in D the concept

of profinite (in-)equation over X : a pair of elements of T̂ X̂ with X ∈ X . This
subsumes both of the above situations: by taking as X all free finitely generated
objects of D we recover the concept of Sect. 4.1. And the choice X = Df leads
to a new variant of Reiterman’s theorem: a characterisation of classes of finite
T-algebras closed under finite products, subalgebras and U -split quotients. The
latter can be understood as a finite analogue of Barr’s result [7], which states that
classes of T-algebras closed under products, subalgebras and U -split quotients
are in bijective correspondence with quotient monads of T.

Notation 4.5. For a class X of objects in D we denote by EX the class of all
surjective morphisms e : A � B with finite codomain such that all objects X of
X are projective w.r.t. e. That is, every morphism f : X → B factors through e.

Assumption 4.6. We assume that a class X of objects in D is given that
forms a projective presentation of Df , i.e. for every finite object A ∈ Df there
exists an object X ∈ X and a quotient e : X � A in EX .

Definition 4.7. An X -pseudovariety of T-algebras is a class of finite T-
algebras closed under finite products, subalgebras and EX -quotients, i.e. quo-
tients carried by a morphism in EX .

Example 4.8. (a) For the choice of Sect. 4.1,

X = free finitely generated objects of D ,

the class EX consists of all surjective morphisms with finite codomain, see
Remark 2.9(c). Clearly Assumption 4.6 is fulfilled since every finite object
in a variety D is a quotient of a free finitely generated one. Thus an X -
pseudovariety is simply a pseudovariety in the sense of Definition 4.1.

(b) If we choose
X = Df

then EX consists precisely of the split surjections with finite codomain.
Indeed, clearly every split surjection lies in EX . Conversely, given e : A � B
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in EX , apply the definition of EX to X = B and f = id . Assumption 4.6
is fulfilled because every object in Df is a split quotient of itself. A Df -
pseudovariety is a class of finite T-algebras closed under finite products,
subalgebras and U -split quotients.

Definition 4.9. 1. Let D be a variety of unordered algebras. A profinite equa-
tion over X is an expression of the form u = v with u, v ∈ T̂ X̂ and X ∈ X .
A finite T-algebra (A,α) satisfies u = v if

h+(u) = h+(v) for all T-homomorphisms h : TX → A.

2. Let D be a variety of ordered algebras. A profinite inequation over X is an
expression of the form u ≤ v with u, v ∈ T̂ X̂ and X ∈ X . A finite T-algebra
(A,α) satisfies u ≤ v if

h+(u) ≤ h+(v) for all T-homomorphisms h : TX → A.

A class E of profinite (in-)equations over X presents the class of all finite
T-algebras that satisfy all (in-)equations in E.

Remark 4.10. For any full subcategory V ⊆ DT
f closed under finite products

and subalgebras, the pro-V monad of T is the monad ̂TV = (T̂V , μ̂V , η̂V) on ̂D
defined by replacing in Definition 3.2 the functor U : DT

f → Df by its restriction
UV : V → Df . That is, T̂V is the right Kan extension of ĴUV along itself. In
analogy to Remark 3.4, one can describe T̂VX̂ with X ∈ D as the cofiltered limit
of the diagram of all homomorphisms h : (TX, μX) → (A,α) with (A,α) ∈ V.
The limit projections are denoted h+

V : T̂VX̂ → A. The universal property of T̂V
as a right Kan extension yields a monad morphism ϕV : ̂T → ̂TV ; its component
ϕV

X̂
for X ∈ D is the unique ̂D-morphism making the triangle below commute

for all h : (TX, μX) → (A,α) with (A,α) ∈ V.

T̂ X̂
ϕV

X̂ �� ��

h+

��

T̂VX̂

h+
V����

��
��

��
�

A

(4.1)

Lemma 4.11. Let V be a class of finite T-algebras closed under finite products
and subalgebras and u, v ∈ T̂ X̂ with X ∈ D .

1. Unordered case: ϕV
X̂

(u) = ϕV
X̂

(v) iff every algebra in V satisfies u = v.
2. Ordered case: ϕV

X̂
(u) ≤ ϕV

X̂
(v) iff every algebra in V satisfies u ≤ v.

Theorem 4.12 (Reiterman’s Theorem for T-algebras). A class of finite
T-algebras is an X -pseudovariety iff it is presented by profinite equations over
X (unordered case) resp. profinite inequations over X (ordered case).
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Proof. Consider first the unordered case. The “if” direction is a straightforward
verification. For the “only if” direction let V be an X -pseudovariety.

(a) In analogy to Proposition 3.5 one can restrict the cofiltered diagram defining
T̂VX̂ to surjective homomorphismsh : TX � A. Then the limit projectionsh+

V
and the mediating map ϕV

X̂
in (4.1) are also surjective, see [25, Corollary 1.1.6].

Moreover, since ϕV is a monad morphism, the free ̂TV -algebra (T̂VX̂, μ̂V
X̂

) on

X̂ can be turned into a ̂T-algebra (T̂VX̂, μ̂V
X̂

· ϕV
T̂VX̂

), and ϕV
X̂

: (T̂ X̂, μ̂X̂) →
(T̂VX̂, μ̂V

X̂
· ϕV

T̂VX̂
) is a ̂T-homomorphism.

(b) Let E the class of all profinite equations over X satisfied by all algebras
in V. We prove that V is presented by E, which only requires to show that
every finite T-algebra (A,α) satisfying all equations in E lies in V.

By Assumption 4.6 choose X ∈ X and a quotient e0 : X � A in EX , and
freely extend e0 to a (necessarily surjective) T-homomorphism e : TX � A.
We first show that the corresponding ̂T-homomorphism e+ : T̂ X̂ → Â fac-
tors through ϕV

X̂
. Indeed, whenever ϕV

X̂
merges u, v ∈ T̂ X̂ then the profinite

equation u = v lies in E by Lemma 4.11, so e+ merges u, v since (A,α) sat-
isfies all equations in E. Since ϕV

X̂
is surjective by (a), the homomorphism

theorem (see Remark 3.8) yields a ̂T-homomorphism g : T̂VX̂ → A in ̂D with
g · ϕV

X̂
= e+.

(c) By Lemma 3.7(b) the ̂T-homomorphism g factors through the limit cone
defining ̂TVX̂: there is a T-homomorphism h : TX → B with (B, β) ∈ V
and a ̂T-homomorphism q : B → A with q ·h+

V = g. By Proposition 3.10 the
morphism q is also a T-homomorphism, and is surjective because g is.

(d) To conclude the proof it suffices to verify that q lies in EX (then (B, β) ∈ V
implies (A,α) ∈ V because V is closed under EX -quotients). Indeed: every
morphism f : Y → A with Y ∈ X factors through e0 because e0 ∈ EX , i.e.

f = e0 · k for some k : Y → X in D .

Then the diagram below commutes (for the second triangle see (3.2)) and
shows that f̂ factors through q̂ = q in ̂D , so f factors through q in D . We
conclude that q ∈ EX , as desired.

Ŷ

f̂
��

��
��

��
��

k̂ �� X̂

ê0

����

η̂X̂ �� T̂ X̂
ϕV

X̂ �� ��

e+
		

	

����			
	

T̂VX̂

g

����

h+
V

��

Â B̂q̂
				

This proves the theorem for the unordered case. The proof for the ordered case
is analogous: replace profinite equations by inequations, and use the homomor-
phism theorem for ordered algebras to construct the morphism g.
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5 Applications and Examples

Let us consider some examples and applications. First note that the original
Reiterman theorem and its ordered version emerge from Theorem 4.12 by taking
the identity monad T = Id and X = free finitely generated objects of D , see
Example 4.8(a). In this case we have ̂T = Id, DT = D , ̂D

̂T = ̂D , and a profinite
equation u = v (resp. a profinite inequation u ≤ v) is a pair u, v ∈ Φ̂X for a
finite set X. We conclude:

Corollary 5.1 (Reiterman [23], Banaschewski [6]). Let D be a variety
of algebras. A class V ⊆ Df is a pseudovariety iff it is presented by profinite
equations over finite sets of variables.

Corollary 5.2 (Pin and Weil [20]). Let D be a variety of ordered algebras. A
class V ⊆ Df is a pseudovariety iff it is presented by profinite inequations over
finite sets of variables.

Recall from Isbell [13] that a class V ⊆ D is closed under products and
subalgebras iff it is presented by implications

∧

i∈I

si = ti ⇒ s = t

where si, ti, s, t are terms and I is a set. Choosing T to be the identity monad
and X = Df gives us the counterpart for finite algebras: by Example 4.8(b) a
Df -pseudovariety is precisely a class V ⊆ Df closed under finite products and
subalgebras, since the closure under split quotients is implied by closure under
subalgebras. Such a class could be called “quasi-pseudovariety”, but to avoid
this clumsy terminology we prefer “quasivariety of finite algebras”.

Definition 5.3. A quasivariety of finite algebras of D is a class V ⊆ Df closed
under finite products and subalgebras.

In analogy to Isbell’s result we show that quasivarieties of finite algebras are
precisely the classes of finite algebras of D presented by profinite implications.

Definition 5.4. Let X be a finite set of variables.

1. Unordered case: a profinite implication over X is an expression
∧

i∈I

ui = vi ⇒ u = v (5.1)

where I is a set and ui, vi, u, v ∈ Φ̂X . An object A ∈ Df satisfies (5.1) if for
every h : ΦX → A with ĥ(ui) = ĥ(vi) for all i ∈ I one has ĥ(u) = ĥ(v).

2. Ordered case: a profinite implication over X is an expression
∧

i∈I

ui ≤ vi ⇒ u ≤ v (5.2)

where I is a set and ui, vi, u, v ∈ Φ̂X . An object A ∈ Df satisfies (5.2) if for
every h : ΦX → A with ĥ(ui) = ĥ(vi) for all i ∈ I one has ĥ(u) ≤ ĥ(v).
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A class P of profinite implications presents the class of all finite algebras in D
satisfying all implications in P .

Theorem 5.5. For any class V ⊆ Df the following statements are equivalent:

1. V is a quasivariety of finite algebras.
2. V is presented by profinite (in-)equations over Df .
3. V is presented by profinite implications.

Proof Sketch. 3⇒1 requires a routine verification, and 1⇒2 is Theorem 4.12. For
2⇒3 assume w.l.o.g. that V is presented by a single profinite equation u = v
with u, v elements of some X ∈ Df . Express X as a quotient q : ΦY � X for
some finite set Y . Let { (ui, vi) : i ∈ I } be the kernel of q̂ : Φ̂Y � X (consisting
of all pairs (ui, vi) ∈ Φ̂Y × Φ̂Y with q̂(ui) = q̂(vi)), and choose u′, v′ ∈ Φ̂Y with
q̂(u′) = u and q̂(v′) = v. Then a finite object A ∈ Df satisfies the profinite
equation u = v iff it satisfies the profinite implication

∧

i∈I

ui = vi ⇒ u′ = v′, (5.3)

which proves that V is presented (5.3). Analogously for the ordered case.

Example 5.6. 1. Let V ⊆ Monf be the quasivariety of all finite monoids whose
only invertible element is the unit. It is presented by the profinite implication
xω = 1 ⇒ x = 1 over the set of variables X = {x}. Here the profinite
word xω ∈ ̂X∗ is interpreted, for every finite monoid M with x interpreted
as m ∈ M , as the unique idempotent power of m. Indeed, if M has no
nontrivial invertible elements, it satisfies the implication: given m �= 1 and
mk idempotent, then mk �= 1 (otherwise m has the inverse mk−1). Conversely,
if M satisfies the implication and m is invertible, then so is its idempotent
power mk. Hence mk · mk = mk implies mk = 1, so m = 1.

2. Let Pos be the variety of posets (i.e. the variety of all ordered algebras over
the empty signature). The quasivariety V ⊆ Posf of finite discrete posets is
presented by the profinite implication v ≤ u ⇒ u ≤ v over the set X = {u, v}.

Remark 5.7. As indicated before all concepts in this paper also apply to a
setting where D is a many-sorted variety of algebras or ordered algebras. In this
case an algebra is finite if the disjoint union of the underlying sets of all sorts
is a finite set. By a profinite equation over X ∈ D is a meant pair of elements
u, v in some sort s of T̂ X̂, and it is satisfied by a finite T-algebra A if for every
T-homomorphism h : TX → A the s-component of h+ : T̂ X̂ → A merges u, v.
Similarly for profinite inequations and profinite implications.

Example 5.8. Consider the variety D of directed graphs, i.e. algebras for the
two-sorted signature consisting of a sort Ob (objects), a sort Mor (morphisms)
and two unary operations s, t : Mor → Ob specifying the source and target of a
morphism. Then Cat, the category of small categories and functors, is isomor-
phic to DT for the monad T constructing the free category on a graph. Choosing
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X = free finitely generated graphs, Theorem 4.12 shows that every pseudovari-
ety of categories, i.e. every class of finite categories closed under finite products,
subcategories (represented by injective functors) and quotient categories (rep-
resented by surjective functors), can be specified by profinite equations over
a two-sorted set of variables. This result was essentially proved by Jones [15].
The difference is that he restricts to quotients represented by surjective functors
which are bijective on objects, and replaces subcategories by faithful functors.
Moreover, profinite equations are restricted to the sort of morphisms.

6 Conclusions and Future Work

Motivated by recent developments in algebraic language theory, we generalised
Reiterman’s theorem to finite algebras for an arbitrary monad T on a base
category D . Here D is a variety of (possibly ordered, many-sorted) algebras.
The core concept of our paper is the profinite monad ̂T of T, which makes it
possible to introduce profinite (in-)equations at the level of monads and prove
that they precisely present pseudovarieties of T-algebras.

Referring to the diagram in the Introduction, our Reiterman theorem is pre-
sented in a setting that unifies the two categorical approaches to algebraic lan-
guage theory of Bojańzcyk [9] and in our work [1–3,10]. The next step is to
also derive an Eilenberg theorem in this setting. For each monad T on a cate-
gory of sorted sets, Bojańczyk [9] proved an Eilenberg-type characterisation of
pseudovarieties of T-algebras: they correspond to varieties of T-recognisable
languages. Here by a “language” is meant a function from TX to {0, 1} for some
alphabet X, and a variety of languages is a class of such languages closed under
boolean operations, homomorphic preimages and a suitably generalised notion
of derivatives. On the other hand, as indicated in Example 2.12, one needs to
consider monoids on algebraic categories beyond Set in order to study varieties
of languages with relaxed closure properties, e.g. dropping closure under comple-
ment or intersection. The aim is thus to prove an Eilenberg theorem parametric
in a monad T on an algebraic category D . Observing that e.g. for D = Set
the monad ̂T on Stone dualises to a comonad on the category of boolean alge-
bras, we expect this can be achieved in a duality-based setting along the lines of
Gehrke, Grigorieff and Pin [12] and our work [1,3].

Throughout this paper we presented the case of ordered and unordered alge-
bras as separated but analogous developments. Pin and Weil [20] gave a uniform
treatment of ordered and unordered algebras by generalising Reiterman’s theo-
rem from finite algebras to finite first-order structures. A similar approach should
also work in our categorical framework: replace D by a variety of relational alge-
bras over a quasivariety Q of relational first-order structures, with Q = Set and
Q = Pos covering the case of algebras and ordered algebras.

Finally, observe that categories of the form DT, where D is a many-sorted
variety of algebras and T is an accessible monad, correspond precisely to locally
presentable categories. This opens the door towards an abstract treatment, and
further generalisation, of Reiterman’s theorem in purely categorical terms.
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