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Abstract. We describe an approach to the verified implementation of
transformations on functional programs that exploits the higher-order
representation of syntax. In this approach, transformations are speci-
fied using the logic of hereditary Harrop formulas. On the one hand,
these specifications serve directly as implementations, being programs
in the language λProlog. On the other hand, they can be used as input
to the Abella system which allows us to prove properties about them
and thereby about the implementations. We argue that this approach
is especially effective in realizing transformations that analyze binding
structure. We do this by describing concise encodings in λProlog for
transformations like typed closure conversion and code hoisting that are
sensitive to such structure and by showing how to prove their correctness
using Abella.

1 Introduction

This paper concerns the verification of compilers for functional (programming)
languages. The interest in this topic is easily explained. Functional languages
support an abstract view of computation that makes it easier to construct pro-
grams and the resulting code also has a flexible structure. Moreover, these lan-
guages have a strong mathematical basis that simplifies the process of proving
programs to be correct. However, there is a proviso to this observation: to derive
the mentioned benefit, the reasoning must be done relative to the abstract model
underlying the language, whereas programs are typically executed only in their
compiled form. To close the gap, it is important also to ensure that the compiler
that carries out the translation preserves the meanings of programs.

The key role that compiler verification plays in overall program correctness
has been long recognized; e.g. see [22,27] for early work on this topic. With the
availability of sophisticated systems such as Coq [8], Isabelle [33] and HOL [15]
for mechanizing reasoning, impressive strides have been taken in recent years
towards actually verifying compilers for real languages, as seen, for instance,
in the CompCert project [21]. Much of this work has focused on compiling
imperative languages like C. Features such as higher-order and nested functions
that are present in functional languages bring an additional complexity to their
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implementation. A common approach to treating such features is to apply trans-
formations to programs that render them into a form to which more traditional
compilation methods can be applied. These transformations must manipulate
binding structure in complex ways, an aspect that requires special consideration
at both the implementation and the verification level [3].

Applications such as those above have motivated research towards develop-
ing good methods for representing and manipulating binding structure. Two
particular approaches that have emerged from this work are those that use the
nameless representation of bound variables due to De Bruijn [9] and the nomi-
nal logic framework of Pitts [35]. These approaches provide an elegant treatment
of aspects such as α-convertibility but do not directly support the analysis of
binding structure or the realization of binding-sensitive operations such as sub-
stitution. A third approach, commonly known as the higher-order abstract syntax
or HOAS approach, uses the abstraction operator in a typed λ-calculus to repre-
sent binding structure in object-language syntax. When such representations are
embedded within a suitable logic, they lead to a succinct and flexible treatment
of many binding related operations through β-conversion and unification.

The main thesis of this paper, shared with other work such as [7,16], is that
the HOAS approach is in fact well-adapted to the task of implementing and
verifying compiler transformations on functional languages. Our specific objec-
tive is to demonstrate the usefulness of a particular framework in this task.
This framework comprises two parts: the λProlog language [30] that is imple-
mented, for example, in the Teyjus system [36], and the Abella proof assis-
tant [4]. The λProlog language is a realization of the hereditary Harrop formulas
or HOHH logic [25]. We show that this logic, which uses the simply typed λ-
calculus as a means for representing objects, is a suitable vehicle for specifying
transformations on functional programs. Moreover, HOHH specifications have
a computational interpretation that makes them implementations of compiler
transformations. The Abella system is also based on a logic that supports the
HOAS approach. This logic, which is called G, incorporates a treatment of fixed-
point definitions that can also be interpreted inductively or co-inductively. The
Abella system uses these definitions to embed HOHH within G and thereby to
reason directly about the specifications written in HOHH. As we show in this
paper, this yields a convenient means for verifying implementations of compiler
transformations.

An important property of the framework that we consider, as also of systems
like LF [17] and Beluga [34], is that it uses a weak λ-calculus for representing
objects. There have been attempts to derive similar benefits from using func-
tional languages or the language underlying systems such as Coq. Some benefits,
such as the correct implementation of substitution, can be obtained even in these
contexts. However, the equality relation embodied in these systems is very strong
and the analysis of λ-terms in them is therefore not limited to examining just
their syntactic structure. This is a significant drawback, given that such exam-
ination plays a key role in the benefits we describe in this paper. In light of
this distinction, we shall use the term λ-tree syntax [24] for the more restricted
version of HOAS whose use is the focus of our discussions.
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The rest of this paper is organized as follows. In Sect. 2 we introduce the
reader to the framework mentioned above. We then show in succeeding sections
how this framework can be used to implement and to verify transformations on
functional programs. We conclude the paper by discussing the relationship of
the ideas we describe here to other existing work.1

2 The Framework

We describe, in turn, the specification logic and λProlog, the reasoning logic,
and the manner in which the Abella system embeds the specification logic.

2.1 The Specification Logic and λProlog

The HOHH logic is an intuitionistic and predicative fragment of Church’s Simple
Theory of Types [12]. Its types are formed using the function type constructor
→ over user defined primitive types and the distinguished type o for formulas.
Expressions are formed from a user-defined signature of typed constants whose
argument types do not contain o and the logical constants ⇒ and & of type
o → o → o and Πτ of type (τ → o) → o for each type τ not containing
o. We write ⇒ and &, which denote implication and conjunction respectively,
in infix form. Further, we write Πτ λ(x : τ)M , which represents the universal
quantification of x over M , as ΠτxM .

The logic is oriented around two sets of formulas called goal formulas and
program clauses that are given by the following syntax rules:

G ::= A | G & G | D ⇒ G | ΠτxG
D ::= A | G ⇒ A | ΠτxD

Here, A represents atomic formulas that have the form (p t1 . . . tn) where p
is a (user defined) predicate constant, i.e. a constant with target type o. Goal
formulas of the last two kinds are referred to as hypothetical and universal goals.
Using the notation Πτ̄ x̄ to denote a sequence of quantifications, we see that a
program clause has the form Πτ̄ x̄ A or Πτ̄ x̄ G ⇒ A. We refer to A as the head
of such a clause and G as the body; in the first case the body is empty.

A collection of program clauses constitutes a program. A program and a
signature represent a specification of all the goal formulas that can be derived
from them. The derivability of a goal formula G is expressed formally by the
judgment Σ;Θ;Γ � G in which Σ is a signature, Θ is a collection of program
clauses defined by the user and Γ is a collection of dynamically added program
clauses. The validity of such a judgment—also called a sequent—is determined by
provability in intuitionistic logic but can equivalently be characterized in a goal-
directed fashion as follows. If G is conjunctive, it yields sequents for “solving”
each of its conjuncts in the obvious way. If it is a hypothetical or a universal
goal, then one of the following rules is used:

1 The actual development of several of the proofs discussed in this paper can be found
at the URL http://www-users.cs.umn.edu/∼gopalan/papers/compilation/.

http://www-users.cs.umn.edu/~gopalan/papers/compilation/
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Σ; Θ; Γ, D � G

Σ; Θ; Γ � D ⇒ G
⇒R

(c /∈ Σ) Σ, c : τ ; Θ; Γ � G[c/x]

Σ; Θ; Γ � Πτx G
ΠR

In the ΠR rule, c must be a constant not already in Σ; thus, these rules respec-
tively cause the program and the signature to grow while searching for a deriva-
tion. Once G has been simplified to an atomic formula, the sequent is derived
by generating an instance of a clause from Θ or Γ whose head is identical to G
and by constructing a derivation of the corresponding body of the clause if it is
non-empty. This operation is referred to as backchaining on a clause.

In presenting HOHH specifications in this paper we will show programs as
a sequence of clauses each terminated by a period. We will leave the outermost
universal quantification in these clauses implicit, indicating the variables they
bind by using tokens that begin with uppercase letters. We will write program
clauses of the form G ⇒ A as A : - G. We will show goals of the form G1 ∧ G2

and Πτy G as G1,G2 and pi y : τ\ G, respectively, dropping the type annotation
in the latter if it can be filled in uniquely based on the context. Finally, we will
write abstractions as y\M instead of λy M .

Program clauses provide a natural means for encoding rule based specifica-
tions. Each rule translates into a clause whose head corresponds to the conclusion
and whose body represents the premises of the rule. These clauses embody addi-
tional mechanisms that simplify the treatment of binding structure in object
languages. They provide λ-terms as a means for representing objects, thereby
allowing binding to be reflected into an explicit meta-language abstraction. More-
over, recursion over such structure, that is typically treated via side conditions
on rules expressing requirements such as freshness for variables, can be cap-
tured precisely through universal and hypothetical goals. This kind of encoding
is concise and has logical properties that we can use in reasoning.

We illustrate the above ideas by considering the specification of the typing rela-
tion for the simply typed λ-calculus (STLC). Let N be the only atomic type. We
use the HOHH type ty for representations of object language types that we build
using the constants n : ty and arr : ty → ty → ty. Similarly, we use the
HOHH type tm for encodings of object language terms that we build using the con-
stants app : tm → tm → tm and abs : ty → (tm → tm) → tm. The
type of the latter constructor follows our chosen approach to encoding binding:
for example, we represent the STLC expression (λ(y : N → N)λ(x : N) (y x))
by the HOHH term (abs (arr n n) (y\ (abs n (x\ (app y x))))). Typing
for the STLC is a judgment written as Γ � T : Ty that expresses a relationship
between a context Γ that assigns types to variables, a term T and a type Ty. Such
judgments are derived using the following rules:

Γ � T1 : Ty1 → Ty2 Γ � T2 : Ty1
Γ � T1 T2 : Ty2

Γ, y : Ty1 � T : Ty2
Γ � λ(y : Ty1) T : (Ty1 → Ty2)

The second rule has a proviso: y must be fresh to Γ . In the λ-tree syntax app-
roach, we encode typing as a binary relation between a term and a type, treating
the typing context implicitly via dynamically added clauses. Using the predicate
of to represent this relation, we define it through the following clauses:
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of (app T1 T2) Ty2 : - of T1 (arr Ty1 Ty2), of T2 Ty1.

of (abs Ty1 T) (arr Ty1 Ty2) : - pi y\ (of y Ty1 ⇒ of (T y) Ty2).

The second clause effectively says that (abs Ty1 T) has the type
(arr Ty1 Ty2) if (T y) has type Ty2 in an extended context that assigns y
the type Ty1. Note that the universal goal ensures that y is new and, given our
encoding of terms, (T y) represents the body of the object language abstraction
in which the bound variable has been replaced by this new name.

The rules for deriving goal formulas give HOHH specifications a computa-
tional interpretation. We may also leave particular parts of a goal unspecified,
representing them by “meta-variables,” with the intention that values be found
for them that make the overall goal derivable. This idea underlies the language
λProlog that is implemented, for example, in the Teyjus system [36].

2.2 The Reasoning Logic and Abella

The inference rules that describe a relation are usually meant to be understood
in an “if and only if” manner. Only the “if” interpretation is relevant to using
rules to effect computations and their encoding in the HOHH logic captures this
part adequately. To reason about the properties of the resulting computations,
however, we must formalize the “only if” interpretation as well. This function-
ality is realized by the logic G that is implemented in the Abella system.

The logic G is also based on an intuitionistic and predicative version of
Church’s Simple Theory of Types. Its types are like those in HOHH except
that the type prop replaces o. Terms are formed from user-defined constants
whose argument types do not include prop and the following logical constants:
true and false of type prop; ∧, ∨ and → of type prop → prop → prop
for conjunction, disjunction and implication; and, for every type τ not contain-
ing prop, the quantifiers ∀τ and ∃τ of type (τ → prop) → prop and the
equality symbol =τ of type τ → τ → prop. The formula B =τ B′ holds if and
only if B and B′ are of type τ and equal under αβη conversion. We will omit
the type τ in logical constants when its identity is clear from the context.

A novelty of G is that it is parameterized by fixed-point definitions. Such
definitions consist of a collection of definitional clauses each of which has the
form ∀x̄, A � B where A is an atomic formula all of whose free variables are
bound by x̄ and B is a formula whose free variables must occur in A; A is called
the head of such a clause and B is called its body.2 To illustrate definitions, let
olist represent the type of lists of HOHH formulas and let nil and ::, written
in infix form, be constants for building such lists. Then the append relation at
the olist type is defined in G by the following clauses:

append nil L L;

append (X :: L1) L2 (X :: L3) � append L1 L2 L3.

This presentation also illustrates several conventions used in writing defini-
tions: clauses of the form ∀x̄, A � true are abbreviated to ∀x̄, A, the outermost
2 To be acceptable, definitions must cumulatively satisfy certain stratification condi-

tions [23] that we adhere to in the paper but do not explicitly discuss.
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universal quantifiers in a clause are made implicit by representing the variables
they bind by tokens that start with an uppercase letter, and a sequence of clauses
is written using semicolon as a separator and period as a terminator.

The proof system underlying G interprets atomic formulas via the fixed-point
definitions. Concretely, this means that definitional clauses can be used in two
ways. First, they may be used in a backchaining mode to derive atomic formulas:
the formula is matched with the head of a clause and the task is reduced to deriving
the corresponding body. Second, they can also be used to do case analysis on an
assumption. Here the reasoning structure is that if an atomic formula holds, then
it must be because the body of one of the clauses defining it holds. It therefore
suffices to show that the conclusion follows from each such possibility.

The clauses defining a particular predicate can further be interpreted induc-
tively or coinductively, leading to corresponding reasoning principles relative to
that predicate. As an example of how this works, consider proving

∀L1 L2 L3, append L1 L2 L3 → append L1 L2 L3’ → L3 = L3’

assuming that we have designated append as an inductive predicate. An induc-
tion on the first occurrence of append then allows us to assume that the entire
formula holds any time the leftmost atomic formula is replaced by a formula that
is obtained by unfolding its definition and that has append as its predicate head.

Many arguments concerning binding require the capability of reasoning over
structures with free variables where each such variable is treated as being dis-
tinct and not further analyzable. To provide this capability, G includes the special
generic quantifier ∇τ , pronounced as “nabla”, for each type τ not containing
prop [26]. In writing this quantifier, we, once again, elide the type τ . The rules
for treating ∇ in an assumed formula and a formula in the conclusion are sim-
ilar: a “goal” with (∇x M) in it reduces to one in which this formula has been
replaced by M[c/x] where c is a fresh, unanalyzable constant called a nominal
constant. Note that ∇ has a meaning that is different from that of ∀: for example,
(∇ x y, x = y → false) is provable but (∀ x y, x = y → false) is not.

G allows the ∇ quantifier to be used also in the heads of definitions. The full
form for a definitional clause is in fact ∀x̄∇z̄, A � B, where the ∇ quantifiers
scope only over A. In generating an instance of such a clause, the variables
in z̄ must be replaced with nominal constants. The quantification order then
means that the instantiations of the variables in x̄ cannot contain the constants
used for z̄. This extension makes it possible to encode structural properties of
terms in definitions. For example, the clause (∇ x, name x) defines name to
be a recognizer of nominal constants. Similarly, the clause (∇ x, fresh x B)
defines fresh such that (fresh X B) holds just in the case that X is a nominal
constant and B is a term that does not contain X. As a final example, consider the
following clauses in which of is the typing predicate from the previous subsection.

ctx nil;

∇x, ctx (of x T :: L) � ctx L.

These clauses define ctx such that (ctx L) holds exactly when L is a list of type
assignments to distinct variables.
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2.3 The Two-Level Logic Approach

Our framework allows us to write specifications in HOHH and reason about
them using G. Abella supports this two-level logic approach by encoding HOHH
derivability in a definition and providing a convenient interface to it. The user
program and signature for these derivations are obtained from a λProlog program
file. The state in a derivation is represented by a judgment of the form {Γ � G}.
where Γ is the list of dynamically added clauses; additions to the signature
are treated implicitly via nominal constants. If Γ is empty, the judgment is
abbreviated to {G}. The theorems that are to be proved mix such judgments
with other ones defined directly in Abella. For example, the uniqueness of typing
for the STLC based on its encoding in HOHH can be stated as follows:

∀L M T T’, ctx L → {L � of M T} → {L � of M T’} → T = T’.

This formula talks about the typing of open terms relative to a dynamic collection
of clauses that assign unique types to (potentially) free variables.

The ability to mix specifications in HOHH and definitions in Abella provides
considerable expressivity to the reasoning process. This expressivity is further
enhanced by the fact that both HOHH and G support the λ-tree syntax app-
roach. We illustrate these observations by considering the explicit treatment of
substitutions. We use the type map and the constant map: tm → tm → map to
represent mappings for individual variables (encoded as nominal constants) and
a list of such mappings to represent a substitution; for simplicity, we overload
the constructors nil and :: at this type. Then the predicate subst such that
subst ML M M’ holds exactly when M’ is the result of applying the substitution
ML to M can be defined by the following clauses:

subst nil M M;

∇x, subst ((map x V) :: ML) (R x) M � subst ML (R V) M.

Observe how quantifier ordering is used in this definition to create a “hole” where
a free variable appears in a term and application is then used to plug the hole
with the substitution. This definition makes it extremely easy to prove structural
properties of substitutions. For example, the fact that substitution distributes
over applications and abstractions can be stated as follows:

∀ML M1 M2 M’, subst ML (app M1 M2) M’ →
∃M1’ M2’, M’ = app M1’ M2’ ∧ subst ML M1 M1’ ∧ subst ML M2 M2’.

∀ML R T M’, subst ML (abs T R) M’ →
∃R’, M’ = abs T R’ ∧ ∇x, subst ML (R x) (R’ x).

An easy induction over the definition of substitution proves these properties.
As another example, we may want to characterize relationships between

closed terms and substitutions. For this, we can first define well-formed terms
through the following HOHH clauses:

tm (app M N) : - tm M, tm N.

tm (abs T R) : - pi x\ tm x ⇒ tm (R x).
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Then we characterize the context used in tm derivations in Abella as follows:

tm_ctx nil;

∇x, tm_ctx (tm x :: L) � tm_ctx L.

Intuitively, if tm_ctx L and {L � tm M} hold, then M is a well-formed term
whose free variables are given by L. Clearly, if {tm M} holds, then M is closed.
Now we can state the fact that a closed term is unaffected by a substitution:

∀ML M M’, {tm M} → subst ML M M’ → M = M’.

Again, an easy induction on the definition of substitutions proves this property.

3 Implementing Transformations on Functional Programs

We now turn to the main theme of the paper, that of showing the benefits of
our framework in the verified implementation of compilation-oriented program
transformations for functional languages. The case we make has the following
broad structure. Program transformations are often conveniently described in a
syntax-directed and rule-based fashion. Such descriptions can be encoded natu-
rally using the program clauses of the HOHH logic. In transforming functional
programs, special attention must be paid to binding structure. The λ-tree syn-
tax approach, which is supported by the HOHH logic, provides a succinct and
logically precise means for treating this aspect. The executability of HOHH spec-
ifications renders them immediately into implementations. Moreover, the logical
character of the specifications is useful in the process of reasoning about their
correctness.

This section is devoted to substantiating our claim concerning implementa-
tion. We do this by showing how to specify transformations that are used in the
compilation of functional languages. An example we consider in detail is that
of closure conversion. Our interest in this transformation is twofold. First, it is
an important step in the compilation of functional programs: it is, in fact, an
enabler for other transformations such as code hoisting. Second, it is a trans-
formation that involves a complex manipulation of binding structure. Thus, the
consideration of this transformation helps shine a light on the special features of
our framework. The observations we make in the context of closure conversion
are actually applicable quite generally to the compilation process. We close the
section by highlighting this fact relative to other transformations that are of
interest.

3.1 The Closure Conversion Transformation

The closure conversion transformation is designed to replace (possibly nested)
functions in a program by closures that each consist of a function and an environ-
ment. The function part is obtained from the original function by replacing its
free variables by projections from a new environment parameter. Complement-
ing this, the environment component encodes the construction of a value for the
new parameter in the enclosing context. For example, when this transformation
is applied to the following pseudo OCaml code segment
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T ::= N | T1 → T2 | unit | T1 × T2

M ::= n | x | pred M | M1 + M2

| if M1 then M2 else M3

| () | (M1, M2) | fst M | snd M

| let x = M1 in M2

| fix f x.M | (M1 M2)

V ::= n | fix f x.M | () | (V1, V2)

Fig. 1. Source language syntax

T ::= N | T1 → T2 | T1 ⇒ T2 | unit | T1 × T2

M ::= n | x | pred M | M1 + M2

| if M1 then M2 else M3

| () | (M1, M2) | fst M | snd M

| let x = M1 in M2 | λx.M | (M1 M2)

| 〈M1, M2〉 | open 〈xf , xe〉 = M1 in M2

V ::= n | λx.M | () | (V1, V2) | 〈V1, V2〉

Fig. 2. Target language syntax

let x = 2 in let y = 3 in (fun z. z + x + y)

it will yield

let x = 2 in let y = 3 in <fun z e. z + e.1 + e.2, (x,y)>

We write <F,E> here to represent a closure whose function part is F and environ-
ment part is E, and e.i to represent the i-th projection applied to an “environ-
ment parameter” e. This transformation makes the function part independent
of the context in which it appears, thereby allowing it to be extracted out to the
top-level of the program.

The Source and Target Languages. Figures 1 and 2 present the syntax of
the source and target languages that we shall use in this illustration. In these
figures, T , M and V stand respectively for the categories of types, terms and the
terms recognized as values. N is the type for natural numbers and n corresponds
to constants of this type. Our languages include some arithmetic operators, the
conditional and the tuple constructor and destructors; note that pred repre-
sents the predecessor function on numbers, the behavior of the conditional is
based on whether or not the “condition” is zero and fst and snd are the pro-
jection operators on pairs. The source language includes the recursion operator
fix which abstracts simultaneously over the function and the parameter; the
usual abstraction is a degenerate case in which the function parameter does
not appear in the body. The target language includes the expressions 〈M1,M2〉
and (open 〈xf , xe〉 = M1 in M2) representing the formation and application
of closures. The target language does not have an explicit fixed point construc-
tor. Instead, recursion is realized by parameterizing the function part of a clo-
sure with a function component; this treatment should become clear from the
rules for typing closures and for evaluating the application of closures that we
present below. The usual forms of abstraction and application are included in
the target language to simplify the presentation of the transformation. The usual
function type is reserved for closures; abstractions are given the type T1 ⇒ T2

in the target language. We abbreviate (M1, . . . , (Mn, ())) by (M1, . . . ,Mn) and
fst (snd (. . . (snd M))) where snd is applied i − 1 times for i ≥ 1 by πi(M).
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ρ � n � n cc-nat
(x �→ M) ∈ ρ

ρ � x � M
cc-var

ρ � x1 � M1 . . . ρ � xn � Mn

ρ � (x1, . . . , xn) �e (M1, . . . , Mn)
cc-env

ρ � M � M ′

ρ � pred M � pred M ′ cc-pred
ρ � M1 � M ′

1 ρ � M2 � M ′
2

ρ � M1 + M2 � M ′
1 + M ′

2

cc-plus

ρ � M � M ′ ρ � M1 � M ′
1 ρ � M2 � M ′

2

ρ � if M then M1 else M2 � if M ′ then M ′
1 else M ′

2
cc-if

ρ � () � ()
cc-unit

ρ � M1 � M ′
1 ρ � M2 � M ′

2

ρ � (M1, M2) � (M ′
1, M ′

2)
cc-pair

ρ � M � M ′

ρ � fst M � fst M ′ cc-fst
ρ � M � M ′

ρ � snd M � snd M ′ cc-snd

ρ � M1 � M ′
1 ρ, x �→ y � M2 � M ′

2

ρ � let x = M1 in M2 � let y = M ′
1 in M ′

2

cc-let y must be fresh

ρ � M1 � M ′
1 ρ � M2 � M ′

2

ρ � M1 M2 � let g = M ′
1 in open 〈xf , xe〉 = g in xf (g, M ′

2, xe)
cc-app g must be fresh

(x1, . . . , xn) ⊇ fvars(fix f x.M) ρ � (x1, . . . , xn) �e Me ρ′ � M � M ′

ρ � fix f x.M � 〈λp.let g = π1(p) in let y = π2(p) in let xe = π3(p) in M ′, Me〉 cc-fix

where ρ′ = (x �→ y, f �→ g, x1 �→ π1(xe), . . . , xn �→ πn(xe)) and p, g, y, and xe are fresh variables

Fig. 3. Closure conversion rules

Typing judgments for both the source and target languages are written as Γ �
M : T , where Γ is a list of type assignments for variables. The rules for deriving
typing judgments are routine, with the exception of those for introducing and
eliminating closures in the target language that are shown below:

� M1 : ((T1 → T2) × T1 × Te) ⇒ T2 Γ � M2 : Te

Γ � 〈M1, M2〉 : T1 → T2
cof-clos

Γ � M1 : T1 → T2 Γ, xf : ((T1 → T2) × T1 × l) ⇒ T2, xe : l � M2 : T

Γ � open 〈xf , xe〉 = M1 in M2 : T
cof-open

In cof-clos, the function part of a closure must be typable in an empty context. In
cof-open, xf , xe must be names that are new to Γ . This rule also uses a “type” l
whose meaning must be explained. This symbol represents a new type constant,
different from N and () and any other type constant used in the typing derivation.
This constraint in effect captures the requirement that the environment of a
closure should be opaque to its user.

The operational semantics for both the source and the target language is
based on a left to right, call-by-value evaluation strategy. We assume that this
is given in small-step form and, overloading notation again, we write M ↪→1 M ′

to denote that M evaluates to M ′ in one step in whichever language is under
consideration. The only evaluation rules that may be non-obvious are the ones
for applications. For the source language, they are the following:

M1 ↪→1 M ′
1

M1 M2 ↪→1 M ′
1 M2

M2 ↪→1 M ′
2

V1 M2 ↪→1 V1 M ′
2 (fix f x.M) V ↪→1 M [fix f x.M/f, V/x]
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For the target language, they are the following:

M1 ↪→1 M ′
1

open 〈xf , xe〉 = M1 in M2 ↪→1 open 〈xf , xe〉 = M ′
1 in M2

open 〈xf , xe〉 = 〈Vf , Ve〉 in M2 ↪→1 M2[Vf/xf , Ve/xe]

One-step evaluation generalizes in the obvious way to n-step evaluation that we
denote by M ↪→n M ′. Finally, we write M ↪→ V to denote the evaluation of M
to the value V through 0 or more steps.

The Transformation. In the general case, we must transform terms under
mappings for their free variables: for a function term, this mapping represents the
replacement of the free variables by projections from the environment variable
for which a new abstraction will be introduced into the term. Accordingly, we
specify the transformation as a 3-place relation written as ρ�M � M ′, where M
and M ′ are source and target language terms and ρ is a mapping from (distinct)
source language variables to target language terms. We write (ρ, x 
→ M) to
denote the extension of ρ with a mapping for x and (x 
→ M) ∈ ρ to mean that ρ
contains a mapping of x to M . Figure 3 defines the ρ�M � M ′ relation in a rule-
based fashion; these rules use the auxiliary relation ρ � (x1, . . . , xn) �e Me that
determines an environment corresponding to a tuple of variables. The cc-let and
cc-fix rules have a proviso: the bound variables, x and f, x respectively, should
have been renamed to avoid clashes with the domain of ρ. Most of the rules have
an obvious structure. We comment only on the ones for transforming fixed point
expressions and applications. The former translates into a closure. The function
part of the closure is obtained by transforming the body of the abstraction,
but under a new mapping for its free variables; the expression (x1, . . . , xn) ⊇
fvars(fix f x.M) means that all the free variables of (fix f x.M) appear in the
tuple. The environment part of the closure correspondingly contains mappings
for the variables in the tuple that are determined by the enclosing context.
Note also that the parameter for the function part of the closure is expected
to be a triple, the first item of which corresponds to the function being defined
recursively in the source language expression. The transformation of a source
language application makes clear how this structure is used to realize recursion:
the constructed closure application has the effect of feeding the closure to its
function part as the first component of its argument.

3.2 A λProlog Rendition of Closure Conversion

Our presentation of the implementation of closure conversion has two parts: we
first show how to encode the source and target languages and we then present
a λProlog specification of the transformation. In the first part, we discuss also
the formalization of the evaluation and typing relations; these will be used in
the correctness proofs that we develop later.



Verified Transformations on Functional Programs 763

Encoding the Languages. We first consider the encoding of types. We will use
ty as the λProlog type for this encoding for both languages. The constructors
tnat, tunit and prod will encode, respectively, the natural number, unit and
pair types. There are two arrow types to be treated. We will represent → by arr
and ⇒ by arr’. The following signature summarizes these decisions.

tnat,tunit : ty arr,prod,arr’ : ty → ty → ty

We will use the λProlog type tm for encodings of source language terms. The
particular constructors that we will use for representing the terms themselves
are the following, assuming that nat is a type for representations of natural
numbers:

nat : nat → tm pred,fst,snd : tm → tm unit : tm
plus,pair,app : tm → tm → tm ifz : tm → tm → tm → tm

let : tm → (tm → tm) → tm fix : (tm → tm → tm) → tm

The only constructors that need further explanation here are let and fix.
These encode binding constructs in the source language and, as expected, we
use λProlog abstraction to capture their binding structure. Thus, let x =
n in x is encoded as (let (nat n) (x\x)). Similarly, the λProlog term
(fix (f\x\ app f x)) represents the source language expression (fix f x.f x).

We will use the λProlog type tm’ for encodings of target language terms. To
represent the constructs the target language shares with the source language,
we will use “primed” versions of the λProlog constants seen earlier; e.g., unit’
of type tm’ will represent the null tuple. Of course, there will be no constructor
corresponding to fix. We will also need the following additional constructors:

abs’ : (tm’ → tm’) → tm’ clos’ : tm’ → tm’ → tm’

open’ : tm’ → (tm’ → tm’ → tm’) → tm’

Here, abs’ encodes λ-abstraction and clos’ and open’ encode closures and their
application. Note again the λ-tree syntax representation for binding constructs.

Following Sect. 2, we represent typing judgments as relations between terms
and types, treating contexts implicitly via dynamically added clauses that assign
types to free variables. We use the predicates of and of’ to encode typing in the
source and target language respectively. The clauses defining these predicates
are routine and we show only a few pertaining to the binding constructs. The
rule for typing fixed points in the source language translates into the following.

of (fix R) (arr T1 T2) : -
pi f\ pi x\ of f (arr T1 T2) ⇒ of x T1 ⇒ of (R f x) T2.

Note how the required freshness constraint is realized in this clause: the univer-
sal quantifiers over f and x introduce new names and the application (R f x)
replaces the bound variables with these names to generate the new typing judg-
ment that must be derived. For the target language, the main interesting rule is
for typing the application of closures. The following clause encodes this rule.
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of’ (open’ M R) T : - of’ M (arr T1 T2),

pi f\ pi e\ pi l\ of’ f (arr’ (prod (arr T1 T2) (prod T1 l)) T2) ⇒
of’ e l ⇒ of’ (R f e) T.

Here again we use universal quantifiers in goals to encode the freshness con-
straint. Note also how the universal quantifier over the variable l captures the
opaqueness quality of the type of the environment of the closure involved in the
construct.

We encode the one step evaluation rules for the source and target languages
using the predicates step and step’. We again consider only a few interesting
cases in their definition. Assuming that val and val’ recognize values in the
source and target languages, the clauses for evaluating the application of a fixed
point and a closure are the following.

step (app (fix R) V) (R (fix R) V) : - val V.

step’ (open’ (clos’ F E) R) (R F E) : - val’ (clos’ F E).

Note here how application in the meta-language realizes substitution.
We use the predicates nstep (which relates a natural number and two terms)

and eval to represent the n-step and full evaluation relations for the source
language, respectively. These predicates have obvious definitions. The predicates
nstep’ and eval’ play a similar role for the target language.

Specifying Closure Conversion. To define closure conversion in λProlog, we
need a representation of mappings for source language variables. We use the type
map and the constant map : tm → tm’ → map to represent the mapping for
a single variable.3 We use the type map_list for lists of such mappings, the
constructors nil and :: for constructing such lists and the predicate member for
checking membership in them. We also need to represent lists of source and target
language terms. We will use the types tm_list and tm’_list for these and for
simplicity of discussion, we will overload the list constructors and predicates at
these types. Polymorphic typing in λProlog supports such overloading but this
feature has not yet been implemented in Abella; we overcome this difficulty in
the actual development by using different type and constant names for each case.

The crux in formalizing the definition of closure conversion is capturing the
content of the cc-fix rule. A key part of this rule is identifying the free variables in
a given source language term. We realize the requirement by defining a predicate
fvars that is such that if (fvars M L1 L2) holds then L1 is a list that includes
all the free variables of M and L2 is another list that contains only the free
variables of M. We show a few critical clauses in the definition of this predicate,
omitting ones whose structure is easy predict.

fvars X _ nil : - notfree X.

fvars Y Vs (Y :: nil) : - member Y Vs.

fvars (nat _) _ nil.

3 This mapping is different from the one considered in Sect. 2.3 in that it is from a
source language variable to a target language term.
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fvars (plus M1 M2) Vs FVs : -
fvars M1 Vs FVs1, fvars M2 Vs FVs2, combine FVs1 FVs2 FVs.

...

fvars (let M R) Vs FVs : - fvars M Vs FVs1,

(pi x\ notfree x ⇒ fvars (R x) Vs FVs2), combine FVs1 FVs2 FVs.

fvars (fix R) Vs FVs : -
pi f\ pi x\ notfree f ⇒ notfree x ⇒ fvars (R f x) Vs FVs.

The predicate combine used in these clauses is one that holds between three lists
when the last is a combination of the elements of the first two. The essence of
the definition of fvars is in the treatment of binding constructs. Viewed oper-
ationally, the body of such a construct is descended into after instantiating the
binder with a new variable marked notfree. Thus, the variables that are marked
in this way correspond to exactly those that are explicitly bound in the term and
only those that are not so marked are collected through the second clause. It is
important also to note that the specification of fvars has a completely logical
structure; this fact can be exploited during verification.

The cc-fix rule requires us to construct an environment representing the
mappings for the variables found by fvars. The predicate mapenv specified by
the following clauses provides this functionality.

mapenv nil _ unit.

mapenv (X::L) Map (pair’ M ML) : - member (map X M) Map, mapenv L Map ML.

The cc-fix rule also requires us to create a new mapping from the variable list
to projections from an environment variable. Representing the list of projection
mappings as a function from the environment variable, this relation is given by
the predicate mapvar that is defined by the following clauses.

mapvar nil (e\ nil).

mapvar (X::L) (e\ (map X (fst’ e))::(Map (snd’ e))) : - mapvar L Map.

We can now specify the closure conversion transformation. We provide clauses
below that define the predicate cc such that (cc Map Vs M M’) holds if M’ is
a transformed version of M under the mapping Map for the variables in Vs; we
assume that Vs contains all the free variables of M.

cc _ _ (nat N) (nat’ N).

cc Map Vs X M : - member (map X M) Map.

cc Map Vs (pred M) (pred’ M’) : - cc Map Vs M M’.

cc Map Vs (plus M1 M2) (plus’ M1’ M2’) : -
cc Map Vs M1 M1’, cc Map Vs M2 M2’.

cc Map Vs (ifz M M1 M2) (ifz’ M’ M1’ M2’) : -
cc Map Vs M M’, cc Map Vs M1 M1’, cc Map Vs M2 M2’.

cc Map Vs unit unit’.

cc Map Vs (pair M1 M2) (pair’ M1’ M2’) : -
cc Map Vs M1 M1’, cc Map Vs M2 M2’.

cc Map Vs (fst M) (fst’ M’) : - cc Map Vs M M’.

cc Map Vs (snd M) (snd’ M’) : - cc Map Vs M M’.

cc Map Vs (let M R) (let’ M’ R’) : - cc Map Vs M M’,

pi x\ pi y\ cc ((map x y) :: Map) (x :: Vs) (R x) (R’ y).
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cc Map Vs (fix R) (clos’ (abs’ (p\ let’ (fst’ p) (g\

let’ (fst’ (snd’ p)) (y\

let’ (snd’ (snd’ p)) (e\ R’ g y e))))) E) : -
fvars (fix R) Vs FVs, mapenv FVs Map E, mapvar FVs NMap,

pi f\ pi x\ pi g\ pi y\ pi e\

cc ((map x y)::(map f g)::(NMap e)) (x::f::FVs) (R f x) (R’ g y e).

cc Map Vs (app’ M1 M2)

(let’ M1’ (g\ open’ g (f\e\ app’ f (pair’ g (pair’ M2’ e))))) : -
cc Map Vs M1 M1’, cc Map Vs M2 M2’.

These clauses correspond very closely to the rules in Fig. 3. Note especially the
clause for transforming an expression of the form (fix R) that encodes the
content of the cc-fix rule. In the body of this clause, fvars is used to identify
the free variables of the expression, and mapenv and mapvar are used to create
the reified environment and the new mapping. In both this clause and in the
one for transforming a let expression, the λ-tree representation, universal goals
and (meta-language) applications are used to encode freshness and renaming
requirements related to bound variables in a concise and logically precise way.

3.3 Implementing Other Transformations

We have used the ideas discussed in the preceding subsections in realizing other
transformations such as code hoisting and conversion to continuation-passing
style (CPS). These transformations are part of a tool-kit used by compilers for
functional languages to convert programs into a form from which compilation
may proceed in a manner similar to that for conventional languages like C.

Our implementation of the CPS transformation is based on the one-pass
version described by Danvy and Filinski [13] that identifies and eliminates the
so-called administrative redexes on-the-fly. This transformation can be encoded
concisely and elegantly in λProlog by using meta-level redexes for administrative
redexes. The implementation is straightforward and similar ones that use the
HOAS approach have already been described in the literature; e.g. see [37].

Our implementation of code hoisting is more interesting: it benefits in an
essential way once again from the ability to analyze binding structure. The code
hoisting transformation lifts nested functions that are closed out into a flat space
at the top level in the program. This transformation can be realized as a recursive
procedure: given a function (λx.M), the procedure is applied to the subterms
of M and the extracted functions are then moved out of (λx.M). Of course, for
this movement to be possible, it must be the case that the variable x does not
appear in the functions that are candidates for extraction. This “dependency
checking” is easy to encode in a logical way within our framework.

To provide more insight into our implementation of code-hoisting, let us
assume that it is applied after closure conversion and that its source and target
languages are both the language shown in Fig. 2. Applying code hoisting to any
term will result in a term of the form

let f1 = M1 in . . . let fn = Mn in M
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where, for 1 ≤ i ≤ n, Mi corresponds to an extracted function. We will write this
term below as (letf �f = �M in M) where �f = (f1, . . . , fn) and, correspondingly,
�M = (M1, . . . ,Mn).

We write the judgment of code hoisting as (ρ � M �ch M ′) where ρ has the
form (x1, . . . , xn). This judgment asserts that M ′ is the result of extracting all
functions in M to the top level, assuming that ρ contains all the bound variables
in the context in which M appears. The relation is defined by recursion on the
structure of M . The main rule that deserves discussion is that for transforming
functions. This rule is the following:

ρ, x 
 M �ch letf �f = �F in M ′

ρ 
 λx.M �ch letf (�f, g) = (�F , λf.λx.letf �f = (π1(f), . . . , πn(f)) in M ′) in g �f

We assume here that �f = (f1, . . . , fn) and, by an abuse of notation, we let
(g �f) denote (g (f1, . . . , fn)). This rule has a side condition: x must not occur
in �F . Intuitively, the term (λx.M) is transformed by extracting the functions
from within M and then moving them further out of the scope of x. Note that
this transformation succeeds only if none of the extracted functions depend on
x. The resulting function is then itself extracted. In order to do this, it must
be made independent of the (previously) extracted functions, something that is
achieved by a suitable abstraction; the expression itself becomes an application
to a tuple of functions in an appropriate let environment.

It is convenient to use a special representation for the result of code hoisting in
specifying it in λProlog. Towards this end, we introduce the following constants:

hbase : tm’ → tm’

habs : (tm’ → tm’) → tm’

htm : tm’_list → tm’ → tm’

Using these constants, the term (letf (f1, . . . , fn) = (M1, . . . ,Mn) in M)
that results from code hoisting will be represented by

htm (M1 :: ... :: Mn :: nil) (habs (f1\ ... (habs (fn\ hbase M)))).

We use the predicate ch : tm’ → tm’ → o to represent the code hoisting
judgment. The context ρ in the judgment will be encoded implicitly through
dynamically added program clauses that specify the translation of each variable
x as (htm nil (hbase x)). In this context, the rule for transforming functions,
the main rule of interest, is encoded in the following clause:

ch (abs’ M) M’’ : -
(pi x\ ch x (htm nil (hbase x)) ⇒ ch (M x) (htm FE (M’ x))),

extract FE M’ M’’.

As in previous specifications, a universal and a hypothetical goal are used in
this clause to realize recursion over binding structure. Note also the completely
logical encoding of the requirement that the function argument must not occur
in the nested functions extracted from its body: quantifier ordering ensures that
FE cannot be instantiated by a term that contains x free in it. We have used
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the predicate extract to build the final result of the transformation from the
transformed form of the function body and the nested functions extracted from
it; the definition of this predicate is easy to construct and is not provided here.

4 Verifying Transformations on Functional Programs

We now consider the verification of λProlog implementations of transformations
on functional programs. We exploit the two-level logic approach in this process,
treating λProlog programs as HOHH specifications and reasoning about them
using Abella. Our discussions below will show how we can use the λ-tree syntax
approach and the logical nature of our specifications to benefit in the reason-
ing process. Another aspect that they will bring out is the virtues of the close
correspondence between rule based presentations and HOHH specifications: this
correspondence allows the structure of informal proofs over inference rule style
descriptions to be mimicked in a formalization within our framework.

We use the closure conversion transformation as our main example in this
exposition. The first two subsections below present, respectively, an informal
proof of its correctness and its rendition in Abella. We then discuss the appli-
cation of these ideas to other transformations. Our proofs are based on logi-
cal relation style definitions of program equivalence. Other forms of semantics
preservation have also been considered in the literature. Our framework can be
used to advantage in formalizing these approaches as well, an aspect we discuss
in the last subsection.

4.1 Informal Verification of Closure Conversion

To prove the correctness of closure conversion, we need a notion of equivalence
between the source and target programs. Following [28], we use a logical relation
style definition for this purpose. A complication is that our source language
includes recursion. To overcome this problem, we use the idea of step indexing
[1,2]. Specifically, we define the following mutually recursive simulation relation
∼ between closed source and target terms and equivalence relation ≈ between
closed source and target values, each indexed by a type and a step measure.

M ∼T ;k M ′ ⇐⇒ ∀j ≤ k.∀V.M ↪→j V ⊃ ∃V ′.M ′ ↪→ V ′ ∧ V ≈T ;k−j V ′;

n ≈N;k n; () ≈unit;k ();

(V1, V2) ≈(T1×T2);k (V ′
1 , V ′

2 ) ⇐⇒ V1 ≈T1;k V ′
1 ∧ V2 ≈T2;k V ′

2 ;

(fix f x.M) ≈T1→T2;k 〈V ′, Ve〉 ⇐⇒ ∀j < k.∀V1, V
′
1 , V2, V

′
2 .

V1 ≈T1;j V ′
1 ⊃ V2 ≈T1→T2;j V ′

2 ⊃ M [V2/f, V1/x] ∼T2;j V ′ (V ′
2 , V ′

1 , Ve).

Note that the definition of ≈ in the fixed point/closure case uses ≈ negatively
at the same type. However, it is still a well-defined notion because the index
decreases. The cumulative notion of equivalence, written M ∼T M ′, corresponds
to two expressions being equivalent under any index.
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Analyzing the simulation relation and using the evaluation rules, we can
show the following “compatibility” lemma for various constructs in the source
language.

Lemma 1. 1. If M ∼N;k M ′ then pred M ∼N;k pred M ′. If also N ∼N;k N ′

then M + N ∼N;k M ′ + N ′.
2. If M ∼T1×T2;k M ′ then fst M ∼T1;k fst M ′ and snd M ∼T2;k snd M ′.
3. If M ∼T1;k M ′ and N ∼T2;k N ′ then (M,N) ∼T1×T2;k (M ′, N ′).
4. If M ∼N;k M ′, M1 ∼T ;k M ′

1 and M2 ∼T ;k M ′
2, then

if M then M1 else M2 ∼T ;k if M ′ then M ′
1 else M ′

2.
5. If M1 ∼T1→T2;k M ′

1 and M2 ∼T1;k M ′
2 then

M1 M2 ∼T2;k let g = M ′
1 in open 〈xf , xe〉 = g in xf (g,M ′

2, xe).

The proof of the last of these properties requires us to consider the evaluation of
the application of a fixed point expression which involves “feeding” the expres-
sion to its own body. In working out the details, we use the easily observed
property that the simulation and equivalence relations are closed under decreas-
ing indices.

Our notion of equivalence only relates closed terms. However, our transfor-
mation typically operates on open terms, albeit under mappings for the free
variables. To handle this situation, we consider semantics preservation for pos-
sibly open terms under closed substitutions. We will take substitutions in both
the source and target settings to be simultaneous mappings of closed values
for a finite collection of variables, written as (V1/x1, . . . , Vn/xn). In defining a
correspondence between source and target language substitutions, we need to
consider the possibility that a collection of free variables in the first may be
reified into an environment variable in the second. This motivates the following
definition in which γ represents a source language substitution:

γ ≈xm:Tm,...,x1:T1;k (V1, . . . , Vm) ⇐⇒ ∀1 ≤ i ≤ m.γ(xi) ≈Ti;k Vi.

Writing γ1; γ2 for the concatenation of two substitutions viewed as lists, equiv-
alence between substitutions is then defined as follows:

(V1/x1, . . . , Vn/xn); γ ≈Γ,xn:Tn,...,x1:T1;k (V ′
1/y1, . . . , V

′
n/yn, Ve/xe)

⇐⇒ (∀1 ≤ i ≤ n.Vi ≈Ti;k V ′
i ) ∧ γ ≈Γ ;k Ve.

Note that both relations are indexed by a source language typing context and
a step measure. The second relation allows the substitutions to be for different
variables in the source and target languages. A relevant mapping will determine
a correspondence between these variables when we use the relation.

We write the application of a substitution γ to a term M as M [γ]. The first
part of the following lemma, proved by an easy use of the definitions of ≈ and
evaluation, provides the basis for justifying the treatment of free variables via
their transformation into projections over environment variables introduced at
function boundaries in the closure conversion transformation. The second part
of the lemma is a corollary of the first part that relates a source substitution
and an environment computed during the closure conversion of fixed points.
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Lemma 2. Let δ = (V1/x1, . . . , Vn/xn); γ and δ′ = (V ′
1/y1, . . . , V ′

n/yn, Ve/xe)
be source and target language substitutions and let Γ = (x′

m : T ′
m, . . . , x′

1 : T ′
1, xn :

Tn, . . . , x1 : T1) be a source language typing context such that δ ≈Γ ;k δ′. Further,
let ρ = (x1 
→ y1, . . . , xn 
→ yn, x′

1 
→ π1(xe), . . . , x′
m 
→ πm(xe)).

1. If x : T ∈ Γ then there exists a value V ′ such that (ρ(x))[δ′] ↪→ V ′ and
δ(x) ≈T ;k V ′.

2. If Γ ′ = (z1 : Tz1 , . . . , zj : Tzj
) for Γ ′ ⊆ Γ and ρ � (z1, . . . , zj) �e M , then

there exists V ′
e such that M [δ′] ↪→ V ′

e and δ ≈Γ ′;k V ′
e .

The proof of semantics preservation also requires a result about the preserva-
tion of typing. It takes a little effort to ensure that this property holds at the
point in the transformation where we cross a function boundary. That effort is
encapsulated in the following strengthening lemma in the present setting.

Lemma 3. If Γ � M : T , {x1, . . . , xn} ⊇ fvars(M) and xi : Ti ∈ Γ for
1 ≤ i ≤ n, then xn : Tn, . . . , x1 : T1 � M : T .

The correctness theorem can now be stated as follows:

Theorem 4. Let δ = (V1/x1, . . . , Vn/xn); γ and δ′ = (V ′
1/y1, . . . , V ′

n/yn, Ve/xe)
be source and target language substitutions and let Γ = (x′

m : T ′
m, . . . , x′

1 : T ′
1, xn :

Tn, . . . , x1 : T1) be a source language typing context such that δ ≈Γ ;k δ′. Further,
let ρ = (x1 
→ y1, . . . , xn 
→ yn, x′

1 
→ π1(xe), . . . , x′
m 
→ πm(xe)). If Γ � M : T

and ρ � M � M ′, then M [δ] ∼T ;k M ′[δ′].

We outline the main steps in the argument for this theorem: these will guide
the development of a formal proof in Sect. 4.2. We proceed by induction on
the derivation of ρ � M � M ′, analyzing the last step in it. This obviously
depends on the structure of M . The case for a number is obvious and for a
variable we use Lemma 2.1. In the remaining cases, other than when M is of the
form (let x = M1 in M2) or (fix f x.M1), the argument follows a set pattern:
we observe that substitutions distribute to the sub-components of expressions,
we invoke the induction hypothesis over the sub-components and then we use
Lemma 1 to conclude. If M is of the form (let x = M1 in M2), then M ′ must be
of the form (let y = M ′

1 in M ′
2). Here again the substitutions distribute to M1

and M2 and to M ′
1 and M ′

2, respectively. We then apply the induction hypothesis
first to M1 and M ′

1 and then to M2 and M ′
2; in the latter case, we need to consider

extended substitutions but these obviously remain equivalent. Finally, if M is of
the form (fix f x.M1), then M ′ must have the form 〈M ′

1,M
′
2〉. We can prove that

the abstraction M ′
1 is closed and therefore that M ′[σ′] = 〈M ′

1,M
′
2[σ

′]〉. We then
apply the induction hypothesis. In order to do so, we generate the appropriate
typing judgment using Lemma 3 and a new pair of equivalent substitutions
(under a suitable step index) using Lemma 2.2.

4.2 Formal Verification of the Closure Conversion Implementation

In the subsections below, we present a sequence of preparatory steps, leading
eventually to a formal version of the correctness theorem.
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Auxiliary Predicates Used in the Formalization. We use the techniques
of Sect. 2 to define some predicates related to the encodings of source and tar-
get language types and terms that are needed in the main development; unless
explicitly mentioned, these definitions are in G. First, we define the predicates
ctx and ctx’ to identify typing contexts for the source and target languages.
Next, we define in HOHH the recognizers tm and tm’ of well-formed source and
target language terms. A source (target) term M is closed if {tm M} ({tm’ M}) is
derivable. The predicate is_sty recognizes source types. Finally, vars_of_ctx
is a predicate such that (vars_of_ctx L Vs) holds if L is a source language
typing context and Vs is the list of variables it pertains to.

Step indexing uses ordering on natural numbers. We represent natural num-
bers using z for 0 and s for the successor constructor. The predicate is nat
recognizes natural numbers. The predicates lt and le, whose definitions are
routine, represent the “less than” and the “less than or equal to” relations.

The Simulation and Equivalence Relations. The following clauses define
the simulation and equivalence relations.

sim T K M M’ � ∀J V, le J K → {nstep J M V} → {val V} →
∃V’ N, {eval’ M’ V’} ∧ {add J N K} ∧ equiv T N V V’;

equiv tnat K (nat N) (nat’ N);
equiv tunit K unit unit’;

equiv (prod T1 T2) K (pair V1 V2) (pair’ V1’ V2’) �
equiv T1 K V1 V1’ ∧ equiv T2 K V2 V2’ ∧
{tm V1} ∧ {tm V2} ∧ {tm’ V1’} ∧ {tm’ V2’};

equiv (arr T1 T2) z (fix R) (clos’ (abs’ R’) VE) �
{val’ VE} ∧ {tm (fix R)} ∧ {tm’ (clos’ (abs’ R’) VE)};

equiv (arr T1 T2) (s K) (fix R) (clos’ (abs’ R’) VE) �
equiv (arr T1 T2) K (fix R) (clos’ (abs’ R’) VE) ∧
∀V1 V1’ V2 V2’, equiv T1 K V1 V1’ → equiv (arr T1 T2) K V2 V2’ →

sim T2 K (R V2 V1) (R’ (pair’ V2’ (pair’ V1’ VE))).

The formula (sim T K M M’) is intended to mean that M simulates M’ at type T
in K steps; (equiv T K V V’) has a similar interpretation. Note the exploitation
of λ-tree syntax, specifically the use of application, to realize substitution in the
definition of equiv. It is easily shown that sim holds only between closed source
and target terms and similarly equiv holds only between closed source and target
values.4

Compatibility lemmas in the style of Lemma 1 are easily stated for sim. For
example, the one for pairs is the following.

∀T1 T2 K M1 M2 M1’ M2’, {is_nat K} → {is_sty T1} → {is_sty T2} →

4 The definition of equiv uses itself negatively in the last clause and thereby violates
the original stratification condition of G. However, Abella permits this definition
under a weaker stratification condition that ensures consistency provided the def-
inition is used in restricted ways [5,38], a requirement that is adhered to in this
paper.



772 Y. Wang and G. Nadathur

sim T1 K M1 M1’ → sim T2 K M2 M2’ →
sim (prod T1 T2) K (pair M1 M2) (pair’ M1’ M2’).

These lemmas have straightforward proofs.

Representing Substitutions. We treat substitutions as discussed in Sect. 2.
For example, source substitutions satisfy the following definition.

subst nil;

subst ((map X V)::ML) � subst ML ∧ name X ∧ {val V} ∧ {tm V} ∧
∀V’, member (map X V’) ML → V’ = V.

By definition, these substitutions map variables to closed values. To accord with
the way closure conversion is formalized, we allow multiple mappings for a given
variable, but we require all of them to be to the same value. The application of
a source substitution is also defined as discussed in Sect. 2.

app_subst nil M M;

∇x,app_subst ((map x V)::(ML x)) (R x) M � ∇x,app_subst (ML x) (R V) M.

As before, we can easily prove properties about substitution application based
on this definition such as that such an application distributes over term structure
and that closed terms are not affected by substitution.

The predicates subst’ and app subst’ encode target substitutions and their
application. Their formalization is similar to that above.

The Equivalence Relation on Substitutions. We first define the relation
subst env equiv between source substitutions and target environments:

subst_env_equiv nil K ML unit’;

subst_env_equiv ((of X T)::L) K ML (pair’ V’ VE) �
∃V,subst_env_equiv L K ML VE ∧ member (map X V) ML ∧ equiv T K V V’.

Using subst env equiv, the needed relation between source and target substi-
tutions is defined as follows.

∇e, subst_equiv L K ML ((map e VE)::nil) � subst_env_equiv L K ML VE;

∇x y, subst_equiv ((of x T)::L) K ((map x V)::ML) ((map y V’)::ML’) �
equiv T K V V’ ∧ subst_equiv L K ML ML’.

Lemmas about fvars, mapvar and mapenv. Lemma 3 translates into a lemma
about fvars in the implementation. To state it, we define a strengthening rela-
tion between source typing contexts:

prune_ctx nil L nil;

prune_ctx (X::Vs) L ((of X T)::L’) � member (of X T) L ∧ prune_ctx Vs L L’.

(prune ctx Vs L L’) holds if L’ is a typing context that “strengthens” L to
contain type assignments only for the variables in Vs. The lemma about fvars
is then the following.



Verified Transformations on Functional Programs 773

∀L Vs M T FVs, ctx L → vars_of_ctx L Vs → {L � of M T} →
{fvars M Vs FVs} → ∃L’, prune_ctx FVs L L’ ∧ {L’ � of M T}.

To prove this theorem, we generalize it so that the HOHH derivation of
(fvars M Vs FVs) is relativized to a context that marks some variables as not
free. The resulting generalization is proved by induction on the fvars derivation.

A formalization of Lemma 2 is also needed for the main theorem. We start
with a lemma about mapvar.

∀L Vs Map ML K VE X T M’ V, ∇e, {is_nat K} → ctx L → subst ML →
subst_env_equiv L K ML VE → vars_of_ctx L Vs → {mapvar Vs Map} →
member (of X T) L → app_subst ML X V → {member (map X (M’ e)) (Map e)}

→ ∃V’, {eval’ (M’ VE) V’} ∧ equiv T K V V’.

In words, this lemma states the following. If L is a source typing context for
the variables (x1, . . . , xn), ML is a source substitution and VE is an environment
equivalent to ML at L, then mapvar determines a mapping for (x1, . . . , xn) that are
projections over an environment with the following character: if the environment
is taken to be VE, then, for 1 ≤ i ≤ n, xi is mapped to a projection that must
evaluate to a value equivalent to the substitution for xi in ML. The lemma is
proved by induction on the derivation of {mapvar Vs Map}.

Lemma 2 is now formalized as follows.

∀L ML ML’ K Vs Vs’ Map, {is_nat K} → ctx L → subst ML →
subst’ ML’ → subst_equiv L K ML ML’ → vars_of_ctx L Vs →
vars_of_subst’ ML’ Vs’ → to_mapping Vs Vs’ Map →
(∀ X T V M’ M’’, member (of X T) L → {member (map X M’) Map} →
app_subst ML X V → app_subst’ ML’ M’ M’’ →

∃V’, {eval’ M’’ V’} ∧ equiv T K V V’) ∧
(∀ L’ NFVs E E’, prune_ctx NFVs L L’ →
{mapenv NFVs Map E} → app_subst’ ML’ E E’ →

∃VE’, {eval’ E’ VE’} ∧ subst_env_equiv L’ K ML VE’).

Two new predicates are used here. The judgment (vars of subst’ ML’ Vs’)
“collects” the variables in the target substitution ML’ into Vs’. Given source vari-
ables Vs = (x1, . . . , xn, x′

1, . . . , x
′
m) and target variables Vs’ = (y1, . . . , yn, xe),

the predicate to mapping creates in Map the mapping

(x1 
→ y1, . . . , xn 
→ yn, x′
1 
→ π1(xe), . . . , x′

m 
→ πm(xe)).

The conclusion of the lemma is a conjunction representing the two parts of
Lemma 2. The first part is proved by induction on {member (map X M’) Map},
using the lemma for mapvar when X is some x′

i(1 ≤ i ≤ m). The second part is
proved by induction on {mapenv NFVs Map E} using the first part.

The Main Theorem. The semantics preservation theorem is stated as follows:

∀L ML ML’ K Vs Vs’ Map T P P’ M M’, {is_nat K} → ctx L → subst ML →
subst’ ML’ → subst_equiv L K ML ML’ → vars_of_ctx L Vs →
vars_of_subst’ ML’ Vs’ → to_mapping Vs Vs’ Map → {L � of M T} →
{cc Map Vs M M’} → app_subst ML M P → app_subst’ ML’ M’ P’ → sim T K P P’.
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We use an induction on {cc Map Vs M M’}, the closure conversion derivation,
to prove this theorem. As should be evident from the preceding development,
the proof in fact closely follows the structure we outlined in Sect. 4.1.

4.3 Verifying the Implementations of Other Transformations

We have used the ideas presented in this section to develop semantics preserva-
tion proofs for other transformations such as code hoisting and the CPS trans-
formation. We discuss the case for code hoisting below.

The first step is to define the step-indexed logical relations ∼′ and ≈′ that
respectively represent the simulation and equivalence relation between the input
and output terms and values for code hoisting:

M ∼′
T ;k M ′ ⇐⇒ ∀j ≤ k.∀V.M ↪→j V ⊃ ∃V ′.M ′ ↪→ V ′ ∧ V ≈′

T ;k−j V ′;

n ≈′
N;k n;

() ≈′
unit;k ();

(V1, V2) ≈′
(T1×T2);k (V ′

1 , V ′
2 ) ⇐⇒ V1 ≈′

T1;k V ′
1 ∧ V2 ≈′

T2;k V ′
2 ;

(λx.M) ≈′
T1⇒T2;k (λx.M ′) ⇐⇒ ∀j < k.∀V, V ′.V ≈′

T1;j V ′ ⊃ M [V/x] ∼′
T2;j M ′[V ′/x];

〈λp.M, Ve〉 ≈′
T1→T2;k 〈λp.M ′, V ′

e 〉 ⇐⇒ ∀j < k.∀V1, V
′
1 , V2, V

′
2 .

V1 ≈′
T1;j V ′

1 ⊃ V2 ≈′
T1→T2;j V ′

2 ⊃ M [(V2, V1, Ve)/p] ∼′
T2;j M ′[(V ′

2 , V ′
1 , V ′

e )/p].

We can show that ∼′ satisfies a set of compatibility properties similar to
Lemma 1.

We next define a step-indexed relation of equivalence between two substitu-
tions δ = (V1/x1, . . . , Vm/xm) and δ′ = (V ′

1/x1, . . . , V
′
m/xm) relative to a typing

context Γ = (xm : Tm, . . . , x1 : T1):

δ ≈′
Γ ;k δ′ ⇐⇒ ∀1 ≤ i ≤ m.Vi ≈′

Ti;k V ′
i .

The semantics preservation theorem for code hoisting is stated as follows:

Theorem 5. Let δ = (V1/x1, . . . , Vm/xm) and δ′ = (V ′
1/x1, . . . , V

′
m/xm) be sub-

stitutions for the language described in Fig. 2. Let Γ = (xm : Tm, . . . , x1 : T1) be
a typing context such that δ ≈′

Γ ;k δ′. Further, let ρ = (x1, . . . , xm). If Γ � M : T
and ρ � M �ch M ′ hold, then M [δ] ∼′

T ;k M ′[δ′] holds.

The theorem is proved by induction on the derivation for ρ�M �ch M ′. The base
cases follow easily, possibly using the fact that δ ≈′

Γ ;k δ′. For the inductive cases,
we observe that substitutions distribute to the sub-components of expressions,
we invoke the induction hypothesis over the sub-components and we use the
compatibility property of ∼′. In the case of an abstraction, δ and δ′ must be
extended to include a substitution for the bound variable. For this case to work
out, we must show that the additional substitution for the bound variable has
no impact on the functions extracted by code hoisting. From the side condition
for the rule deriving ρ � M �ch M ′ in this case, the extracted functions cannot
depend on the bound variable and hence the desired observation follows.
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In the formalization of this proof, we use the predicate constants sim’ and
equiv’ to respectively represent ∼′ and ≈′. The Abella definitions of these pred-
icates have by now a familiar structure. We also define a constant subst equiv’
to represent the equivalence of substitutions as follows:

subst_equiv’ nil K nil nil;
∇x, subst_equiv’ ((of’ x T)::L) K ((map’ x V)::ML) ((map’ x V’)::ML’)

� equiv’ T K V V’ ∧ subst_equiv’ L K ML ML’.

The representation of contexts in the code hoisting judgment in the HOHH
specification is captured by the predicate ch ctx that is defined as follows:

ch_ctx nil;

∇x, ch_ctx (ch x (htm nil (hbase x)) :: L) � ch_ctx L.

The semantics preservation theorem is stated as follows, where vars of ctx’ is
a predicate for collecting variables in the typing contexts for the target language,
vars of ch ctx is a predicate such that (vars of ch ctx L Vs) holds if L is a
context for code hoisting and Vs is the list of variables it pertains to:

∀L K CL ML ML’ M M’ T FE FE’ P P’ Vs, {is_nat K} → ctx’ L →
ch_ctx CL → vars_of_ctx’ L Vs → vars_of_ch_ctx CL Vs →
subst’ ML → subst’ ML’ → subst_equiv’ L K ML ML’ →
{L � of’ M T} → {CL � ch M (htm FE M’)} → app_subst’ ML M P →
app_subst’ ML’ (htm FE M’) (htm FE’ P’) → sim’ T K P (htm FE’ P’).

The proof is by induction on {CL � ch M (htm FE M’)} and its structure follows
that of the informal one very closely. The fact that the extracted functions do not
depend on the bound variable of an abstraction is actually explicit in the logical
formulation and this leads to an exceedingly simple argument for this case.

4.4 Relevance to Other Styles of Correctness Proofs

Many compiler verification projects, such as CompCert [21] and CakeML [20],
have focused primarily on verifying whole programs that produce values of
atomic types. In this setting, the main requirement is to show that the source
and target programs evaluate to the same atomic values. Structuring a proof
around program equivalence base on a logical relation is one way to do this.
Another, sometimes simpler, approach is to show that the compiler transfor-
mations permute over evaluation; this method works because transformations
typically preserve values at atomic types. Although we do not present this here,
we have examined proofs of this kind and have observed many of the same kinds
of benefits to the λ-tree syntax approach in their context as well.

Programs are often built by composing separately compiled modules of code.
In this context it is desirable that the composition of correctly compiled mod-
ules preserve correctness; this property applied to compiler verification has been
called modularity. Logical relations pay attention to equivalence at function
types and hence proofs based on them possess the modularity property. Another
property that is desirable for correctness proofs is transitivity: we should be able
to infer the correctness of a multi-stage compiler from the correctness of each
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of its stages. This property holds when we use logical relations if we restrict
attention to programs that produce atomic values but cannot be guaranteed
if equivalence at function types is also important; it is not always possible to
decompose the natural logical relation between a source and target language
into ones between several intermediate languages. Recent work has attempted
to generalize the logical relations based approach to obtain the benefits of both
transitivity and modularity [32]. Many of the same issues relating to the treat-
ment of binding and substitution appear in this context as well and the work in
this paper therefore seems to be relevant also to the formalization of proofs that
use these ideas.

Finally, we note that the above comments relate only to the formalization
of proofs. The underlying transformations remain unchanged and so does the
significance of our framework to their implementation.

5 Related Work and Conclusion

Compiler verification has been an active area for investigation. We focus here on
the work in this area that has been devoted to compiling functional languages.
There have been several projects with ambitious scope even in this setting. To
take some examples, the CakeML project has implemented a compiler from a
subset of ML to the X86 assembly language and verified it using HOL4 [20]; Dar-
gaye has used Coq to verify a compiler from a subset of ML into the intermediate
language used by CompCert [14]; Hur and Dreyer have used Coq to develop a
verified single-pass compiler from a subset of ML to assembly code based on a
logical relations style definition of program equivalence [19]; and Neis et al. have
used Coq to develop a verified multi-pass compiler called Pilsner, basing their
proof on a notion of semantics preservation called Parametric Inter-Languages
Simulation (PILS) [32]. All these projects have used essentially first-order treat-
ments of binding, such as those based on a De Bruijn style representation.

A direct comparison of our work with the projects mentioned above is neither
feasible nor sensible because of differences in scope and focus. Some comparison
is possible with a part of the Lambda Tamer project of Chlipala in which he
describes the verified implementation in Coq of a compiler for the STLC using
a logical relation based definition of program equivalence [11]. This work uses
a higher-order representation of syntax that does not derive all the benefits of
λ-tree syntax. Chlipala’s implementation of closure conversion comprises about
400 lines of Coq code, in contrast to about 70 lines of λProlog code that are
needed in our implementation. Chlipala’s proof of correctness comprises about
270 lines but it benefits significantly from the automation framework that was
the focus of the Lambda Tamer project; that framework is built on top of the
already existing Coq libraries and consists of about 1900 lines of code. The
Abella proof script runs about 1600 lines. We note that Abella has virtually no
automation and the current absence of polymorphism leads to some redundancy
in the proof. We also note that, in contrast to Chlipala’s work, our development
treats a version of the STLC that includes recursion. This necessitates the use
of a step-indexed logical relation which makes the overall proof more complex.
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Other frameworks have been proposed in the literature that facilitate the use
of HOAS in implementing and verifying compiler transformations. Hickey and
Nogin describe a framework for effecting compiler transformations via rewrite
rules that operate on a higher-order representation of programs [18]. However,
their framework is embedded within a functional language. As a result, they are
not able to support an analysis of binding structure, an ability that brings con-
siderable benefit as we have highlighted in this paper. Moreover, this framework
offers no capabilities for verification. Hannan and Pfenning have discussed using
a system called Twelf that is based on LF in specifying and verifying compilers;
see, for example, [16] and [29] for some applications of this framework. The way
in which logical properties can be expressed in Twelf is restricted; in particular,
it is not easy to encode a logical relation-style definition within it. The Beluga
system [34], which implements a functional programming language based on con-
textual modal type theory [31], overcomes some of the shortcomings of Twelf.
Rich properties of programs can be embedded in types in Beluga, and Belanger
et al. show how this feature can be exploited to ensure type preservation for clo-
sure conversion [7]. Properties based on logical relations can also be described
in Beluga [10]. It remains to be seen if semantics preservation proofs of the kind
discussed in this paper can be carried out in the Beluga system.

While the framework comprising λProlog and Abella has significant bene-
fits in the verified implementation of compiler transformations for functional
languages, its current realization has some practical limitations that lead to a
larger proof development effort than seems necessary. One such limitation is the
absence of polymorphism in the Abella implementation. A consequence of this
is that the same proofs have sometimes to be repeated at different types. This
situation appears to be one that can be alleviated by allowing the user to parame-
terize proofs by types and we are currently investigating this matter. A second
limitation arises from the emphasis on explicit proofs in the theorem-proving
setup. The effect of this requirement is especially felt with respect to lemmas
about contexts that arise routinely in the λ-tree syntax approach: such lemmas
have fairly obvious proofs but, currently, the user must provide them to com-
plete the overall verification task. In the Twelf and Beluga systems, such lemmas
are obviated by absorbing them into the meta-theoretic framework. There are
reasons related to the validation of verification that lead us to prefer explicit
proofs. However, as shown in [6], it is often possible to generate these proofs
automatically, thereby allowing the user to focus on the less obvious aspects. In
ongoing work, we are exploring the impact of using such ideas on reducing the
overall proof effort.
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8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, Heidelberg (2004)

9. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser Theorem.
Indagationes Mathematicae 34(5), 381–392 (1972)

10. Cave, A., Pientka, B.: A case study on logical relations using contextual types.
In: Proceedings of the Tenth International Workshop on Logical Frameworks and
Meta Languages: Theory and Practice, EPTCS, vol. 185, pp. 33–45 (2015)

11. Chlipala, A.: A certified type-preserving compiler from lambda calculus to assembly
language. In: Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 54–65. ACM Press (2007)

12. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5, 56–68
(1940)

13. Danvy, O., Filinski, A.: Representing control: a study of the CPS transformation.
Math. Struct. Comput. Sci. 2, 361–391 (1992)

14. Dargaye, Z.: Vérification formelle d’un compilateur optimisant pour langages fonc-
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