
Order-Sorted Rewriting and Congruence Closure

José Meseguer(B)

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, USA

meseguer@illinois.edu

Abstract. Order-sorted type systems supporting inheritance hierar-
chies and subtype polymorphism are used in theorem proving, AI, and
declarative programming. The satisfiability problems for the theories of:
(i) order-sorted uninterpreted function symbols, and (ii) of such symbols
modulo a subset Δ of associative-commutative ones are reduced to the
unsorted versions of such problems at no extra computational cost. New
results on order-sorted rewriting are needed to achieve this reduction.

Keywords: Order-sorted rewriting · Congruence closure · Satisfiability

1 Introduction

For greater expressiveness and efficiency, type systems supporting inheritance
hierarchies and subtype polymorphism are used in many areas such as resolu-
tion theorem proving, e.g., [26,32], declarative logic and rule-based languages,
e.g., [4,9,10,29], and artificial intelligence, e.g., [8,29]. Order-sorted (OS) equa-
tional logic, e.g., [15,21], is a logical framework supporting inheritance hierar-
chies and subtype polymorphism widely used for these purposes. Therefore, the
development of decision procedures for OS theories is of interest in all these
areas. I focus here on decision procedures for the OS theory of uninterpreted
function symbols, which in an unsorted setting is decided by congruence closure
algorithms [7,24,27]. However, for greater expressiveness one can allow some of
the function symbols, say in a subsignature Δ ⊆ Σ, to be interpreted by some
axioms BΔ. For example, for an unsorted subsignature Δ ⊆ Σ of binary function
symbols, congruence closure algorithms modulo the axioms ACΔ, asserting the
associativity and commutativity of all symbols in Δ have been given in [2,19,22].
Therefore, I also study satisfiability in the OS theory (Σ,ACΔ) of uninterpreted
function symbols Σ modulo ACΔ.

The most obvious approach would be to develop an order-sorted congruence
closure algorithm along the lines of [11] and then extended it to the modulo AC
case. However, the main, somewhat surprising message of this paper is that such
OS congruence closure algorithms are not needed at all : the already existing
and efficient unsorted congruence closure algorithms in [7,24,27] and congru-
ence closure modulo ACΔ in [2,19,22] and tools supporting them can be reused
without change and at no extra cost to solve the corresponding OS satisfiability
problems.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 493–509, 2016.
DOI: 10.1007/978-3-662-49630-5 29

494 J. Meseguer

A Simple Example. Consider the following order-sorted signature Σ

with sorts A,B,C, subsorts A,C < B, f subsort-polymorphic with typings
f : A → A and f : C → C, and a binary + with typing + : AA → A. Its so-
called theory of uninterpreted function symbols is just the order-sorted equational
theory (Σ, ∅) with empty set of equations, whose class of models, OSAlgΣ , is
that of all order-sorted Σ-algebras detailed in Sect. 2. Is the formula

(�) a = b ∧ b = c ∧ f(f(a)) = f(a) ∧ a + f(f(a)) �= f(a) + a

(Σ, ∅)-satisfiable? The standard way to answer this question if Σ were unsorted
would be to: (1) compute the congruence closure of the first three equations; and
(2) test the last inequality using such a congruence closure. Since, as pointed out
in [2,12,16], unsorted congruence closure algorithms are ground Knuth-Bendix
completion algorithms [18], an obvious way to try to answer this question would
be to try to complete the first three equations into an equivalent set of confluent
and terminating rewrite rules. But this runs into serious trouble. An order-
sorted Knuth-Bendix completion algorithm such as [13] will orient a = b and
b = c as b → a and b → c because rules must be sort-decreasing, i.e., rewrite
to a term of equal or lower sort. This then generates the critical pair a = c,
which is unorientable, so completion fails. Notice also that replacement of equals
by equals does not hold in an order-sorted setting: from a = b we cannot derive
f(a) = f(b), because f(b) doesn’t type. These difficulties were clearly felt by the
authors of [11], the only order-sorted congruence closure algorithm I am aware
of, which is quite complex and is not a Knuth-Bendix completion. They say:

An approach using rewriting [. . .] fails due to the well-known problem that
rewriting with order-sorted rewrite rules may create ill-typed terms.

Let us now widen the problem into one of satisfiability modulo AC by making the
+ symbol associative-commutative. That is, we consider the axioms AC+ = {x+
y = y+x, (x+y)+z = x+(y+z)}, with x, y, z of sort A, and ask: is the formula
(�) (Σ,AC+)-satisfiable? For this case, I am not aware of any order-sorted AC-
congruence closure algorithm, but unsorted, ground-AC-completion-based ones
exist [2,19,22]. The trouble, again, is that order-sorted AC-completion as in [13]
fails miserably in the same way (a = c cannot be oriented).

Order-Sorted Rewriting and Congruence Closure 495

Wouldn’t it be nice if we could completely ignore all sort information in the
above two OS satisfiability problems and solve them as unsorted problems using
standard (and efficient!) congruence closure [7,24,27] and congruence closure
modulo AC [2,19,22] algorithms? If this reduction method were sound, we could
easily settle the (Σ, ∅)- and (Σ,AC+)-satisfiability of (�): the confluent and ter-
minating rules R = {a → b, c → b, f(f(b)) → f(b)} play the role of a “congruence
closure” for the first three equations, and also of an AC+-congruence closure.
Since the disequality a + f(f(a)) �= f(a) + a reduces to b + f(b) �= f(b) + b, the
formula (�) is (Σ, ∅)-satisfiable. However, since b + f(b) =AC+ f(b) + b, (�) is
(Σ,AC+)-unsatisfiable. But is this reduction to unsorted satisfiability sound?

Initial Algebra Semantics of Uninterpreted Satisfiability. Ignoring the
sort information of an OS signature Σ is captured by a signature map u : Σ �
(f : s1 . . . sn → s) �→ (f : U n. . . U → U) ∈ Σu, where U is the single “universe”
sort in the unsorted signature Σu. As further detailed at the end of Sect. 2, u
induces a reduct map of algebras in the opposite direction, |u : AlgΣu � A �→
A|u ∈ OSAlgΣ , making each unsorted algebra A into and order-sorted one A|u,
and such that for a set of ground OS Σ-equations E we have the equivalence:
A|u |= E ⇔ A |= E. In particular, the E-initial unsorted Σu-algebra TΣu/E is
mapped to the OS Σ-algebra TΣu/E |u and, since TΣu/E |u |= E, there is a unique
OS homomorphism h : TΣ/E → TΣu/E |u from the E-initial OS Σ-algebra TΣ/E .

But the proof of Theorem5 shows that, for equations E and disequations
D, the conjunction

∧
E ∧ ∧

D is satisfiable iff TΣ(C)/E |= ∧
E ∧ ∧

D, where
the variables C of E ∪ D are seen as fresh new constants added to Σ to get
a supersignature Σ(C) ⊇ Σ, so that

∧
E ∧ ∧

D becomes a ground formula.
This gives us, in model-theoretic terms, the key to verify the soundness of
the hoped-for reduction of the satisfiability for the theory of OS uninterpreted
function symbols to that of the unsorted theory of uninterpreted function sym-
bols: this reduction method will be sound if and only if the OS homomorphism
h : TΣ(C)/E → TΣ(C)u/E |u is injective. In proof-theoretic terms this injectivity
will hold if and only if for all ground Σ-equation u = v we have the equiva-
lence: (Σ,E)
 u = v ⇔ (Σu, E)
 u = v. The (⇒) direction is obvious, but
the (⇐) direction is a non-trivial new result that follows from several conser-
vativity theorems that I prove in Sects. 3.2 and 4.1 by factoring the signature
map u : Σ → Σu through a sequence Σ ↪→ Σ� → Σ̂ → Σu of increasingly
simpler order-sorted, many-sorted and finally unsorted signatures and relating
equational and rewriting deductions at all these levels.

The Plot Thickens. The soundness of the hoped-for reduction to the unsorted
case for satisfiability modulo ACΔ is a thornier issue. As before, the reduc-
tion will be sound if and only if for ground Σ-equations E the unique Σ-
homomorphism h : TΣ/E∪ACΔ

→ TΣu/E∪ACΔu |u from the initial E ∪ ACΔ-
algebra TΣ/E∪ACΔ

is injective. But some of the conservativity theorems along
the above sequence of signature maps Σ ↪→ Σ� → Σ̂ → Σu needed to make h
injective actually break down in the ACΔ case. The problem has to do with the
translation of the equations ACΔ along these signature maps. At the unsorted

496 J. Meseguer

level of Σu the translated equations ACΔu , are more general and therefore
identify more terms than the original OS equations ACΔ. Consider a simple
example: the equation a + b = b + a does not type in our example signature
Σ, but it types in the supersignature Σ� ⊇ Σ, which for our running exam-
ple is depicted in Sect. 3.1. The AC equations ACΔ in our example are just
associativity and commutativity of + : A A → A and therefore apply only
to terms of sort A. Instead, the AC equations ACΔu are unsorted, and apply
to all terms. This means that a + b =ACΔu b + a, but since b does not have
sort A, we have a + b �=ACΔ

b + a. It also means that the homomorphism
h′ : TΣ�/E∪ACΔ

→ TΣu/E∪ACΔu |u in general is not injective. However, all hope
is not lost. As a direct consequence of Corollary 2 in Sect. 3.2, there is an isomor-
phism α : TΣ/E∪ACΔ

∼= TΣ�/E∪ACΔ
|Σ to the Σ-reduct of TΣ�/E∪ACΔ

and this
shows that the homomorphism h : TΣ/E∪ACΔ

→ TΣu/E∪ACΔu |u that we need
to prove injective for the reduction to be sound is up to isomorphism a restric-
tion of h′ to TΣ/E∪ACΔ

, which could be injective even if h′ is not. Lemma 3 in
Sect. 4.1 and the highly non-trivial Theorem8 in Sect. 5 save the day: it follows
from them that h is indeed injective and the reduction is also sound for the
AC case. To the best of my knowledge the results on reducing order-sorted to
unsorted satisfiability and on order-sorted rewriting and equality are new.

The paper is organized as follows. After some preliminaries in Sect. 2, the
new results on order-rewriting and equality are given in Sect. 3. The reductions
of satisfiability in the theory of OS uninterpreted function symbols (resp. OS
uninterpreted function symbols modulo AC) to satisfiability in their respective
unsorted theories is given in Sect. 4 (resp. Sect. 5). Related work and conclusions
are discussed in Sect. 6. Due to space limitations no proofs are given; they can
be found in the Technical Report [20].

2 Preliminaries on Order-Sorted Algebra

The following material is adapted from [21], which generalizes [15]. It summarizes
the basic notions of order-sorted algebra needed in the rest of the paper.

Definition 1. A many-sorted signature is a pair Σ = (S,Σ), with S a set of
sorts, and Σ and S∗ × S-indexed set Σ = {Σw,s}w,s∈S∗×S of operation symbols,
where S∗ denotes the free monoid generated by S. We denote each f ∈ Σw,s as
f : w → s. In particular, a constant of sort s is an operation a : ε → s, with ε
the empty word.

An order-sorted (OS) signature is a triple Σ = (S,≤, Σ) with (S,≤) a poset
and (S,Σ) a many-sorted signature. Ŝ = S/≡≤, the quotient of S under the
equivalence relation ≡≤ = (≤ ∪ ≥)+, is called the set of connected components
of (S,≤). Note that a many-sorted signature Σ is the special case where the
poset (S,≤) is discrete, i.e., s ≤ s′ iff s = s′.

The order ≤ and equivalence ≡≤ are extended to sequences of same length
in the usual way, e.g., s′

1 . . . s′
n ≤ s1 . . . sn iff s′

i ≤ si, 1 ≤ i ≤ n. Σ is called

Order-Sorted Rewriting and Congruence Closure 497

sensible1 if for any two f : w → s, f : w′ → s′ ∈ Σ, with w and w′ of same
length, we have w ≡≤ w′ ⇒ s ≡≤ s′.

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f
[s1]...[sn]
[s] = {f : s′

1 . . . s′
n → s′ ∈ Σ | s′

i ∈ [si], 1 ≤ i ≤ n, s′ ∈ [s]}

denotes the family of “subsort polymorphic” operators f . �
Definition 2. For Σ = (S,Σ) a many-sorted signature, a Σ-algebra is an
S-indexed set A = {As}s∈S together with an assignment of: (i) to each constant
a : ε → s of sort s an element Aa ∈ As, and (ii) to each operation f : w → s,
with w = s1 . . . sn, n ≥ 1, a function Af :w→s : Aw → As, where, by convention,
As1...sn = As1 × . . . × Asn

.
For Σ = (S,≤, Σ) an OS signature, an order-sorted Σ-algebra A is a many-

sorted (S,Σ)-algebra A such that:

– whenever s ≤ s′, then we have As ⊆ As′ , and
– whenever f : w → s, f : w′ → s′ ∈ f

[s1]...[sn]
[s] and a ∈ Aw ∩ Aw′

, then we have
Af :w→s(a) = Af :w′→s′(a).

A many-sorted Σ-homomorphism h : A → B is an S-indexed family of
functions h = {hs : As → Bs}s∈S such that: (i) for a : ε → s, hs(Aa) = Ba, and
(ii) for f : w → s with w �= ε, Af ;hs = hw;Bf .

An order-sorted Σ-homomorphism h : A → B is a many-sorted (S,Σ)-
homomorphism such that whenever [s] = [s′] and a ∈ As ∩ As′ , then we have
hs(a) = hs′(a). We call h injective, resp. surjective, resp. bijective, iff for each
s ∈ S hs is injective, resp. surjective, resp. bijective. We call h an isomorphism
if there is another order-sorted Σ-homomorphism g : B → A such that for each
s ∈ S, hs; gs = 1As

, and gs;hs = 1Bs
, with 1As

, 1Bs
the identity functions on

As, Bs. This defines a category OSAlgΣ. �
Theorem 1 [21]. The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : ε → s then a ∈ TΣ,s (ε denotes the empty string),
– if t ∈ TΣ,s and s ≤ s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si

1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

For [s] ∈ Ŝ, TΣ,[s] denotes the set TΣ,[s] =
⋃

s′∈[s] TΣ,s′ . Similarly, TΣ will
(ambiguously) denote both the above-defined S-sorted set and the set TΣ =

1 The notion of a sensible signature is a minimal syntactic requirement to avoid exces-
sive ambiguity. For example, a many-sorted signature Σ with sorts A, B and C,
constant a : ε → A and operations f : A → B and f : A → C is not sensible and
therefore is intrinsically ambiguous: the term f(a) has both sorts B and C, which
are completely different sorts.

498 J. Meseguer

⋃
s∈S TΣ,s. We say that an OS signature Σ has non-empty sorts iff for each

s ∈ S, TΣ,s �= ∅. We will assume throughout that Σ has non-empty sorts.
An S-sorted set X = {Xs}s∈S of variables, satisfies s �= s′ ⇒ Xs ∩ Xs′ = ∅,

and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables X as extra constants. Since a Σ(X)-
algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality of
TΣ(X) can be expressed as the following corollary of Theorem 1:

Theorem 2 (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X→A], there exists a unique Σ-homomorphim, α : TΣ(X) −→ A extending
α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

The first-order language of equational Σ-formulas2 is defined in the usual
way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)[s] for some [s] ∈
Ŝ and each Xs is assumed countably infinite. The set Form(Σ) of equational
Σ-formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨) negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted t �= t′.

Given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment α ∈
[Y →A], with Y = fvars(ϕ) the free variables of ϕ, we define the satisfaction
relation A,α |= ϕ inductively as usual: for atoms, A,α |= t = t′ iff tα = t′α; for
Boolean connectives it is the corresponding Boolean combination of the satis-
faction relations for subformulas; and for quantifiers: A,α |= (∀x :s) ϕ (resp.
A,α |= (∃x : s) ϕ) holds iff for all a ∈ As (resp. some a ∈ As) we have
A,α�{(x:s, a)} |= ϕ, where the assignment α�{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y →A], where
Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ. We say that ϕ is
satisfiable in A iff ∃α ∈ [Y →A] such that A,α |= ϕ, where Y = fvars(ϕ).

An order-sorted equational theory is a pair T = (Σ,E), with E a set of
Σ-equations. OSAlg(Σ,E) denotes the full subcategory of OSAlgΣ with objects
those A ∈ OSAlgΣ such that A |= E, called the (Σ,E)-algebras. OSAlg(Σ,E)

has an initial algebra TΣ/E [21], further discussed in Sect. 3. Given T = (Σ,E)
and ϕ ∈ Form(Σ), we call ϕ T -valid, written E |= ϕ, iff A |= ϕ for each
A ∈ OSAlg(Σ,E). We call ϕ T -satisfiable iff there exists A ∈ OSAlg(Σ,E) with
ϕ satisfiable in A. Note that ϕ is T -valid iff ¬ϕ is T -unsatisfiable.

Σ = ((S,≤), Σ) is a subsignature of Σ′ = ((S′,≤′), Σ′), denoted Σ ⊆ Σ′,
iff (S,≤) ⊆ (S′,≤′) is a subposet inclusion, and Σ ⊆ Σ′. A signature map
H : Σ → Σ′ is a monotonic function H : (S,≤) → (S′,≤′) of the underlying
posets of sorts together with a mapping H : Σ � (f : s1 . . . sn → s) �→ (H(f) :

2 There is only an apparent lack of predicate symbols. To express a predicate p(x1 :
s1, . . . , xn:sn), add a new sort Truth with a constant tt , and with {Truth} a separate
connected component, and view p as a function symbol p : s1, . . . , sn → Truth. An
atomic formula p(t1, . . . , tn) is then expressed as the equation p(t1, . . . , tn) = tt .

Order-Sorted Rewriting and Congruence Closure 499

H(s1) . . . H(sn) → H(s)) ∈ Σ′. H induces a map H : Form(Σ) → Form(Σ′). A
signature inclusion Σ ⊆ Σ′ defines a signature map Σ ↪→ Σ′ : f �→ f .

A signature map H : Σ → Σ′ induces a functor in the opposite direction
|H : OSAlgΣ′ � B �→ B |H ∈ OSAlgΣ , where the H-reduct B |H has: (i)

for each s ∈ S, (B |H)s = BH(s); and (ii) for each f : s1 . . . sn → s in Σ,
(B |H)f = BH(f). For H : Σ ↪→ Σ′ a signature inclusion, B |H is denoted B |Σ .
For B ∈ OSAlgΣ′ and ϕ ∈ Form(Σ) with fvars(ϕ) = ∅ we have [21]:

(†) B |= H(ϕ) ⇔ B |H |= ϕ.

3 Order-Sorted Rewriting and Equality

Given an OS signature Σ = ((S,≤), Σ), a Σ-rewrite rule3 is a sequent l → r

with l, r ∈ TΣ(X)[s] for some [s] ∈ Ŝ. An order-sorted term rewriting system
(OSTRS) is then a pair (Σ,R) with R a set of Σ-rewrite rules.

Since, as shown in the Introduction, replacement of equals for equals and
standard rewriting break down in the order-sorted case, we should define rewrit-
ing deductions with an OSTRS not by means of the reflexive-transitive closure
→∗

R of the rewrite relation →R, but by means of an inference system with two
kinds of sequents: sequents t → t′, where t, t′ ∈ TΣ(X)[s], [s] ∈ Ŝ, corresponding
to one-step application of rules, and sequents t →� t′, where t, t′ ∈ TΣ(X)[s],
[s] ∈ Ŝ, corresponding to more complex rewriting deductions. The symbol →�

is close enough to →∗ to suggest that: (i) it plays a role similar to a reflex-
ive transitive-closure in the unsorted case, but (ii) in general it is different
from such a closure. For example, for Σ the signature in the Introduction and
R = {a → b, b → c}, we can derive f(a) →� f(c), but there is no sequence of
one-step rewrites from f(a) to f(c). We then define two kinds of rewriting deduc-
tions: (Σ,R)
 t → t′ and (Σ,R)
 t →� t′, as those sequents derivable from
(Σ,R) by a finite application of the following inference rules, where σ denotes
an S-sorted substitution, i.e., an S-sorted function σ ∈ [X→TΣ(X)]:

Reflexivity
t →� t

Subsumption t → t′
t →� t′

Transitivity t →� t′ t′ →� t′′
t →� t′′

Congruence u1 →� u′
1 . . . un →� u′

n

f(u1, . . . , un) →� f(u′
1, . . . , u

′
n)

where f(u1, . . . , un), f(u′
1, . . . , u

′
n) ∈ TΣ(X)

Replacement
tσ → t′σ

where t → t′ ∈ R

3 For greater generality no restriction is placed on the variables of l and r.

500 J. Meseguer

The first three and the last inference rule are standard, but the Congru-
ence rule is more subtle. We can better understand these rules by means of
our running example (Σ,R). The sequent f(a) →� f(b) is not derivable: the
attempt to obtain it by applying Replacement with rule a → b, Subsump-
tion to get a →� b, and then Congruence fails, because of the side condition,
since f(b) �∈ TΣ(X). To see what can be derived, consider the derivation of the
sequent f(a) →� f(c). Since we have rules a → b and b → c, we can derive
a →� c by two applications of Replacement followed by Subsumption and
one application of Transitivity. Then Congruence gives us:

a →� c

f(a) →� f(c)

Note the interesting fact that f(a) is typed with f : A → A, and f(c) is typed
with f : C → C. We can think of Congruence as a “tunneling rule.” f(a) →�

f(c) cannot be obtained by composing one-step rewrites: failed attempts such as
that for deriving f(a) →� f(b) make it impossible; but we can “tunnel through”
such failed attempts and obtain a more complex sequent like f(a) →� f(c) when
the left- and right-hand sides are well-formed terms in TΣ(X).

The above inference system yields as a special case a sound and complete
inference system for order-sorted equational logic: we just view an order-sorted
equational theory (Σ,E) as the OSTRS (Σ,R(E)), where R(E) = {t → t′ | t =
t′ ∈ E ∨ t′ = t ∈ E}. That is, equality steps are viewed as either left-to-right
or right-to-left rewrite steps. We then have:

Definition 3. Given an order-sorted equational theory (Σ,E) with Σ sensible,
its equational deduction relation, denoted (Σ,E)
 u = v, or just E
 u = v, is
defined by the equivalence:

(Σ,E)
 u = v ⇔ (Σ,R(E))
 u →� v.

Theorem 3 (Soundness and Completeness) [21] Theorem 24. For Σ sensible
and E ∪ {u = v} a set of Σ-equations we have the equivalence:

(Σ,E)
 u = v ⇔ (Σ,E) |= u = v

The above theorem has as a corollary the construction of the initial algebra
TΣ/E for the category OSAlg(Σ,E) of (Σ,E)-algebras. Assuming Σ sensible,
TΣ/E , has an easy definition. Note that the relation E
 u = v induces an
equivalence relation =E on each set TΣ,[s], [s] ∈ Ŝ. We then define TΣ/E,s′ =
{[t]=E

∈ TΣ,[s]/=E | [t]=E
∩TΣ,s′ �= ∅} for each s′ ∈ [s], and define each operation

f : s1 . . . sn → s ∈ Σ by the map ([t1]=E
, . . . , [t1]=E

) �→ [f(t′1, . . . , t
′
n)]=E

, where
t′i ∈ [ti]=E

∩ TΣ,si
, 1 ≤ i ≤ n, showing it does not depend on the choice of t′i’s.

3.1 Kind-Complete OS-Rewriting and Equational Deduction

The order-sorted rewrite relation t →� t′ is obviously quite impractical and hard
to implement. For this reason, given an OSTRS (Σ,R) several conditions on

Order-Sorted Rewriting and Congruence Closure 501

either Σ or R have been sought to be able to perform rewriting computations in
essentially the standard and efficient way in which it is performed in an unsorted
or many-sorted TRS. Two such conditions, going back to [14], are to either: (i)
require that the rules R are sort-decreasing, i.e., for each l → r ∈ R and S-sorted
substitution σ, if lσ ∈ TΣ,s then rσ ∈ TΣ,s (this can be checked by the method
explained in [17]); or (ii) if R is not sort-decreasing, extend Σ with new “retract
operators” rs,s′ : s → s′, s, s′ ∈ [s], s �≤ s′, to catch typing errors, add to R “error
recovery” rules of the form rs,s′(x:s′) → x:s′, and force sort-decreasingness of R
by replacing each not sort-decreasing u → v ∈ R by suitable rules of the form
uσ → rs,s′(vσ), where σ may lower the sorts of some variables.

Conditions (i) or in its defect (ii) work and can be shown to be conservative in
a certain sense [14]. However, they have serious limitations. Sort decreasingness is
a strong condition that may be impossible to achieve for some OSTRS arising in
practice; and if the solution with retracts is adopted, an unpleasant consequence
is that we change the models, including the initial ones, since retracts add new
operations and new error terms to the original sorts.

All these limitations can be avoided —while allowing rewriting with rules
R and equational deduction with equations E to be performed in the stan-
dard way— by using a faithful embedding of order-sorted equational logic into
membership equational logic (MEL) [3,21]. MEL introduces a typing distinction
between sorts s ∈ S, which may be related by subsort relations just as in the
order-sorted way, and the kind �[s] associated to each connected component
[s] ∈ Ŝ, which is above all sorts in [s]. An ill-formed term like f(b) in the OS
signature of the Introduction has no sort, but has kind �[B]. In this way, the
earlier side condition in the Congruence rule in Sect. 3 can be avoided.

The faithfulness of this embedding of logics means in particular that both
initial models and equational deduction are preserved ([21], Corollary 28). How-
ever: (i) the proof in [21] is model-theoretic; (ii) it focuses on the equational
logic level, and does not deal with the more general rewriting logic level; and
(iii) it assumes that the entire MEL framework is adopted. Can the essential
advantages of this embedding be still obtained while remaining at the order-
sorted level? The answer is yes! Since: (i) this solution plays a key role in the
treatment of satisfiability for the theory of OS uninterpreted function symbols
in Sect. 4, and (ii) having a much simpler theory of OS rewriting is useful in
its own right, I give a detailed treatment of it below. The key idea is to use
a signature transformation Σ �→ Σ� extending any OS signature Σ into one
whose components have a top sort, understood as the kind of that component.
The essential point is that Σ� belongs to a class of order-sorted signatures called
kind complete where both rewriting and equational deduction can be performed
in the standard way.

Definition 4. An OS signature Σ = ((S,≤), Σ) is called kind-complete iff each
connected component [s] ∈ Ŝ has a top sort �[s], called its kind, with �[s] ≥ s′

for each s′ ∈ [s], and any non-empty subsort-polymorphic family f
[s1]...[sn]
[s] ⊆ Σ

502 J. Meseguer

includes the typing f : �[s1], . . . ,�[sn] → �[s]. Note that any many-sorted Σ —
and in particular any unsorted (i.e., single-sorted) Σ— is trivially kind-complete.

Any OS signature Σ can be extended to a kind-complete one by a transfor-
mation Σ �→ Σ�. Σ� is constructed in two-steps: (i) we first associate to the
order-sorted signature ((S,≤), Σ) the many-sorted signature Σ̂ = (Ŝ	, Σ̂), where
Ŝ	 = {�[s] | [s] ∈ Ŝ}, and with f : �[s1] . . . �[sn] → �[s] ∈ Σ̂ iff f

[s1]...[sn]
[s] �= ∅;

and (ii) we then define Σ� = ((S � Ŝ	,≤�), Σ � Σ̂), where ≤� ∩S2 = ≤, and
for each �[s] ∈ Ŝ	 we have s′ <� �[s] for each s′ ∈ [s]. That is, we add �[s] as
a top sort above each s′ ∈ [s] and add the new typing f : �[s1] . . . �[sn] → �[s]

for each f
[s1]...[sn]
[s] �= ∅.

For Σ the signature in the Introduction, Σ� is as follows:

Instead, the many-sorted signature Σ̂ in this example happens to be unsorted,
and is obtained by keeping only the sort �[B] in the above figure, with the
operations f and + and constants a, b, c of of sort �[B], and removing all other
sorts and operations in the figure. In summary, Σ� is the signature obtained by
adding a new top sort �[s] on top of each connected component [s] and “lifting”
to those top sorts all operations and constants, whereas Σ̂ is the many sorted
signature obtained when we remove from Σ� all sorts except the newly added
top sorts of the form �[s] for each [s].

We then have subsignature inclusions: Σ ⊆ Σ� and Σ̂ ⊆ Σ�. Note that, by
construction, if Σ is sensible, both Σ̂ and Σ� are also sensible; and that the
initial algebra TΣ� is preserved by reducts, i.e., we have:

TΣ� |Σ = TΣ and TΣ� |
̂Σ = T

̂Σ .

For kind-complete signatures, rewriting, and in particular equational deduc-
tion, can be performed in the standard, sorted way. Recall the usual notation to
denote term positions, subterms, decompositions and term replacement from [6]:
(i) positions in a term viewed as a tree are marked by strings p ∈ N

∗ specifying
a path from the root, (ii) t|p denotes the subterm of term t at position p, (iii)

Order-Sorted Rewriting and Congruence Closure 503

t = t[t|p]p denotes a decomposition of t into a context t[]p and its subterm t|p,
and (iv) t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 5. Let (Σ,R) be an OSTRS with Σ sensible and kind-complete. The
one-step R-rewrite relation u →R v holds between u, v ∈ TΣ(X)[s], [s] ∈ Ŝ, iff
there is a rewrite rule t → t′ ∈ R, a substitution σ ∈ [X→TΣ(X)], and a term
position p in u such that u = u[tσ]p and v = u[t′σ]p.

We denote by →+
R the transitive closure of →R, and by →∗

R the reflexive-
transitive closure of →R, and write (Σ,R)
 u →∗

R v to make Σ explicit.
(Σ,R) is called terminating iff →R is a well-founded relation; and is called

confluent iff whenever t →∗
R u and t →∗

R v there exists w such that u →∗
R w and

v →∗
R w. (Σ,R) is called convergent iff it is both confluent and terminating. If

(Σ,R) is convergent, each Σ-term t rewrites by some t →∗
R t!R to a unique term

t!R, called its R-canonical form, that cannot be further rewritten.

When Σ is kind-complete, if u ∈ TΣ(X)[s], t → t′ ∈ R, and u = u[tσ]p ∈
TΣ(X)[s], then we always have u[t′σ]p ∈ TΣ(X)[s]. That is, →R never produces
ill-formed terms, so that in the above definition of →R the requirement the
v ∈ TΣ(X)[s] is unnecessary and does not have to be checked. Indeed, for kind-
complete signatures order-sorted rewriting becomes standard sorted rewriting :

Lemma 1. Let (Σ,R) be an OSTRS with Σ sensible and kind-complete. Then
we have the equivalence:

(Σ,R)
 u →� v ⇔ (Σ,R)
 u →∗
R v.

Corollary 1. Let Σ be a sensible and kind-complete OS signature, and E∪{u =
v} a set of Σ-equations. Then we have the equivalence:

(Σ,E)
 u = v ⇔ (Σ,R(E))
 u →∗
R(E) v.

3.2 Conservativity Results

The whole point of the signature transformation Σ �→ Σ� is to replace complex
deductions of the form (Σ,R)
 u →� v by simple rewrite sequences u →∗

R v in
the extended OSTRS (Σ�, R). But is this sound?

Theorem 4. Let (Σ,R) be an OSTRS with Σ sensible. Then for any u, v ∈
TΣ(X)[s], [s] ∈ Ŝ we have the equivalence:

(Σ,R)
 u →� v ⇔ (Σ�, R)
 u →∗
R v.

Corollary 2. Let Σ be a sensible OS signature and E ∪ {u = v} a set of Σ-
equations. Then we have the equivalences:

(Σ,E)
 u = v ⇔ (Σ�, E)
 u = v ⇔ (Σ�, R(E))
 u →∗
R(E) v.

Since, besides the subsignature inclusion Σ ⊆ Σ�, we also have the inclusion
Σ̂ ⊆ Σ�, we have a further conservativity result:

504 J. Meseguer

Lemma 2. Let Σ be a sensible OS signature and (Σ̂, R) a many-sorted TRS.
Then for any u, v ∈ T

̂Σ(X)	[s] , �[s] ∈ Ŝ	, where X = {X	[s]}	[s]∈̂S�
, we have

(Σ̂, R)
 u →∗
R v iff (Σ�, R)
 u →∗

R v. As an immediate consequence, for
E ∪ {u = v} a set of Σ̂-equations, we have the equivalence:

(Σ̂, E)
 u = v ⇔ (Σ�, E)
 u = v.

4 Order-Sorted (Σ, ∅)-QF-Satisfiability

In theorem proving the theory (Σ, ∅), whose category of algebras is OSAlgΣ ,
is called the theory of uninterpreted function symbols Σ. As remarked in
Definition 1, a many-sorted signature Σ is a special case of an order-sorted sig-
nature, and an unsorted signature is a many-sorted signature where S = {U}
is a singleton set. Let QFForm(Σ) ⊆ Form(Σ) denote the set of quantifier-free
Σ-formulas, i.e., formulas with no quantifiers. When Σ is unsorted, (Σ, ∅)-QF-
satisfiability, i.e., (Σ, ∅)-satisfiability for any ϕ ∈ QFForm(Σ) is decidable [1].
The goal of this section is to show that the same holds for any sensible OS sig-
nature Σ by a reduction method. This can be done by two reductions. The first
reduces this decidability problem to that of the OS word problem, which is the
problem of whether, given a sensible OS signature Σ and a finite set E ∪{u = v}
of ground Σ-equations, E
 u = v holds or not. The desired first reduction is as
follows:

Theorem 5. (Σ, ∅)-QF-satisfiability is decidable for any sensible order-sorted
signature Σ iff the OS word problem is decidable.

The proof follows from the more general Theorem 7 in Sect. 5, which deals
with the OS word problem modulo equations B. The theorem’s algorithmic con-
tent mirrors its proof: ϕ =

∨
1≤i≤n(

∧
Ei ∧ ∧

Di) in DNF with the Ei equalities
and the Di disequalities is satisfiable iff, when we view the variables in ϕ as
fresh new constants C, there is an i, 1 ≤ i ≤ n, such that Ei �
 u = v for each
u �= v ∈ Di. Furthermore,

∧
Ei ∧ ∧

Di is satisfiable iff TΣ(C)/Ei
|= ∧

Ei ∧ ∧
Di.

The second reduction is from the OS word problem to the unsorted word
problem. This is broken into two reductions: (i) of the many-sorted word problem
to the unsorted word problem in Sect. 4.1, and (ii) of the OS word problem to
the many-sorted word problem in Sect. 4.2.

For Σ unsorted and E ∪{u = v} a finite set of ground Σ-equations it is well-
known that the word problem E
 u = v can be decided by a congruence closure
algorithm [7,24,27]. What the various such algorithms have in common is that
they are all instances (by applying difference strategies) of the same abstract
congruence closure algorithm in the sense of [2], which is summarized below.

4.1 Abstract Congruence Closure

What the abstract congruence closure algorithm in [2] captures is what all con-
crete congruence closure algorithms have in common: they all are efficient, spe-
cialized ground Knuth-Bendix completion algorithms [2,12,16,18]: they all begin

Order-Sorted Rewriting and Congruence Closure 505

with a set E of ground equations, and return a set R of convergent ground rewrite
rules R equivalent to E (on a possibly extended signature). We can then decide
the word problem E
 u = v by checking the syntactic equality u!R = v!R.

The key notion of abstract congruence closure in [2] is then as follows:

Definition 6. [2] For Σ an unsorted signature and E a finite set of ground
Σ-equations, an abstract congruence closure for E is a set R of ground con-
vergent Σ(K)-rewrite rules, where K is a finite set of new constants, such
that: (i) they are either of the form c → c′, with c, c′ ∈ K, or of the form
f(c1, . . . , cn) → c, with c1, . . . , cn, c ∈ K, f ∈ Σ with n ≥ 0 arguments; (ii) for
each c ∈ K there is a ground Σ-term t such that t!R = c!R; and (iii) for any
ground Σ-equation u = v we have E
 u = v iff we have the syntactic equality
u!R = v!R.

The paper [2] then gives an abstract congruence closure algorithm described
by six inference rules, with an optional seventh, such that: (i) takes as input a
triple (∅, E, ∅) with E is a set of ground Σ-equations; (ii) operates on triples
of the form (K ′, E′, R′) with E′ (resp. R′) the current Σ(K ′)-equations (resp.
Σ(K ′)-rules); and (iii) terminates with a triple of the form (K, ∅, R) such that
R is a congruence closure for E. The name abstract congruence closure is well-
deserved: the algorithms in [7,24,27], and two other ones, are all shown to be
instantiations of the abstract algorithm by applying the inference rules with
different strategies, so that both the operation of each algorithm and its actual
complexity are faithfully captured by the corresponding instantiation [2].

We need to decide the many-sorted word problem as a step for deciding
the more general order-sorted one. But the many-sorted word problem can be
easily reduced to the unsorted one by means of the signature transformation
Σ � (f : s1 . . . sn → s) �→ (f : U n. . . U → U) ∈ Σu, where Σ = (S,Σ) is a
many-sorted signature. Then all boils down to the following lemma:

Lemma 3. For Σ a sensible many-sorted signature and E a set of regular
Σ-equations —i.e., t and t′ have the same variables for each t = t′ ∈ E— we
have (Σ,E)
 u = v iff (Σu, Eu)
 (u = v)u, where for any Σ-equation t = t′,
(t = t′)u leaves the terms unchanged but regards all variables as unsorted.

This lemma has a very practical consequence: we can use an unsorted con-
gruence closure algorithm to solve the many-sorted word problem at no extra
cost : no changes are needed either to the input E or to the unsorted algorithm.

4.2 Deciding OS (Σ, ∅)-QF-Satisfiability

For any sensible OS signature Σ we have reduced the decidability of the (Σ, ∅)-
QF-satisfiability problem to that of the OS word problem in Theorem5. And
in Lemma 3 we have reduced the many-sorted word problem to the unsorted
word problem, which is decidable by a congruence closure algorithm. To prove
the decidability of the OS (Σ, ∅)-QF-satisfiability problem and obtain a correct
algorithm for it we just need to reduce the OS word problem to the many-sorted
word problem. For this, the conservativity results in Sect. 3.2 are crucial:

506 J. Meseguer

Theorem 6. Let Σ be a sensible OS signature and E ∪{u = v} a set of ground
Σ-equations. Then we have the equivalence:

(Σ,E)
 u = v ⇔ (Σ̂, E)
 u = v.

The decidability of the OS (Σ, ∅)-QF-satisfiability problem goes back to [11];
but the reduction achieved by Theorem5, Lemma 3 and Theorem 6 yields a
new, very simple algorithm. Either by already having ϕ in DNF or by using
a DPLL(Σ, ∅) solver, deciding the satisfiability of ϕ boils down to finding a
satisfiable conjunction

∧
E ∧ ∧

D, with E (resp. D) a finite sets of equations
(resp. disquations), which can be viewed as a ground Σ(C)-formula by adding
C = fvars(ϕ) as new constants. Then, satisfiability of

∧
E ∧ ∧

D is decided by:

1. regarding at no cost
∧

E ∧ ∧
D as a ground Σ(C)u-formula,

2. computing a congruence closure R for E in the usual way [7,24,27], and
3. checking the syntactic inequality u!R �≡ v!R for each u �= v ∈ D.

Therefore we can reuse the same algorithms and tools used in the unsorted
case at no extra cost : the input to such algorithms and the algorithms or tools
themselves need no changes, and the complexity is that of the unsorted case.

5 Order-Sorted (Σ,ACΔ)-QF-Satisfiability

Let Σ be a sensible OS signature with Δ ⊆ Σ made exclusively of binary function
symbols, say, g, h, . . ., each of the form g : s s → s for some sorts s ∈ S, and
with any typing of any such g in Σ necessarily a typing in Δ, i.e., Δ and (Σ −
Δ) share no symbols. Assume that each non-empty subsort-polymorphic family
g
[s] [s]
[s] ⊆ Δ has always a biggest possible typing g : sg sg → sg such that for

any other typing g : s s → s in g
[s] [s]
[s] we have s ≤ sg. The equations: ACg =

{g(x, y) = g(y, x), g(x, g(y, z)) = g(g(x, y), z)}, with x, y, z of sort sg, express the
associativity-commutativity (AC) of the subsort-polymorphic family g

[s] [s]
[s] . We

require that the axioms ACg are sort-preserving, that is, that for each S-sorted
substitution σ and each sort s ∈ S we have: g(x, y)σ ∈ TΣ(X)s ⇔ g(y, x)σ ∈
TΣ(X)s, and g(x, g(y, z))σ ∈ TΣ(X)s ⇔ g(g(x, y), z)σ ∈ TΣ(X)s, which can
be easily checked by the method explained in [17]. Let ACΔ denote the set
ACΔ =

⋃
g∈Δ ACg making all symbols in Δ AC. Call (Σ,ACΔ) the OS theory

of Σ uninterpreted function symbols Σ modulo ACΔ. When Σ = Δ is unsorted
and has a single symbol +, this is called the theory of commutative semigroups.

We can generalize the above setting by replacing (Δ,ACΔ) by any OS theory
(Δ,B) with Δ sensible and considering any sensible supersignature Σ ⊇ Δ with
Δ and Σ − Δ not sharing any symbols. Call (Σ,B) the theory of uninterpreted
function symbols Σ modulo B. We can then reduce the decidability of the (Σ,B)-
QF-satisfiabilty problem to that of the OS word problem modulo B, defined as
the problem of whether given any Σ ⊇ Δ as above, and a set E ∪ {u = v} of
ground Σ-equations, E ∪ B
 u = v holds or not. The reduction is as follows:

Order-Sorted Rewriting and Congruence Closure 507

Theorem 7. For any (Δ,B) and Σ ⊇ Δ as above, (Σ,B)-QF-satisfiability is
decidable iff the OS word problem modulo B is decidable.

For Σ ⊇ Δ unsorted, there are AC congruence closure algorithms for the the-
ory (Σ,ACΔ) [2,19,22] that decide the word problem modulo ACΔ and there-
fore, by above Theorem 7, the unsorted (Σ,ACΔ)-QF-satisfiability problem. In
the spirit of Sect. 4, the main goal of this section is to reduce the decidability
of the OS (Σ,ACΔ)-QF-satisfiability problem to that of its unsorted version,
and to furthermore reuse the same unsorted AC congruence closure algorithms
in [2,19,22] to decide at no extra cost and with the same complexity the OS
(Σ,ACΔ)-QF-satisfiability problem.

The decidability of OS (Σ,ACΔ)-QF-satisfiability has already been reduced
to that of the OS word problem modulo ACΔ, now we just need to reduce the
OS word problem modulo ACΔ to the unsorted word problem modulo ACΔu .

This is achieved in two steps. First, we reduce the many-sorted word problem
modulo AC

̂Δ to the unsorted word problem modulo ACΔu using the Σ̂ �→ Σu

transformation of Sect. 4.1. This first reduction is easy: the equations AC
̂Δ are

regular. Therefore, if E ∪ {u = v} is a finite set of ground many-sorted Σ̂-
equations, the equations E∪AC

̂Δ are also regular and the conditions of Lemma3
apply. We then reduce the OS word problem modulo ACΔ to the many-sorted
word problem modulo AC

̂Δ. The Δ̂-equations AC
̂Δ are obtained from the OS

Δ-equations in ACΔ by replacing each variable x:s by the variable x:�[s]. That
is, for E ∪{u = v} a finite set of ground Σ-equations must show the equivalence:

(Σ,E ∪ ACΔ)
 u = v ⇔ (Σ̂, E ∪ AC
̂Δ)
 u = v

which, by Corollary 2, reduces to proving the equivalence:

(Σ�, E ∪ ACΔ)
 u = v ⇔ (Σ̂, E ∪ AC
̂Δ)
 u = v

which, by Lemma 2, follows as a special case from the more general theorem:

Theorem 8. Let Σ ⊇ Δ be a sensible OS supersignature, R a set of Σ-rewrite
rules, and u, v ∈ TΣ(X). Then we have the equivalence:

(Σ�, R∪R(ACΔ))
 u →∗
R∪R(ACΔ) v ⇔ (Σ�, R∪R(AC

̂Δ))
 u →∗
R∪R(AC

̂Δ
) v.

6 Related Work and Conclusions

[11] presents the only order-sorted congruence closure algorithm I am aware
of. It provides a good solution under some extra assumptions on Σ, but it
requires a quite complex congruence generation method and has worse com-
plexity, O(n2), than the best O(n log(n)) unsorted algorithms. The papers
[2,12,16,19,22] present the view of congruence closure as completion. In par-
ticular, I have used abstract congruence closure [2] and AC-congruence closure
[2,19,22]. The modular combination of congruence closure, AC congruence, and

508 J. Meseguer

polynomial ring congruence closure algorithms for different symbols and its rela-
tion to the Nelson-Oppen combination method [23,25] is studied in [31]. Likewise,
the combination of AC congruence closure with other satisfiability algorithms
using the Shostak combination method [28] is studied in [5] The first general
study I know of satisfiability modulo theories in an order-sorted setting is [30].

The above-mentioned work has influenced and motivated the present one.
The good news is that we get all the benefits of order-sorted (Σ, ∅)- and
(Σ,ACΔ)-satisfiability for free, with no added computational cost and being
able to reuse unsorted tools. At a more theoretical level, the order-sorted rewrit-
ing and equality results presented here are also good news and belong to the
foundations of such an area. Future work will focus on exploiting these results
at the tool level.

Acknowledgements. Partially supported by NSF Grant CNS 13-19109. I thank
Maria Paola Bonacina for suggested improvements.

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing
Company, Amsterdam (1954)

2. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. Autom.
Reasoning 31(2), 129–168 (2003)

3. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoret. Comput. Sci. 236, 35–132 (2000)

4. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

5. Conchon, S., Contejean, E., Iguernelala, M.: Canonized rewriting and ground AC
completion modulo Shostak theories : design and implementation. Logical Methods
Comput. Sci. 8(3), 1–29 (2012)

6. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland Pub-
lishing Company, Amsterdam (1990)

7. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpressions
problem. J. ACM 27(4), 758–771 (1980)

8. Frisch, A.M.: The substitutional framework for sorted deduction: fundamental
results on hybrid reasoning. Artif. Intell. 49(1–3), 161–198 (1991)

9. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, Singapore (1998)
10. Futatsugi, K., Goguen, J., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2. In:

Proceedings of POPL 1985, pp. 52–66. ACM (1985)
11. Gallier, J., Isakowitz, T.: Order-sorted congruence closure. Technical report CIS-

686, UPenn (1988). http://repository.upenn.edu/cis reports/686
12. Gallier, J.H., Narendran, P., Plaisted, D.A., Raatz, S., Snyder, W.: An algorithm

for finding canonical sets of ground rewrite rules in polynomial time. J. ACM 40(1),
1–16 (1993)

13. Gnaedig, I., Kirchner, C., Kirchner, H.: Equational completion in order-sorted
algebras. Theoret. Comput. Sci. 72(2–3), 169–202 (1990)

http://repository.upenn.edu/cis_reports/686

Order-Sorted Rewriting and Congruence Closure 509

14. Goguen, J., Jouannaud, J.P., Meseguer, J.: Operational semantics of order-sorted
algebra. In: Brauer, W. (ed.) Automata, Languages and Programming. LNCS, vol.
194, pp. 221–231. Springer, Heidelberg (1985)

15. Goguen, J., Meseguer, J.: Order-sorted algebra I. Theoret. Comput. Sci. 105, 217–
273 (1992)

16. Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA
1997. LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997)

17. Kirchner, C., Kirchner, H., Meseguer, J.: Operational semantics of OBJ3. In: Lep-
istö, T., Salomaa, A. (eds.) Automata, Languages and Programming. LNCS, vol.
317, pp. 287–301. Springer, Heidelberg (1988)

18. Knuth, D., Bendix, P.: Simple word problems in universal algebra. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra. Pergamon Press, Oxford
(1970)

19. Marché, C.: On ground AC-completion. In: Book, R.V. (ed.) RTA 1991. LNCS,
vol. 488, pp. 411–422. Springer, Heidelberg (1991)

20. Meseguer, J.: Order-sorted rewriting and congruence closure. Technical report, C.S.
Department, University of Illinois at Urbana-Champaign, June 2015. http://hdl.
handle.net/2142/78008

21. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

22. Narendran, P., Rusinowitch, M.: Any ground associative-commutative theory has
a finite canonical system. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp.
423–434. Springer, Heidelberg (1991)

23. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

24. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

25. Oppen, D.C.: Complexity, convexity and combinations of theories. Theoret. Com-
put. Sci. 12, 291–302 (1980)

26. Schmidt-Schauss, M.: Computational Aspects of Order-Sorted Logic with Term
Declarations. LNCS (LNAI), vol. 395. Springer, Heidelberg (1989)

27. Shostak, R.E.: An algorithm for reasoning about equality. Commun. ACM 21(7),
583–585 (1978)

28. Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)
29. Smolka, G., Aı̈t-Kaci, H.: Inheritance hierarchies: semantics and unification. J.

Symb. Comput. 7(3/4), 343–370 (1989)
30. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:

Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653.
Springer, Heidelberg (2004)

31. Tiwari, A.: Combining equational reasoning. In: Ghilardi, S., Sebastiani, R. (eds.)
FroCoS 2009. LNCS, vol. 5749, pp. 68–83. Springer, Heidelberg (2009)

32. Walther, C.: A mechanical solution of Schubert’s steamroller by many-sorted res-
olution. Artif. Intell. 26(2), 217–224 (1985)

http://hdl.handle.net/2142/78008
http://hdl.handle.net/2142/78008

	Order-Sorted Rewriting and Congruence Closure
	1 Introduction
	2 Preliminaries on Order-Sorted Algebra
	3 Order-Sorted Rewriting and Equality
	3.1 Kind-Complete OS-Rewriting and Equational Deduction
	3.2 Conservativity Results

	4 Order-Sorted (,)-QF-Satisfiability
	4.1 Abstract Congruence Closure
	4.2 Deciding OS (,)-QF-Satisfiability

	5 Order-Sorted (,AC)-QF-Satisfiability
	6 Related Work and Conclusions
	References

