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Abstract. We investigate the complexity of deciding contextual approx-
imation (refinement) in finitary Idealized Algol, a prototypical language
combining higher-order types with state. Earlier work in the area estab-
lished the borderline between decidable and undecidable cases, and
focussed on the complexity of deciding approximation between terms
in normal form.

In contrast, in this paper we set out to quantify the impact of locally
declared higher-order procedures on the complexity of establishing con-
textual approximation in the decidable cases. We show that the obvious
decision procedure based on exhaustive β-reduction can be beaten. Fur-
ther, by classifying redexes by levels, we give tight bounds on the com-
plexity of contextual approximation for terms that may contain redexes
up to level k, namely, (k−1)-EXPSPACE-completeness. Interestingly, the
bound is obtained by selective β-reduction: redexes from level 3 onwards
can be reduced without losing optimality, whereas redexes up to order 2
are handled by a dedicated decision procedure based on game semantics
and a variant of pushdown automata.

1 Introduction

Contextual approximation (refinement) is a fundamental notion in programming
language theory, facilitating arguments about program correctness [14] as well
as supporting formal program development [5]. Intuitively, a term M1 is said
to contextually approximate another term M2, if substituting M1 for M2 in any
context will not lead to new observable behaviours. Being based on universal
quantification over contexts, contextual approximation is difficult to establish
directly. In this paper, we consider the problem of contextual approximation in
a higher-order setting with state. Contextual reasoning at higher-order types is
a recognised challenge and a variety of techniques have been proposed to address
it, such as Kripke logical relations [3] or game models [2]. In this work, we aim
to understand the impact of locally defined higher-order procedures on the com-
plexity of establishing contextual approximation. Naturally, one would expect
the complexity to grow in the presence of procedures and it should grow as the
type-theoretic order increases. We shall quantify that impact by providing tight
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complexity bounds for contextual approximation in our higher-order framework.
The results demonstrate that, from the complexity-theoretic point of view, it is
safe to inline procedures only down to a certain level. Below that level, however,
it is possible to exploit compositionality to arrive at better bounds than those
implied by full inlining.

The vehicle for our study is Idealized Algol [1,13], the protypical language
for investigating the combination of local state with higher-order procedures.
In order to avoid obviously undecidable cases, we restrict ourselves to its fini-
tary variant IAf , featuring finite base types and no recursion (looping is allowed,
though). Both semantic and syntactic methods were used to reason about Ideal-
ized Algol [1,12] in the past. In particular, on the semantic front, there exists a
game model that captures contextual approximation (in the sense of inequational
full abstraction) via complete-play inclusion. Earlier work in the area [6,9,11]
used this correspondence to map out the borderline between decidable and unde-
cidable cases within IAf . The classification is based on type-theoretic order: a
term is of order i if its type is of order at most i and all free variables have
order less than i. We write IAi for the set of IAf -terms of order i. It turns out
that contextual approximation is decidable for terms of all orders up to 3, but
undecidable from order 4 onwards. The work on decidability has also estab-
lished accurate complexity bounds for reasoning about contextual approxima-
tion between terms in β-normal form as well as terms with the simplest possible
β-redexes, in which arguments can only be of base type. For order-3 terms,
the problem can be shown EXPTIME-complete [11], while at orders 0, 1, 2 it is
PSPACE-complete [10]. In this paper, we present a finer analysis of the decid-
able cases and consider arbitrary β-redexes. In particular, functions can be used
as arguments, which corresponds to the inlining of procedures.

We evaluate the impact of redexes by introducing a notion of their level: the
level of a β-redex (λx.M)N will be the order of the type of λx.M . Accordingly,
we can split IAi into sublanguages IAk

i , in which terms can contain redexes of level
up to k. IA0

i is then the normal-form case and IA1
i is the case of base-type argu-

ments. Obviously, the problem of contextually approximating IAk
i (i ≤ 3, k ≥ 2)

terms can be solved by β-reduction (and an appeal to the results for IA0
i ), but

this is known to result in a k-fold exponential blow-up, thus implying a (k + 1)-
EXPTIME upper bound for IAk

3 . This bound turns out to be suboptimal. One
could lower it by reducing to IA1

i instead, which would shave off a single expo-
nential, but this is still insufficient to arrive at the optimal bound. It turns out,
however, that reducing IAk

3 terms to IA2
3 (all redexes up to order 3 are eliminated)

does not lead to a loss of optimality. To work out the accurate bound for the IA2
3

case, one cannot apply further β-reductions, though. Instead we devise a dedi-
cated procedure based on game semantics and pushdown automata. More specif-
ically, we introduce a variant of visibly pushdown automata [4] with ε-transitions
and show how to translate IA2

3 into such automata so that the accepted languages
are faithful representations of the term’s game semantics [1]. The translation can
be performed in exponential time and, crucially, the automata correspoding to
IA2

3-terms satisfy a boundedness property: the stack symbols pushed on the stack
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during ε-moves can only form contiguous segments of exponential length with
respect to the term size. This allows us to solve the corresponding inclusion prob-
lem in exponential space with respect to the original term size. Consequently,
we can show that IA2

3 contextual approximation is in EXPSPACE.
The above result then implies that program approximation of IAk

3-terms is
in (k − 1)-EXPSPACE. Furthermore, we can prove matching lower bounds for
IAk

1 . The table below summarises the complexity results. The results for k ≥ 2
are new.

k = 0 k = 1 k ≥ 2

IAk
1 PSPACE-complete [10] PSPACE-complete [10] (k − 1)-EXPSPACE-complete

IAk
2 PSPACE-complete [10] PSPACE-complete [10] (k − 1)-EXPSPACE-complete

IAk
3 EXPTIME-complete [11] EXPTIME-complete [11] (k − 1)-EXPSPACE-complete

2 Idealized Algol

We consider a finitary version IAf of Idealized Algol with active expressions [1].
Its types are generated by the following grammar.

θ ::= β | θ → θ β ::= com | exp | var
IAf can be viewed as a simply-typed λ-calculus over the base types com, exp, var
(of commands, expressions and variables respectively) augmented with the con-
stants listed below

skip : com i : exp (0 ≤ i ≤ max ) succ : exp → exp pred : exp → exp
ifzeroβ : exp → β → β → β seqβ : com → β → β deref : var → exp

assign : var → exp → com cellβ : (var → β) → β
while : exp → com → com mkvar : (exp → com) → exp → var

where β ranges over base types and exp = { 0, · · · ,max }. Other IAf -terms are
formed using λ-abstraction and application

Γ � M : θ → θ′ Γ � N : θ

Γ � MN : θ′
Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′

using the obvious rules for constants and free identifiers. Each of the constants
corresponds to a different programming feature. For instance, the sequential
composition of M and N (typically denoted by M ;N) is expressed as seqβMN ,
assignment of N to M (M := N) is represented by assignMN and cellβ(λx.M)
amounts to creating a local variable x visible in M (new x in M). mkvar is
the so-called bad-variable constructor that makes it possible to construct terms
of type var with prescribed read- and write-methods. whileMN corresponds
to while M do N . We shall write Ωβ for the divergent constant that can be
defined using while 1 do skip.

The operational semantics of IAf , based on call-by-name evaluation, can be
found in [1]; we will write M ⇓ if M reduces to skip. We study the induced
contextual approximation.
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MA×B = MA + MB MA⇒B = MA + MB

λA×B = [λA, λB ] λA⇒B = [λA, λB ]

A×B = A + B A⇒B = B +(IB × IA) + ( A ∩ (MA × MA))

λA reverses the ownership of moves in A while preserving their kind.

Fig. 1. Constructions on arenas

Definition 1. We say that Γ � M1 : θ contextually approximates Γ � M2 : θ
if, for any context C[−] such that C[M1], C[M2] are closed terms of type com,
we have C[M1]⇓ implies C[M2]⇓. We then write Γ � M1

�∼ M2.

Even though the base types are finite, IAf contextual approximation is not decid-
able [9]. To obtain decidability one has to restrict the order of types, defined by:

ord(β) = 0 ord(θ → θ′) = max(ord(θ) + 1, ord(θ′)).

Definition 2. Let i ≥ 0. The fragment IAi of IAf consists of IAf-terms x1 :
θ1, · · · , xn : θnM : θ such that ord(θj) < i for any j = 1, · · · , n and ord(θ) ≤ i.

Contextual approximation is known to be decidable for IA1, IA2 and IA3 [11],
but it is undecidable for IA4 [9].

Definition 3. – The level of a β-redex (λxθ.M)N is the order of the type of
λxθ.M .

– A term has degree k if all redexes inside it have level at most k.
– IAk

i is the subset of IAi consisting of terms whose degree is at most k.

β-reduction can be used to reduce the degree of a term by one at an exponential
cost.

Lemma 1. Let d ≥ 1. A λ-term M of degree d can be reduced to a term M ′ of
degree d − 1 with a singly-exponential blow-up in size.

3 Games

Game semantics views computation as an exchange of moves between two play-
ers, called O and P. It interprets terms as strategies for P in an abstract game
derived from the underlying types. The moves available to players as well as the
rules of the game are specified by an arena.

Definition 4. An arena is a triple A = 〈MA, λA,�A 〉, where

– MA is a set of moves;
– λA : MA → {O,P } × {Q,A } is a function indicating to which player (O or

P ) a move belongs and of what kind it is (question or answer);
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Acom Aexp Avar

run

done

q

0 · · · max

read write(0) · · · write(max)

0 · · · max ok

Fig. 2. Arenas for base types

– �A⊆ (MA + { � }) × MA is the so-called enabling relation, which must satisfy
the following conditions:
• If � enables a move then it is an O-question without any other enabler. A

move like this is called initial and we shall write IA for the set containing
all initial moves of A.

• If one move enables another then the former must be a question and the
two moves must belong to different players.

Arenas used to interpret the base types of IAf are shown in Fig. 2: the moves
at the bottom are answer-moves. Product and function-space arenas can be
constructed as shown in Fig. 1. Given an IAf -type θ, we shall write [[θ]] for the
corresponding arena obtained compositionally from Acom, Aexp and Avar using
the ⇒ construction. Given arenas, we can play games based on a special kind of
sequences of moves. A justified sequence s in an arena A is a sequence of moves
in which every move m �∈ IA must have a pointer to an earlier move n in s such
that n �A m. n is then said to be the justifier of m. It follows that every justified
sequence must begin with an O-question.

Given a justified sequence s, its O-view �s� and P-view �s� are defined as
follows, where o and p stand for an O-move and a P-move respectively:

�ε� = ε �so� = �s�o �so t p� = �s�o p
�ε� = ε �so� = o (if o is initial) �sp� = �s�p �sp t o� = �s�p o.

A justified sequence s satisfies visibility condition if, in any prefix tm of s, if m
is a non-initial O-move then its justifier occurs in �t� and if m is a P-move then
its justifier is in �t�. A justified sequence satisfies the bracketing condition if any
answer-move is justified by the latest unanswered question that precedes it.

Definition 5. A justified sequence is a play iff O- and P -moves alternate and
it satisfies bracketing and visibility. We write PA for the set of plays in an arena
A. A play is single-threaded if it contains at most one occurrence of an initial
move.

The next important definition is that of a strategy. Strategies determine unique
responses for P (if any) and do not restrict O-moves.

Definition 6. A strategy in an arena A (written as σ : A) is a non-empty
prefix-closed subset of single-threaded plays in A such that:
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skip : com run done
i : exp q i
succ : exp 1 ⇒ exp q q1

max
i=0 i1 ((i + 1) mod max)

pred : exp 1 ⇒ exp q q1
max
i=0 i1 ((i − 1) modmax)

ifzeroβ : exp 3 ⇒ β 2 ⇒ β 1 ⇒ β

q β a q q3 03 q1 a1 a + q β a q q3 (
max
i=1 i3) q2 a2 a

seqβ : com 2 ⇒ β 1 ⇒ β q β a q run2 done2 q1 a1 a

deref : var 1 ⇒ exp q read1
max
i=0 i1 i

assign : var 2 ⇒ exp 1 ⇒ com run q1
max
i=0 i1 write(i)2 ok2 done

cellβ : ( var 1,1 ⇒ β 1) ⇒ β

q β a qq1(read1,1 01,1 )
∗( max

i=0 write(i)1,1 ok1,1(read1,1 i1,1)
∗)∗a1a

mkvar : ( exp 2,1 ⇒ com 2) ⇒ exp 1 ⇒ var
read q1 (

max
i=0 i1 i) + max

i=0 write(i) run2 (q2,1 i2,1)
∗ done2 ok

while : exp 2 ⇒ com 1 ⇒ com run q2 (
max
i=1 i2 run1 done1 q2)

∗ 02 done

Fig. 3. Strategies for constants. Only complete plays are specified.

(i) whenever sp1, sp2 ∈ σ and p1, p2 are P-moves then p1 = p2;
(ii) whenever s ∈ σ and so ∈ PA for some O-move o then so ∈ σ.

We write comp (σ) for the set of non-empty complete plays in σ, i.e. plays in
which all questions have been answered.

An IAf term Γ � M : θ, where Γ = x1 : θ1, · · · , xn : θn, is interpreted by a strat-
egy (denoted by [[Γ � M : θ]]) in the arena [[Γ � θ]] = [[θ1]]×· · ·× [[θn]] ⇒ [[θ]]. The
denotations are calculated compositionally starting from strategies correspond-
ing to constants and free identifiers [1]. The latter are interpreted by identity
strategies that copy moves across from one occurrence of the same arena to the
other, subject to the constraint that the interactions must be plays. Strategies
corresponding to constants are given in Fig. 3, where the induced complete plays
are listed. We use subscripts to indicate the origin of moves. Let σ : A ⇒ B
and τ : B ⇒ C. In order to compose the strategies, one first defines an auxil-
iary set σ† of (not necessarily single-threaded) plays on A ⇒ B that are special
interleavings of plays taken from σ (we refer the reader to [1] for details). Then
σ; τ : A ⇒ C can be obtained by synchronising σ† and τ on B-moves and eras-
ing them after the synchronisation. The game-semantic interpretation captures
contextual approximation as follows.

Theorem 1 [1]. Γ � M1
�∼ M2 if and only if comp [[Γ � M1]] ⊆ comp [[Γ � M2]].

Remark 1. σ† is an interleaving of plays in σ that must itself be a play in PA⇒B.
For instance, only O is able to switch between different copies of σ and this can
only happen after P plays in B. We shall discuss two important cases in detail,
namely, B = [[β]] and B = [[βk → · · · → β1 → β]].

– If B = [[β]] then a new copy of σ can be started only after the previous one is
completed. Thus σ† in this case consists of iterated copies of σ.
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– If B = [[βk → · · · → β1 → β]] then, in addition to the above scenario, a
new copy of σ can be started by O each time P plays qi (question from
βi). An old copy of σ can be revisited with ai, which will then answer some
unanswered occurrence of qi. However, due to the bracketing condition, this
will be possible only after all questions played after that qi have been answered,
i.e. when all copies of σ opened after qi are completed. Thus, in this particular
case, σ† contains “stacked” copies of σ. Consequently, we can capture X =
{ ε } ∪ comp (σ†) in this case by equation

X = {ε} ∪
⋃

{ q A0 qi1 X ai1 A1 . . . qim X aim Am aX |
qA0qi1ai1A1 . . . qimaimAma ∈ comp (σ)}

where Aj ’s stand for (possibly empty and possibly different) segments of moves
from A. Note that, in a play of σ, qi will always be followed by ai.

4 Upper Bounds

We shall prove that contextual approximation of IA2
3 terms can be decided in

exponential space. Thanks to Lemma 1, this will imply that approximation of
IAk

3 (k ≥ 2) terms is in (k − 1)-EXPSPACE. In Sect. 5 we will show that these
bounds are tight.

This shows that by firing redexes of level higher than 3 we do not lose optimal
complexity. However, if redexes of order 2 were also executed (i.e. first-order
procedures were inlined), the problem would be reduced to IA1

3 and the implied
bound would be 2-EXPTIME, which turns out suboptimal. In what follows, we
show that contextual approximation of IA2

3 terms is in EXPSPACE. To that end,
we shall translate the terms to automata that represent their game semantics.
The alphabet of the automata will consist of moves in the corresponding games.
Recall that each occurrence of a base type in a type contributes distinct moves.
In order to represent their origin faithfully, we introduce a labelling scheme based
on subscripts.

First we discuss how to label occurrences of base types in types. Let Θ be a
type of order at most 3. Then Θ ≡ Θm → · · · → Θ1 → β and Θi’s are of order
at most 2. Consequently, for each 1 ≤ i ≤ m, we have Θi ≡ Θi,mi

→ · · · →
Θi,1 → βi and Θi,j ’s are of order at most 1. Thus, we have Θi,j ≡ βi,j,mi,j

→
· · · → βi,j,1 → βi,j . Note that the above decomposition assigns a sequence of
subscripts to each occurrence of a base type in Θ. Observe that ord(Θ) = 3 if
and only if some occurrence of a base type gets subscripted with a triple. Next
we are going to employ the subscripts to distinguish base types in IA3 typing
judgments.

Definition 7. A third-order typing template Ψ is a sequence x1 : θ1, · · · , xn :
θn, θ, where ord(θi) ≤ 2 (1 ≤ i ≤ n) and ord(θ) ≤ 3.

To label θ1, · · · , θn, θ we will use the same labelling scheme as discussed above
but, to distinguish θi’s from θ and from one another, we will additionally use
superscripts xi for the former. The labelling scheme will also be used to identify
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moves in the corresponding game. Recall that the game corresponding to a third-
order typing template will have moves from M[[θ1]]+· · ·+M[[θn]]+M[[θ]]. The super-
and subscripts will identify their origin in a unique way.

Example 1. Let Ψ ≡ x1 : (com → exp) → var, x2 : com → exp → var, ((com →
exp) → var) → com. Here is the labelling scheme for Ψ : x1 : (comx1

1,1 → expx1
1 ) →

varx1 , x2 : comx2
2 → expx2

1 → varx2 , ((com1,1,1 → exp1,1) → var1) → com. In the
corresponding games, among others, we will thus have moves runx1

1,1, runx2
2 , qx2

1 ,
readx2 , run1,1,1 as well as run.

Our representation of game semantics will need to account for justification point-
ers. Due to the well-bracketing condition, pointers from answers need not be
represented explicitly. Moreover, because of the visibility condition, in our case
we only need to represent pointers from moves of the shapes qx

i,j and qi,j,k. Such
pointers must point at some moves of the form qx

i and qi,j respectively. In order
to represent a pointer we are going to place a hat symbol above both the source
and target of the pointer, i.e. we shall also use “moves”of the form q̂x

i,j , q̂i,j,k

(sources) and q̂x
i , q̂i,j (targets) - the latter hatted moves will only be used if the

former exist in the sequence. Similarly to [8], we shall represent a single play by
several sequences of (possibly hatted) moves under the following conditions:

– whenever a target-move of the kind discussed above is played, it may or may
not be hatted in the representing sequences of moves,

– if a target-move is hatted, all source-moves pointing at the target move are
also hatted,

– if a target-move is not hatted, no source-moves pointing at the move are
hatted.

Note that this amounts to representing all pointers for a selection of possible
targets, i.e. none, one or more (including all). Because the same -̂symbol is used
to encode each pointer, in a single sequence there may still be ambiguities as to
the real target of a pointer. However, among the representing plays we will also
have plays representing pointers only to single targets, which suffice to recover
pointer-related information. This scheme works correctly because only pointers
from P-moves need to be represented and the strategies are deterministic (see
the discussion at the end of Sect. 3 in [11]).

Example 2. The classic examples of terms that do need explicit pointers are the
Kierstaad terms � K1,K2 : ((com1,1,1 → com1,1) → com1) → com defined by
Ki ≡ λf (com→com)→com.f(λxcom

1 .f(λx2
com.xi)). To represent the corresponding

strategies the following sequences of moves will be used (among others).

– K1: q q1 q1,1 q1 q1,1 q1,1,1 (zero targets), q q1 q̂1,1 q1 q1,1 q̂1,1,1 (one target),
q q1 q1,1 q1 q̂1,1 q1,1,1 (one target), q q1 q̂1,1 q1 q̂1,1 q̂1,1,1 (two targets).

– K2: q q1 q1,1 q1 q1,1 q1,1,1 (zero targets), q q1 q̂1,1 q1 q1,1 q1,1,1 (one target),
q q1 q1,1 q1 q̂1,1 q̂1,1,1 (one target), q q1 q̂1,1 q1 q̂1,1 q̂1,1,1 (two targets).
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To represent strategies corresponding to IA2
3-terms we are going to define an

extension of visibly pushdown automata [4]. The alphabet will be divided push-,
pop- and no-op-letters corresponding to possibly hatted moves. Additionally, we
will use ε-transitions that can modify stack content, albeit using a distinguished
stack alphabet.

Definition 8. Let Ψ = x1 : θ1, · · · , xm : θm, θ be a third-order typing template
and let M = M[[θ1]]+ · · ·+M[[θn]]+M[[θ]]. Below we shall refer to the various com-
ponents of M using subscripts and superscripts according to the labelling scheme
introduced earlier, also using q and a for questions and answers respectively. We
define the sets Σpush, Σpop, Σnoop as follows.

– Σpush = {qi,j,k, q̂i,j,k | qi,j,k ∈ M} ∪ {qxh
i,j , q̂xh

i,j | qxh
i,j ∈ M}

– Σpop = {ai,j,k | ai,j,k ∈ M} ∪ {axh
i,j | axh

i,j ∈ M}
– Σnoop = (M \ (Σpush ∪ Σpop)) ∪ {q̂i,j | qi,j,k ∈ M} ∪ {q̂xh

i | qxh
i,j ∈ M}

Σpush and Σpop contain exclusively P- and O-moves respectively, while we can
find both kinds of moves in Σnoop. Let us write ΣO

noop, Σ
P
noop for subsets of Σnoop

consisting of O- and P-moves respectively. The states of our automata will be
partitioned into states at which O is to move (O-states) and whose at which
P should reply (P-states). Push-moves and ε-transitions are only available at
P-states, while pop-transitions belong to O-states. No-op transitions may be
available from any kind of state. Further, to reflect determinacy of strategies,
P-states allow for at most one executable outgoing transition, which may be
labelled with an element of ΣP (push or no-op) or be silent (noop, push or pop).

Definition 9. Let Ψ be a third-order typing template. A Ψ -automaton A is a
tuple (Q,Σ, Υ, δ, i, F ) such that

– Q = QO + QP is a finite set of states partitioned into O-states and P-states,
– Σ = ΣO + ΣP is the finite transition alphabet obtained from Ψ as above,

partitioned into O- and P-letters, where ΣO = Σpop+ΣO
noop and ΣP = Σpush+

ΣP
noop,

– Υ = ΥΣ + Υ ε is a finite stack alphabet partitioned into Σ-symbols and ε-
symbols,

– δ = δO
pop + δO

noop + δP is a transition function consisting of δO
pop : QO ×Σpop ×

ΥΣ ⇀ QP , δO
noop : QO × ΣO

noop ⇀ QP and δP : QP ⇀ (Σpush × QO × ΥΣ) +
(ΣP

noop × QO) + QP + (QP × Υε) + (Υε ⇀ QP ),
– i ∈ QO is an initial state, and
– F ⊆ QO is a set of final states.

Ψ -automata are to be started in the initial state with empty stack. They will
accept by final state, but whenever this happens the stack will be empty any-
way. Clearly, they are deterministic. The set of words derived from runs will be
referred to as the trace-set of A, written T (A). We write L(A) for the subset of
T (A) consisting of accepted words only. The Ψ -automata to be constructed will
satisfy an additional run-time property called P-liveness: whenever the automa-
ton reaches a configuration (q, γ) ∈ QP × Υ from (i, ε), δP will provide a unique
executable transition.
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Remark 2. In what follows we shall reason about IA2
3 terms by structural induc-

tion. The base cases are the constants and identifiers Γ, f : θ � f : θ, where
ord(θ) ≤ 2. For inductive cases, we split the rule for application into linear
application and contraction.

Γ � M : θ → θ′ Δ � N : θ

Γ,Δ � MN : θ′ ord(θ → θ′) ≤ 2
Γ, x : θ, y : θ � M : θ′

Γ, x : θ � M [x/y] : θ′

Note that the restriction on θ → θ′ is consistent with the fact that the level of
redexes cannot exceed 2 and free identifiers have types of order at most 2. The
relevant λ-abstraction rule is

Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′ ord(θ → θ′) ≤ 3.

This stems from the fact that we are considering IA3.

Lemma 2. Let x1 : θ1, · · · , xm : θm � M : θ be an IA2
3-term and let σ = [[x1 :

θ1, · · · , xm : θm � M : θ]]. There exists a P-live (x1 : θ1, · · · , xm : θm, θ)-
automaton AM , constructible from M in exponential time, such that T (AM ) and
L(AM ) represent respectively σ and comp (σ) (in the sense of our representation
scheme).

Proof. Translation by structural induction in IA2
3. The base cases corresponding

to the special constants can be resolved by constructing finite automata, fol-
lowing the description of the plays in Fig. 3. For free identifiers, automata of a
similar kind have already been constructed as part of the translation of normal
forms in [11]. We revisit them below to show which moves must be marked to
represent pointers.

Let θ be a second-order type. Then x : θ � x : θ is interpreted by the identity
strategy, which has complete plays of the form

∑
q�a qqxXaxa, where X is given

by the context-free grammar below. When writing
∑

q�a, we mean summing up
over all pairs of moves of the indicated shape available in the associated arena
M such that q �M a. Below we also use the condition ∃q.qi � q to exclude
moves of the form qi that do not enable any other questions (such moves are
never targets of justification pointers).

X → ε | (
∑

qi�ai
qx
i qiY

∗
i aia

x
i )X | (

∑
qi�ai
∃q.qi�q

q̂x
i qi(Ŷi)∗aia

x
i )X

Yi →
∑

qi,j�ai,j
qi,jq

x
i,jXax

i,jai,j Ŷi →
∑

qi,j�ai,j
qi,j q̂x

i,jXax
i,jai,j

To capture X, we can construct Ax as in [11], by pushing return addresses when
reading qx

i,j , q̂
x
i,j and popping them at ax

i,j . Note that this simply corresponds to
interpreting recursion in the grammar.

λ-abstraction and contraction are interpreted by renamings of the alphabet,
so it remains to consider the hardest case of (linear) application. The rule simply
corresponds to composition: in any cartesian-closed category [[Γ,Δ � MN : θ′]]
is equal (up to currying) to [[Δ � N : θ]]; [[ � λxθ.λΓ.Mx : θ → (Γ → θ′)]]. Note
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that in our case ord(θ) ≤ 1, i.e. Remark 1 will apply and the strategy for MN
can be obtained by running the strategy for M , which will call copies of N ,
whose interleavings will obey the stack discipline. To model the interaction, let
us consider the moves on which the automata will synchronise. Since ord(θ) ≤ 1,
the moves that will interact will be of the form q, a, qi, ai from N ’s point of
view and qk, ak, qk,i, ak,i from M ’s viewpoint for some k. Thus, given AM =
(QM , ΣM , ΥM , iM , δM , FM ) and AN = (QN , ΣN , ΥN , iN , δN , FN ), we let AMN =
(QMN , ΣMN , ΥMN , iM , δMN , FM ), where

QMN = QM + (QO
M × QN )

ΣMN = (ΣM \ {qk, ak, qk,i, ak,i}) + (ΣN \ {q0, a0, q1, a1})
ΥΣMN

MN = ΥM + ΥN

Υ ε
MN = Υ ε

M + Υ ε
N + QO

M

The decomposition of ΣMN into push-, pop- and noop-letters is inherited from
the constituent automata. We specify the transition function δMN below using
derivation rules referring to transitions in AM and AN . A push-transition reading

x and pushing γ will be labelled with
x/γ−−→. Dually,

x,γ−−→ will represent a pop. x̃
stands for any transition involving x, where x could also be ε.

– AM ’s non-interacting transitions are copied over to AMN .

s
x̃−→AM

s′

s
x̃−→AMN

s′
x ∈ (ΣM \ {qk, ak, qk,i, ak,i}) + {ε}

– M calls N (left) and N returns from the call (right).

s
qk−→AM

s′ iN
q−→AN

t

s
ε−→AMN

(s′, t)

s′ ak−→AM
s′′ t

a−→AN
f ∈ FN

(s′, t) ε−→AMN
s′′

– N ’s non-interacting transitions are copied over while keeping track of AM ’s
state.

t
x̃−→AN

t′

(s, t) x̃−→AMN
(s, t′)

s ∈ QO
M , x ∈ (ΣN \ {q0, a0, q1, a1}) ∪ {ε}

– N calls its argument (left) and the argument returns (right).

s
qk,i−−→AM

s′ t
qi−→AN

t′

(s, t)
ε/t′
−−→AMN

s′

s′ ak,i−−→AM
s′′ t′ ai−→AN

t′′

s′ ε,t′
−−→AMN

(s′′, t′′)

Note that the interaction involves moves that are not used to represent pointers,
i.e. whenever pointers are represented they remain the same as they were in
the original strategies, which is consistent with the definition of composition.
The states in QMN are divided into O- and P -states as follows: QO

MN = QO
M +

(QO
M ×QO

N ) and QP
MN = QP

M +(QO
M ×QP

N ). The correctness of the construction
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follows from the fact that it is a faithful implementation of legal interactions
(see, e.g., [7]), as discussed in Remark 1. P-liveness follows from the fact the
constituent strategies are P-live and that the construction simulates interaction
sequences, including infinite chattering. ��

Our next step will be to analyse the shape of reachable configurations of AM .
We aim to understand how many elements of Υε can occur consecutively on the
stack.

Definition 10. Suppose (q, γ) ∈ Q×(ΥΣ ∪Υε)∗. The ε-density of γ is defined to
be the length of the longest segment in γ consisting solely of consecutive elements
from Υε.

While the size of stacks corresponding to IA2
3 terms is unbounded (consider, for

instance, x : θ � x : θ with θ = (com → com) → com), ε-density turns out to
be bounded. We shall prove that it is exponential with respect to the size of
the original term. This will be crucial to obtaining our upper bound. The main
obstacle to proving this fact is the case of composition MN . As discussed in
Remark 1, M “stacks up” copies of N and we would first like to obtain a bound
on the number of nested calls to N that are not separated by a move from Σpush

(such moves block the growth of ε-density). For this purpose, we go back to plays
and analyse sequences in which the relevant questions are pending: a pending
question is one that has been played but remains unanswered. Observe that
sequences of pending questions are always alternating. We will not be interested
in the specific questions but only in their kinds, as specified by the table below.

Question q qi, q
x qi,j , q

x
i qi,j,k, qx

i,j

Kind 0 1 2 3

Definition 11. Let s be a play. We define pend(s) to be the sequence from
{0, 1, 2, 3}∗ obtained from s by restricting it to pending questions and replacing
each question with the number corresponding to its kind.

Thus, any non-empty even-length play s, pend(s) will match the expression
0(12 + 32)∗(1 + 3). We say that the (12)-potential of s is equal to k if k is the
largest k such that pend(s) = · · · (12)k · · · . In other words, the (12)-potential of
a play is the length of the longest segment (12)k in pend(s).

Lemma 3. Let Γ � M : θ be an IA2
3-term. Then the (12)-potential of any play

in [[Γ � M ]] is bounded and the bound bM is exponential in the size of M .

Lemma 3 is a key technical result needed to establish the following boundedness
property that is satisfied by automata representing IA2

3-terms.

Lemma 4. Let Γ � M : θ be an IA2
3-term and consider AM constructed in

Lemma 2. There exists a bound dM , exponential in the size of M , such that
the ε-density of configurations reachable by AM is bounded by dM .
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Next we derive a bound on plays witnessing failure of contextual approxima-
tion in IA2

3. Consider IA2
3-terms Γ � M1,M2 : θ and let σi = [[Γ � Mi : θ]] for

i = 1, 2. Given a play, let its height be the maximum number of pending ques-
tions from Σpush occurring in any of its prefixes. Note that, for plays from σi,
this will be exactly the maximum number of symbols from ΥΣ that will appear
on the stack of AMi

at any point of its computation.

Lemma 5. There exists a polynomial p such that if compσ1 \ compσ2 is not
empty then it contains a play of height p(n1 +n2), where n1, n2 are the numbers
of states in AM1 and AM2 respectively.

Theorem 2. For IA2
3-terms Γ � M1,M2 : θ, one can decide Γ � M1

�∼ M2 in
exponential space.

Proof. Note that this boils down to testing emptiness of compσ1 \ compσ2. By
Lemma 5, it suffices to guess a play whose height is polynomial in the size of
AM1 , AM2 , i.e. exponential with respect to term size. Moreover, by Lemma 4,
the ε-density of the corresponding configurations of AM1 and AM2 will also be
exponential. Thus, in order to check whether a candidate s is accepted by AM1

and rejected by AM2 , we will only need to consider stacks of exponential size
wrt M1,M2. Consequently, the guess can be performed on the fly and verified
in exponential space. Because NEXPSPACE=EXPSPACE, the result follows.

Corollary 1. For k ≥ 2, contextual approximation of IAk
3-terms is in (k − 1)-

EXPSPACE.

5 Lower Bounds

Here we show that contextual approximation of IAk
1-terms is (k−1)-EXPSPACE-

hard for k ≥ 2. Note that this matches the upper bound shown for IAk
3-terms

and will allow us to conclude that contextual approximation in IAk
1 , IA

k
2 and IAk

3

is (k − 1)-EXPSPACE-complete. Our hardness results will rely on nesting of
function calls and iteration afforded by higher-order types. Below we introduce
the special types and terms to be used.

Let k, n ∈ N. Define the type n by 0 = com and n + 1 = n → n. Note that
ord(n) = n. Also, let Exp(k, n) be defined by Exp(0, n) = n and Exp(k + 1, n) =
2Exp(k,n). Given k ≥ 2, consider the term twicek = λxk−1.λyk−2.x(xy) : k.

Definition 12. Let k ≥ 2. Writing MnN as shorthand for M(M · · · (M
︸ ︷︷ ︸

n

N) · · · ),

let us define a family of terms {nestn,k} with f : 1, x : 0 � nestn,k : 0 by taking
nestn,k ≡ (twicen

k gk−1)gk−2 · · · g1g0, where g0 ≡ x, g1 ≡ f and gi ≡ twicei for
i > 1.

The terms have several desirable properties, summarised below.

Lemma 6. Let k ≥ 2. nestn,k belongs to IAk
2 , has polynomial size in n and is

β-reducible to fExp(k−1,n)x.
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Note that the nested applications of f in fExp(k−1,n)x are akin to generating a
stack of height Exp(k − 1, n). We shall exploit this in our encodings. Note that,
by substituting λccom.c; c for f in fExp(k−1,n)x, we obtain a term that iterates
x as many as Exp(k, n) times, i.e. Exp(k − 1, n)-fold nesting is used to simulate
Exp(k, n)-fold iteration.

Simulating Turing Machines. Let w be an input word. Let n = |w|,
l = Exp(k − 1, n) and N = Exp(k, n). We shall consider a deterministic Tur-
ing machine T running in SPACE (l) and TIME (N) and simulate T ’s behaviour
on w. This suffices to establish SPACE (l)-hardness.

We start off with the description of an encoding scheme for configurations
of T . We shall represent them as strings of length l over an alphabet ΣT , to be
specified later. We shall write ConfigT for the subset of (ΣT )l corresponding to
configurations. The encoding of the initial configuration will be denoted by cinit
and we shall write AcceptT for the set of representations of accepting configura-
tions. Given c ∈ ConfigT , we write next(c) for the representation of the successor
of c according to T ’s transition function. Let us introduce a number of auxiliary
languages that will play an important role in the simulation. We write cR for
the reverse of c.

Definition 13. Let Σ#
T = ΣT + {#}. We define the languages L0,L1 ⊆ (ΣT )∗

and L2,L3,L4 ⊆ (Σ#
T )∗ as follows.

L0 = {cinit} L1 = AcceptT L2 = {cR # next(c) | c ∈ ConfigT }
L3 = {c# next(c)R | c ∈ ConfigT } L4 = {c# dR | c ∈ ConfigT , d �= next(c)}

Lemma 7. There exists a representation scheme for configurations of T such
that ΣT is polynomial in the size of T,w and the following properties hold.

1. There exist deterministic finite-state automata A0,A1, constructible from
T,w in polynomial time, such that L(A0) ∩ (ΣT )l = L0 and L(A1) ∩ (ΣT )l =
L1.

2. For any i = 2, 3, 4, there exists a deterministic pushdown automaton Ai, con-
structible from T,w in polynomial time, such that L(Ai) ∩ ((ΣT )l#(ΣT )l) =
Li. Moreover, transitions of the automata are given by three transition func-
tions δpush : Qpush × ΣT → Qpush × Υ , δnoop : Qpush × {#} → Qpop and
δpop : Qpop × ΣT × Υ → Qpop, the initial state belongs to Qpush and the
automaton accepts by final state. I.e., the automata will process elements of
(ΣT )l#(ΣT )l by performing push-moves first, then a noop move for # and,
finally, pop-moves.

Remark 3. Note that in the above lemma we had to use intersection with (ΣT )l

(resp. (ΣT )l#(ΣT )l) to state the correctness conditions with respect to ConfigT ,
because the automata will not be able to count up to l. However, in our argument,
we are going to use the nesting power of IAk

1 to run their transition functions for
suitably many steps (l and 2l + 1 respectively).

The significance of the languages L0,L1,L2,L3,L4 stems from the fact that they
are building blocks of two other languages, L5 and L6, which are closely related
to the acceptance of w by T .
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Lemma 8. Consider the languages L5,L6 ⊆ (Σ#
T )∗ defined by L5 =

{cinit # cR
1 # d1 # · · · cR

N # dN # fR | cj ∈ ConfigT , f ∈ AcceptT , ∀inext(ci)=
di} and L6 = {c1 # dR

1 # · · · cN # dR
N | cj ∈ ConfigT , ∃inext(ci) �= di}. Then T

accepts w if and only if L5 �⊆ L6.

Proof. Note that if T accepts w then the sequence of (representations of the)
configurations belonging to the accepting run, in which every other representa-
tion is reversed, gives rise to a word that belongs to L5 but not to L6.

Conversely, if a word cinit # cR
1 # d1 # · · · cR

N # dN # fR ∈ L5 does not
belong to L6 then c1 = next(cinit), ci+1 = next(di) (i = 1, · · · , N − 1) and
f = next(dN ). Thus, the word actually represents an accepting run on w. ��

Our hardness argument consists in translating the above lemma inside IAk
1 .

To that end, we shall show how to capture L2,L3,L4 and, ultimately, L5 and L6,
using IAk

1 terms. We shall work under the assumption that Σ#
T = {0, · · · ,max}.

Note, though, that the results can be adapted to any max > 0 by encoding
Σ#

T as sequences of exp-values. Similarly, using multiple exp-valued variables,
IA-terms can store values that are bigger than max . We shall take advantage of
such storage implicitly (e.g. for state values or stack elements), but the number
of extra variables needed for this purpose will remain polynomial.

Definition 14. We shall say that an IA-term z : exp � M : com captures L ⊆
(Σ#

T )∗ if comp ([[z � M ]]) = {run qz (a1)
z qz (a2)

z · · · qz (ak)
z done | a1a2 · · · ak ∈ L}.

Example 3. The term z : exp � M# : com, where M# ≡ if z =
# then skip else Ω, captures {#}. In our constructions we often write [condition]
to stand in for the assertion if (condition) then skip else Ω.

Lemma 9. There exist IAk
1-terms z : exp � M0,M1 : com, constructible from

T,w in polynomial time, capturing L0,L1 respectively.

Lemma 10. There exists an IAk
1-term z : exp � M2 : com, constructible from

T,w in polynomial time, which captures L2.

Thanks to the last two lemmas we are now ready to capture L5.

Lemma 11. There exists an IAk
1-term z : exp � M5 : com, constructible in poly-

nomial time from T,w, which captures L5.

Proof. Note that a word from L5 contains N = Exp(k, n) segments from L2.
To account for that, it suffices to use N copies of M#;M2. However, for a
polynomial-time reduction, we need to do that succinctly. Recall that nestn,k

gives us l-fold nesting of functions, where l = Exp(k − 1, n). Consequently, N -
fold iteration can be achieved by l-fold nesting of λccom.c; c. Thus, we can take

M5 ≡ M0; nestn,k[λccom.c; c/f, (M#;M2)/x];M#;M1.

To complete the hardness argument (by restating Lemma 8 using IAk
1 terms),

we also need to capture L6. Because of the existential clause in its definition we
need to use a slightly different capture scheme.
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Lemma 12. There exists an IAk
1-term z : exp,FLAG : var � M ′

6 : com, con-
structible in polynomial time from T,w, such that comp ([[z,FLAG � M ′

6]]) =
{run qz (a1)z qz (a2)z · · · qz (ak)z done | a1a2 · · · ak ∈ L3} ∪ {run qz (a1)z qz

(a2)z · · · qz (ak)z write(1 )FLAG okFLAG done | a1a2 · · · ak ∈ L4}.

Lemma 13. There exists an IAk
1-term z : exp � M6 : com, constructible in poly-

nomial time from T,w, which captures L6.

Proof. It suffices to run M ′
6 for N +1 steps and check whether the flag was set:

M6 ≡ new FLAG in (FLAG := 0; nestn,k[λccom.c; c/f, (M ′
6;M#)/x];M ′

6; [!FLAG = 1])

Theorem 3. Contextual approximation between IAk
1 terms is (k − 1)-

EXPSPACE-hard.

Proof. By Lemmas 8, 11 and 13, for any Turing machine T running in
SPACE (Exp(k − 1, n)) and TIME (Exp(k, n)) and an input word w, there exist
IAk

1-terms x : exp � M5,M6, constructible from T,w in polynomial time, such
that T accepts w if and only if M5 does not approximate M6. This implies
(k − 1)-EXPSPACE-hardness. ��

6 Conclusion

We have shown that contextual approximation in IAk
1 , IA

k
2 , IA

k
3 is (k − 1)-

EXPSPACE-complete. The algorithm that leads to these optimal bounds reduces
terms to IA2

3 (with possibly (k − 2)-fold exponential blow-up) and we use a ded-
icated EXPSPACE procedure for IA2

3 exploiting game semantics and decision
procedures for a special kind of pushdown automata. In particular, the results
show that untamed β-reduction would yield suboptimal bounds, but selective
β-reduction of redexes up to level 3 does not jeopardise complexity. The bounds
above apply to open higher-order terms, i.e. IAi (i > 0) terms, for which the
problem of contextual approximation is difficult to attack due to universal quan-
tification over contexts.

Our work also implies bounds for contextual approximation of IAk
0 terms,

i.e. closed terms of base type. Conceptually, this case is much easier, because it
boils down to testing termination. In this case our techniques can be employed
to obtain better upper bounds for IAk

0 than those for IAk
1 ((k − 1)-EXPSPACE).

For a start, like for IAk
1 , we can reduce IAk

0 terms (at (k − 2)-fold exponential
cost) to IA2

0. Then termination in IA2
0 can be checked in exponential time by

constructing pushdown automata via Lemma 2 and testing them for emptiness
(rather than inclusion). Since emptiness testing of pushdown automata can be
performed in polynomial time and the automata construction in Lemma 2 costs a
single exponential, this yields an EXPTIME upper bound for termination in IA2

0.
Consequently, termination in IAk

0 (k ≥ 2) can be placed in (k − 1)-EXPTIME,
though it is not clear to us whether this bound is optimal. For completeness,
let us just mention that termination in IA0

0 and IA1
0 is PSPACE-complete due to
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presence of variables and looping (membership follows from the corresponding
upper bounds for contextual equivalence).

Another avenue for future work is IAk
1 , IA

k
2 , IA

k
3 contextual equivalence. Of

course, our upper bounds for approximation also apply to contextual equivalence,
which amounts to two approximation checks. However, one might expect better
bounds in this case given that our hardness argument leans heavily on testing
inclusion.

Finally, one should investigate how our results can be adapted to the call-
by-value setting. An educated guess would be that, in the analogous fragment of
ML, the reduction of redexes up to order 3 (rather than 2) should be suppressed
in order to obtain accurate complexity estimates.
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