Needle & Knot: Binder Boilerplate Tied Up

Steven Keuchel!®™) | Stephanie Weirich?, and Tom Schrijvers®

! Ghent University, Ghent, Belgium
steven.keuchel@ugent.be
2 University of Pennsylvania, Philadelphia, USA
sweirich@cis.upenn.edu
3 KU Leuven, Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract. To lighten the burden of programming language mechaniza-
tion, many approaches have been developed that tackle the substantial
boilerplate which arises from variable binders. Unfortunately, the exist-
ing approaches are limited in scope. They typically do not support com-
plex binding forms (such as multi-binders) that arise in more advanced
languages, or they do not tackle the boilerplate due to mentioning vari-
ables and binders in relations. As a consequence, the human mechanizer
is still unnecessarily burdened with binder boilerplate and discouraged
from taking on richer languages.

This paper presents KNOT, a new approach that substantially extends
the support for binder boilerplate. KNOT is a highly expressive language
for natural and concise specification of syntax with binders. Its meta-
theory constructively guarantees the coverage of a considerable amount
of binder boilerplate for well-formed specifications, including that for
well-scoping of terms and context lookups. KNOT also comes with a code
generator, NEEDLE, that specializes the generic boilerplate for conve-
nient embedding in CoQ and provides a tactic library for automatically
discharging proof obligations that frequently come up in proofs of weak-
ening and substitution lemmas of type-systems.

Our evaluation shows, that Needle & Knot significantly reduce the
size of language mechanizations (by 40 % in our case study). Moreover,
as far as we know, KNOT enables the most concise mechanization of the
POPLMARK Challenge (1a + 2a) and is two-thirds the size of the next
smallest. Finally, KNOT allows us to mechanize for instance dependently-
typed languages, which is notoriously challenging because of dependent
contexts and mutually-recursive sorts with variables.

1 Introduction

The meta-theory of programming language semantics and type-systems is highly
complex due to the management of many details. Formal proofs are long and
prone to subtle errors that can invalidate large amounts of work. In order to
guarantee the correctness of formal meta-theory, techniques for mechanical for-
malization in proof-assistants have received much attention in recent years.

© Springer-Verlag Berlin Heidelberg 2016
P. Thiemann (Ed.): ESOP 2016, LNCS 9632, pp. 419-445, 2016.
DOI: 10.1007/978-3-662-49498-1_17

420 S. Keuchel et al.

This paper targets the syntactic approach to programming language metathe-
ory, invented by Wright and Felleisen [42] and popularized by Pierce [25]. An
important issue that arises in such formalizations is the treatment of variable
binding which typically comprises the better part of the formalization. Most
of this variable binding infrastructure is repetitive and tedious boilerplate. By
boilerplate we mean mechanical operations and lemmas that appear in many
languages, such as: (1) common operations like calculating the sets of free vari-
ables or the domain of a typing context, appending contexts and substitutions;
(2) lemmas about operations like commutation of substitutions or the interaction
between the free-variable calculation and substitution; and (3) lemmas about the
well-scoping of terms and preservation of well-scoping under operations.

To alleviate researchers from this burden, multiple approaches have been
developed to capture the structure of variable binding and generically take care
of the associated boilerplate. These include specification languages of syntax with
binding and scoping rules [33], tools or reflection libraries that generate code
for proof assistants from specifications [7,27,32], generic programming libraries
that implement boilerplate using datatype generic functions and proofs [18] and
meta-languages that have built-in support for syntax with binding [22,24, 35].

Yet, despite the multitude of existing approaches, the scope of the avail-
able support is still rather limited. Most approaches do not cover rich-binding
forms (such as patterns or declaration lists) or the advanced scoping rules (like
sequential and recursive scopes) of more complex languages. Those that do still
leave most of the boilerplate up to the developer. As a consequence, only drastic
simplifications of languages are mechanized, in order to fit the mold of existing
tools and make the development cost affordable. For example, multi-variable
binders are replaced by single-variable binders and polymorphic languages by
monomorphic sublanguages to avoid dealing with multiple distinct namespaces.
Obviously, there is a very real danger that these simplifications gloss over actual
problems in the original language and give a false sense of security.

This work greatly improves the support for binder boilerplate in the mecha-
nization of programming languages in two dimensions. First, we support a rich
class of abstract syntaxes with binders involving advanced binding forms, com-
plex scoping rules and mutually recursive sorts with variables. Secondly, the
supported boilerplate for this class goes beyond term-related functions and lem-
mas: it also generically covers contexts and well-scopedness predicates.

For this purpose, we provide KNOT, a language to concisely and naturally
specify the abstract syntax and rich binding structure of programming languages.
From such a KNOT specification, our NEEDLE tool generates the corresponding
CoQ code as well as all the derived boilerplate. Our specific contributions are:

1. We present KNOT, a new approach to automate the treatment of variable
binding boilerplate. KNOT is a natural and concise specification language for
syntax with binders. KNOT is highly expressive, supporting multi-binders,
advanced scoping rules and mutually recursive sorts with variables.

2. We prove that any well-formed KNOT specification is guaranteed to produce a
considerable amount of binder boilerplate operations and lemmas that include

Needle & Knot: Binder Boilerplate Tied Up 421

the usual term-level interaction lemmas, but also lemmas for contexts and
context lookups and for weakening, strengthening and substitution lemmas
of well-scopedness relations. Our mechanized proof consists of a construc-
tive generic implementation which in particular deals with the challenges of
mutually recursive definitions.

3. Alongside the generic implementation, we provide NEEDLE, a convenient code
generator that produces specialized boilerplate for easy embedding in larger
CoqQ formalizations. NEEDLE also provides a library of tactics to simplify and
automatically discharge well-scopedness proof obligations.

4. We demonstrate the usefulness of KNOT with two case studies.

(a) We show that the KNOT-based approach is on average 40 % smaller than
the unassisted approach in a case-study of type-safety mechanizations for
10 languages.

(b) We compare the KNOT solution of the POPLMARK challenge (1A + 2A)
to 7 other solutions. Ours is by far the smallest.

The code for NEEDLE and the Coq developments (compatible with Coq 8.4
and 8.5) are available at https://users.ugent.be/~skeuchel /knot.

2 Overview

This section gives an overview of the variable binding boilerplate that arises when
proving type preservation of typed programming languages. For this purpose,
we use Fy (i.e., System F with products and destructuring pattern bindings)
as the running example. In the following, we elaborate the different steps of the
formalization and point out where variable binding boilerplate arises.

2.1 Syntax: Variable Representation

Figure 1 (top) shows the first step in the formalization: the syntax of Fx. Notice
that patterns can be nested and can bind an arbitrary number of variables at
once. In this grammar the scoping rules are left implicit. The intended rules are
that in a type or term abstraction the variable scopes over the body e and in a
pattern binding the variables bound by the pattern scope over e; but not e;.

The syntax raises the first variable-related issue: how to concretely represent
variables, an issue that is side-stepped in Fig.1 (top). Traditionally, one would
use identifiers for variables. However, when formalizing meta-theory this repre-
sentation requires reasoning modulo a-equivalence of terms to an excruciating
extent. It is therefore inevitable to choose a different representation.

The goal of this paper is neither to develop a new approach to variable
binding nor to compare existing ones, but rather to scale the generic treat-
ment of a single approach to realistic languages. For this purpose, we choose
de Bruijn representations [9], motivated by two main reasons. First, reasoning
with de Bruijn representations is well-understood and, in particular, the repre-
sentation of pattern binding and scoping rules is also well-understood [10,15].

https://users.ugent.be/~skeuchel/knot

422 S. Keuchel et al.

a, = type variable p = pattern
T,y = term variable | = variable pattern
A = type environment | p1,p2 pair pattern
| € empty env e = term
| I'aw type binding | = term variable
| I'z:7 term binding | Az:T.e term abstraction
T,0 = type | e1 e application
| « type variable | Aa.e type abstraction
| 7 — 7 function type | e[7] type application
| 71 x 72 product type | e1,e pair
| Va.r universal type | case e; of p — ez pattern binding
E = enil T ::= tvar n tu=warn |tyappt T
| etvar E | tarr Th T2 | abs T't | prod t1 t2
| evar ET | tprod Ty T» | app ti t2 | case t1 p t2
p = pvar | tall T | tyabs t
| pprod p p2

Fig. 1. Fx syntax and de Bruijn representation

Second, the functions related to variable binding, the statements of properties
of these functions and their proofs have highly regular structures with respect
to the abstract syntax and the scoping rules of the language. This helps us in
treating boilerplate generically and automating proofs.

The term grammar in Fig.1 (bottom) encodes a de Bruijn representation
of F«. The variable occurrences of binders have been removed in this represen-
tation and the referencing occurrences of type and term variables are replaced
by de Bruijn indices n. These de Bruijn indices point directly to their binders:
The index n points to the nth enclosing binding position. For instance, the
Fy expression for the polymorphic swap function

Aa.AB Az : (o, fB).case z of (z1,22) — (22,x1)
is represented by the de Bruijn term

tyabs (tyabs (abs (tprod (tvar 1) (tvar 0))
(case (var 0) (pprod pvar pvar) (prod (var 0) (var 1)))))

Again, the order in which de Bruijn indices are bound and the scoping rules
are left implicit in the term grammar. Our specification language KNOT for de
Bruijn terms from Sect. 3 will make order of binding and scoping rules explicit.

A second example is tyabs (tyabs (abs (tvar 1) (abs (tvar 0) (var 1))) for the
polymorphic const function Aa.AB.Azx:a.\y:0.2. We use different namespaces for
term and type variables and treat indices for variables from distinct namespaces
independently: The index for the type variable § that is used in the inner abs is
0 and not 1, because we only count the number of binders for the corresponding
namespace and not binders for other namespaces.

Needle & Knot: Binder Boilerplate Tied Up 423

2.2 Semantics: Shifting and Substitution

The next step in the formalization is to develop the typical semantic relations for
the language of study. In the case of Fx, these comprise a small-step call-by-value
operational semantics, as well as a well-scopedness relation for types, a typing
relation for terms and a typing relation for patterns. The operational semantics
defines the evaluation of term- and type-abstraction by means of g-reduction.

(Az.e1) e2 —p [z — e2] & (Aoe) T —g [a—T]e

This requires the first boilerplate for the de Bruijn representation: substitution
of type variables in types, terms and contexts, and of term variables in terms.

It is necessary to define weakenings first, that adapts the indices of free
variables in a term e when its context I" is changed, e.g. when traversing into the
right-hand side of a pattern binding that binds A variables: I'F e~ I, A F e.

To only adapt free variables but not bound variables in e, we implement weak-
ening by reducing it to a more general operation called shifting that implements
insertion of a single variable in the middle of a context [10,25]

IAre~Tz, Al e I'Are~Ta Al e

In total, we need to implement four shift functions to adapt type-variable indices
in types, terms and contexts and term-variable indices in terms.

Table 1. Lines of CoqQ code for the F'x meta-theory mechanization.

Useful Boilerplate

Syntax 28| (41%)| 0 (0%
Semantics | 62| (9.2%)|149] (22.1%
Theorems | 140 | (20.7 %) | 296 | (43.9 %
Total 230 | (34.0%) | 445 | (66.0 %

2.3 Theorems: Commutation, Weakening and Preservation

Given the definitions from the previous subsection, we are ready to define the
semantics and type system of Fy and move on to formulate and prove type
soundness for F,. We refrain from formulating it here explicitly. The proof of
type soundness involves the usual lemmas for canonical forms, typing inversion,
pattern-matching definedness as well as progress and preservation [42]. To prove
these lemmas, we require a second set of variable binding boilerplate:

— Interaction lemmas for the shift, weaken and substitution operations. These
include commutation lemmas for two operations working on distinct indices
and the cancellation of a subst and a shift working on the same variables (cf.
Sect. 6). In the case of Fy, we only need interaction lemmas for type-variable
operations to prove the preservation lemma, but in general these may also
involve interactions between two operations in distinct namespaces.

424 S. Keuchel et al.

— Weakening and strengthening lemmas about context lookups which in partic-
ular need additional interaction lemmas for context concatenation.

— We need to define well-scopedness of types with respect to a context and
prove weakening and strengthening properties and the preservation of well-
scopedness under well-scoped type-variable substitution.

2.4 Summary

Table 1 summarizes the effort required to formalize type soundness of Fy in the
CoQ proof assistant in terms of the de Bruijn representation. It lists the lines
of CoQ code for the three different parts of the formalization discussed above,
divided in binder-related “boilerplate” and the other “useful” code. The table
clearly shows that the boilerplate constitutes about two thirds of the formaliza-
tion. The boilerplate lemmas in particular, while individually fairly short, make
up the bulk of the boilerplate and close to half of the whole formalization.

Of course, very similar variable binder boilerplate arises in the formalization
of other languages, where it requires a similar unnecessarily large development
effort. For instance, Rossberg et al. [30] report that 400 out of 500 lemmas of their
mechanization in the locally-nameless style [6] were tedious boilerplate lemmas.

Fortunately, there is much regularity to the boilerplate: it follows the struc-
ture of the language’s abstract syntax and its scoping rules. Many earlier works
have already exploited this fact in order to automatically generate or generically
define part of the boilerplate for simple languages.

2.5 Our Solution: Needle and Knot

The aim of this work is to considerably extend the support for binder boilerplate
in language mechanizations on two accounts. First, we go beyond simple single
variable binders and tackle complex binding structures, like the nested pattern
matches of Fy, recursively and sequentially scoped binders, mutually recursive
binders, heterogeneous binders, etc. Secondly, we cover a larger extent of the
boilerplate than earlier works, specifically catering to contexts, context lookups
and well-scopedness relations.

Our approach consists of a specification language, called KNOT, that allows
concise and natural specifications of abstract syntax of programming languages
and provides rich binding structure. We provide generic definitions and lem-
mas for the variable binding boilerplate that apply to every well-formed KNnOT
specification. Finally, we complement the generic approach with a code gener-
ator, called NEEDLE, that specializes the generic definitions and allows manual
customization and extension.

We follow two important principles: Firstly, even though in its most general
form, syntax with binders has a monadic structure [3-5], KNOT restricts itself
to free monadic structures. This allows us to define substitution and all related
boilerplate generically and encompasses the vast majority of languages.

Secondly, we hide as much as possible the underlying concrete representation
of de Bruijn indices as natural numbers. Instead, we provide an easy-to-use

Needle & Knot: Binder Boilerplate Tied Up 425

Labels
S, T Sort label a, B,y Namespace label
K Constructor label T,Y, 2 Meta-variable
E Env label f Function label
s,t Sort field

Declarations and definitions

spec = decl Specification
decl ::= namedecl | sortdecl | fundecl | envdecl Declaration
namedecl ::= namespacea : S Namespace
sortdecl ::= sort S := ctordecl Sort
ctordecl = K (zQa) | K (z :) ([bs]s : S) Ctor decl.
bs = bst Binding spec.
bsi n=uzx| fs Bind. spec. item
fundecl :=funf:S — [a] := funclause Function
funclause := KT35 — bs Function clause
envdecl = env E := envclause Environment
envclause 1= a v+ S Env. clause

Fig. 2. The syntax of KNOT

interface that admits only sensible operations and prevents proofs from going
astray. In particular, we rule out comparisons using inequalities and decrements,
and any reasoning using properties of these operations.

3 The Knot Specification Language

This section introduces KNOT, our language for specifying the abstract syn-
tax of programming languages and associated variable binder information. The
advantage of specifying programming languages in KNOT is straightforward: the
variable binder boilerplate comes for free for any well-formed KNOT specifica-
tion.

The syntax of KNOT allows programming languages to be expressed in terms
of different syntactic sorts, term constructors for these sorts and binding speci-
fications for these term constructors. The latter specify the number of variables
that are bound by the term constructors as well as their scoping rules.

3.1 Knot Syntax

Figure 2 shows the grammar of KNOT. A KNOT specification spec of a language
consists of variable namespace declarations namedecl, syntactic sort declarations
sortdecl, function declarations fundecl and environment declarations envdecl.
A namespace declaration introduces a new namespace « and associates it
with a particular sort S. This expresses that variables of namespace o can be

426 S. Keuchel et al.

substituted for terms of sort S. It is possible to associate multiple namespaces
with a single sort.

A declaration of S comes with two kinds of constructor declarations ctordecl.
Variable constructors K (z@a) hold a variable reference in the namespace «.
These are the only constructors where variables can appear free. Regular con-
structors K (z : «) (s : S) contain named variable bindings (x : o) and named
subterms (s : S). Meta-variables z and field names s scope over the constructor
declaration. For the sake of presentation, we assume that the variable bindings
precede subterms. The distinction between variable and regular constructors
follows straightforwardly from our free-monadic view on syntax. This rules out
languages for normal forms, but as they require custom behavior (renormaliza-
tion) during substitution [31,40] their substitution-related boilerplate cannot be
defined generically anyway.

Each subterm s is preceded by a binding specification bs that stipulates
which variable bindings are brought in scope of s. The binding specification
consists of a list of items bsi. An item is either a meta-variable z that refers to
a singleton variable binding of the constructor or the invocation of a function
f, that computes which variables in siblings or the same subterm are brought
in scope of s. Functions serve in particular to specify multi-binders in binding
specifications. In regular programming languages the binding specifications will
often be empty and can be omitted.

Functions are defined by function declarations fundecl. The type signature
f S — [a] denotes that function f operates on terms of sort S and yields
variables in namespaces @. The function itself is defined by exhaustive case
analysis on a term of sort S. A crucial property of KNOT is the enforcement of
lexical scoping: shifting and substituting variables does not change the scoping
of bound variables. To achieve this, functions cannot be defined for sorts that
have variable constructors.

Environments F represent a list of variables that are in scope and associate
them with additional data such as typing information. To this end, an environ-
ment declaration envdecl consists of clauses a — S that stipulate that variables
in namespace « are associated to terms of sorts S.

3.2 Examples

Several examples of rich binder forms now illustrate KNOT’s expressive power.
Figure 3 (top) shows the KNOT specification of F. We start with the declaration
of two namespaces: Tyv for type variables and Tmuv for term variables, which
is followed by the declarations of Fy’s three sorts: types, patterns and terms.
For readability, we omit empty binding specifications. The KNOT specification
contains only four non-empty binding specifications: universal quantification for
types and type abstraction for terms bind exactly one type variable, the lambda
abstraction for terms binds exactly one term variable and the pattern match
binds bind p variables in ty where bind is a function defined on patterns.
Figure 3 (bottom) shows the specification of a simply-typed lambda calcu-
lus with recursive let definitions as they are found in the Haskell programming

Needle & Knot: Binder Boilerplate Tied Up 427

namespace Tyv : Ty
namespace Tmuv : Term

sort Ty :=
| TVar (XQTyv) | TProd (T1 T2 : Ty)
| TArr (T1 T2 : Ty) | TAll (X : Tyv) ([X]T: Ty)
sort Term := Var (x@QTmw)
| App (t1 t2 : Term) | Abs (z: Tmwv) (T : Ty) ([z]t : Term)
| TApp (t: Term) (T : Ty) | TAbs (X : Tyv) ([X]t1 : Term)
| Prod (t1 tz: Term) | Case (t1: Term) (p : Pat) ([bind plty : Term)

sort Pat := PVar (z: Tmv) | PProd (p1 p2 : Pat)
fun bind : Pat — [Tmo] :=

| PVar z — x | PProd p1 p2 — bind p1, bind p2
env Fnv :=
| (z: Tmv) — (T : Ty) | (X : Tyv) — % nothing associated

namespace Tmuv : Term

sort Ty:= Top | Arr (Th T2 : Ty)

sort Term := Var (z@QTmv)
| App (t1 t2: Term) | Abs (z: Tmv) (T : Ty) ([z]t : Term)
| Let ([bind ds]ds : Decls) ([bind ds]t: Term)

sort Decls := Nil | Cons (z: Tmw) (t: Term) (ds : Decls)
fun bind : Decls — [Tmv] :=
| Nil —] | Cons z t ds — z, bind ds

env Env:=(z: Tmv) — (T : Ty)

Fig. 3. Example specifications of F'x and Ajetrec

language. The auxiliary function bind collects the variables bound by a declara-
tion list ds. In the term constructor Let, we specify that the variables of ds are
not only bound in the body ¢ but also recursively in ds itself.

Figure4 (top) shows the specification of a lambda calculus with first-order
dependent types as presented by Aspinall and Hofmann [26]. In this language,
terms and types are mutually recursive and have distinct namespaces. Type
variables can be declared in the context with a specific kind K but are never
bound in the syntax.

The calculus presented in Fig. 4 (top) uses telescopic abstractions. Telescopes
were invented to model dependently typed systems [10]. They are lists of vari-
ables together with their types 1 : T1,...,z, : T,, where each variable scopes
over subsequent types. In the abstract syntax, the sequential scoping is captured
in the binding specification of the recursive position of the T'Cons constructor.
In the lambda abstraction case Abs and the dependent function type constructor
Pi the variables of a telescope are bound simultaneously in the body.

428 S. Keuchel et al.

namespace Tyv : Ty
namespace Tmuv : Term

sort Kind := Star | KPi (z: Tmw) (T : Ty) ([z]K : Kind)
sort Ty := TVar (XQTyv)

| TApp (T : Ty) (t: Term) | TPi (z: Tmw) (Ty : Ty) ([z] T2 : Ty)
sort Term := Var (zQTmv)

| App (1 t2: Term) | Abs (z: Tmw) (T : Ty) ([z]t : Term)

env Env:= (X : Tyv) — (K : Kind) | (z : Tmv) — (T : Ty)

namespace Tmuv : Term

sort Term := Var (z@QTmv)
| App (t: Term) (ts: Terms) | Abs (d : Tele) ([bind d]t: Term)
| Pi (d: Tele) ([bind d]t: Term)

sort Terms := Nil | Cons (t: Term) (ts: Terms)
sort Tele := TNil | TCons (z: Tmv) (T : Term) ([z]d : Tele)
fun bind : Tele — [Tmv]:= | TNil — [] | TCons x T d — z, bind d

env Env:=etm: (z: Tmv) — (T : Term)

Fig. 4. Example specifications of \LF and Atele

3.3 Well-Formed KnoT Specifications

In this section, we generally define well-formedness of specifications that in par-
ticular ensures that meta-variables and field names in binding specifications are
always bound and that binding specifications are well-typed. To do so, we make
use of several kinds of global information. The global environment V contains
the mapping from namespaces to the associated sort. The function environment
@ contains the type signatures for all functions f: S — @.

The global function depsOf maps sort S to the set of namespaces @ that S
depends on. For example, in Fx terms depend on both type and term variables,
but types only depend on type variables. depsOf is the least function that fulfill
two conditions:

L. For each variable constructor (K : a — S): a € depsOf S,
2. and for each regular constructor (K : @T — S): depsOf T; C depsOf S (Vi).

The function depsOf induces a subordination relation on sorts similar to sub-
ordination in Twelf [22,38]. We will use depsOf in the definition of syntactic
operations to avoid recursing into subterms in which no variables of interest are
to be found and for subordination-based strengthening lemmas.

Figure 5 defines the well-formedness relation - spec for KNOT specifications.
The single rule WFSPEC expresses that a specification is well-formed if each
of the constructor declarations inside the sort declarations is and the meta-
environment V contains exactly the declared namespaces.

Needle & Knot: Binder Boilerplate Tied Up 429

Vi=a:S Var. assoc.
b =f:5— o] Function env.
L:=x7a,s:5 Local env.
V=a:8 Fr ctordecl
—— ———— WFSPEC
F namespace « : S sort T := ctordecl
. Vi(za,t:T)F bs;: depsOf T
aSeV. WFVAR G ;Mf . WrFREG
Fs K (zQa) Fs K (z:a) ([bs]t:T)
(z:8)eL (s:5)elL BCa
Vi Lt bsij:a ca 0 S Bl e d
% WFrBs 57(17 WFSNG f:5— 18] = WFCALL
Lt bsi:a Lrz:a Lt fs:a@

Fig. 5. Well-formed specifications

The auxiliary well-sorting relation g ctordecl denotes that constructor dec-
laration ctordecl has sort S. There are two rules for this relation, one for each
constructor form. Rule WFVAR requires that the associated sort of the variable
namespace matches the sort of the constructor. Rule WFREG handles regular
constructors. It builds a constructor-local meta-environment L for meta-variables
with their namespace z : @ and fields with their sorts s : S. The binding specifi-
cations of all fields and all functions defined on S are checked against L.

The relation L F bs : @ in Fig. 5 denotes that binding specification bs is typed
heterogeneously with elements from namespaces @. By rule WrBs a binding
specification is well-typed if each of its items is well-typed.

Rule WFSNG regulates the well-typing of a singleton variable binding. It
is well-typed if the namespace [of the binding is among the namespaces @.
Correspondingly, the rule WFCALL states that a function call f s is well-typed
if the namespace set 3 of the function is a subset of @.

In addition to the explicitly formulated well-formedness requirements of
Fig. 5, we also require a number of simple consistency properties:

Constructor names are not repeated for different constructor declarations.
Field names are not repeated in a constructor declaration.

For each namespace « there is a unique variable constructor declaration K a.
Function declarations are exhaustive and not overlapping.

There is at most one environment clause per namespace.

G =

The first two requirements avoid ambiguity and follow good practice. The
third requirement expresses that every variable belongs to one sort and there
is only one way, i.e., one term constructor, to inject it in that sort. The fourth

430 S. Keuchel et al.

nom =0 |Sn de Bruijn index
uyv,we=Kn|K7u Sort term
IN'A =[] |I'bou Environment term

Fig. 6. Grammars of raw de Bruijn terms

requirement ensures that functions are total. Finally, the last requirement avoids
ambiguity by associating variables from a namespace with only one kind of data.

4 Knot Semantics

The previous section has introduced the KNOT specification language for
abstract syntax. This section generically defines the semantics of the language in
terms of a de Bruijn representation, declare the abstract syntax that is valid with
respect to the specification and define the semantics of binding specifications.
We assume a given well-formed specification spec in the rest of this section.

4.1 Term Semantics

We assume that information about constructors is available in a global environ-
ment. We use (K : a — §) for looking up the type of a variable constructor and
(K :@ — T — S) for retrieving the fields types of regular constructors.

Figure 6 contains a term grammar for raw terms of sorts and environments.
A sort term consists of either a constructor applied to a de Bruijn index or a
term constructor applied to other sort terms. An environment term is either and
empty environment or the cons of an environment and a list of associated sort
terms. The cons is additionally tagged with a namespace «. It is straightforward
to define a well-sortedness judgement + wu : S for raw sort terms and - I": E
for raw environment terms. See also the well-scopedness relation in Fig. 8 that
refines well-sortedness.

4.2 Binding Specification Semantics

The binding specification [bs] ¢ for a particular subterm ¢ of a given term con-
structor K defines the variables that are brought into scope in ¢. For example,
the binding specification of the pattern-matching case of F in Fig. 3 states that
the pattern variables are bound in the body by means of a function bind that
collects these variables. We need to define an interpretation of binding specifi-
cations and functions that we can use in the definitions of boilerplate functions.

Figure 7 defines the interpretation [bs]y of bs as a meta-level evaluation.
Interpretation is always performed in the context of a particular constructor K.
This is taken into account in the interpretation function: the parameter 9:¢ — u
is a mapping from field labels to concrete subterms.

Traditionally, one would use a natural number to count the number of
variables that are being bound. Instead, we use heterogeneous variable lists

Needle & Knot: Binder Boilerplate Tied Up 431

hvl,h,d ::= 0| So h Heterogeneous var. list

’[[,]]7::1)3—>t»—>u—>h‘ ’[[7]]::f—>u—>h‘

[e Jo =0 [fI(K @) =[bs:]v o

[bs,za o =[0bs]o + la where f (K T t) = bs; € spec

[bs,ftilo=T[0bs]o+[f1t) V=t u
’domain::l“—>h‘ ’,+,::h—>h—>h‘

domain [] =0 h +0 =h

domain (I'>q W) = domain I' + 14 h1 4+ 8y h2 = So (b1 + h2)

Fig. 7. Interpretation of binding specifications and functions

hvl — a refinement of natural numbers — defined in Fig. 7 for dealing with hetero-
geneous contexts: each successor S, is tagged with a namespace « to keep track
of the number and order of variables of different namespaces. This allows us to
model languages with heterogeneous binders, i.e. that bind variables of different
namespaces at the same time, for which reordering the bindings is undesirable.

In case the binding specification item is a single-variable binding, the result
is a one with the correct tag. In the interesting case of a function call f ¢;, the
evaluation pattern matches on the corresponding subterm ¢ ¢; and interprets the
right-hand side of the appropriate function clause with respect to the new sub-
terms. Note that we have ruled out function definitions for variable constructors.
Thus, we do not need to handle that case here.

The hvls are term counterparts of environments from which the associated
information has been dropped. The function domain in Fig. 7 makes this precise
by calculating the underlying hvl of an environment term. In the following, we
use the extension of addition from natural numbers to concatenation _+_ of
hvls — defined in Fig.7 — and implicitly use its associativity property. In con-
trast, concatenation is not commutative. We mirror the convention of extending
environments to the right at the level of hvl and will always add new variables
on the right-hand side of concatenation.

4.3 Well-Scopedness

Part of the semantics is the well-scopedness of terms. It is current practice to
define well-scopedness with respect to a typing environment: a term is well-
scoped iff all of its free variables are bound in the environment. The environment
is extended when going under binders. For example, when going under the binder
of a lambda abstraction with a type-signature the conventional rule is:

Iz:the
I'tX(z:7).e

432 S. Keuchel et al.

htan a#p
htan htan
———— WSZERO ——— WsHowm ——— WSsHET
Sa hFa 0 Sa htFa Sn Sg hkan
K:zta—bsit:T— S
Y=t u
htFan K:a—S h4+[bsiJob w:T: (Vi)
WsVar — WsCTOR
Kn:S hEKu:S
h-T - E E:a—T ht1T
h+ domain I' -, : Ty (Vi)
———— WsNiIL — WsCoNs
h-[]:E h(I'>aw): E

Fig. 8. Well-scopedness of terms

The rule follows the intention that the term variable should be of the given type.
In this regard, well-scopedness is already a lightweight type-system. However, it
is problematic for Knot to establish this intention or in general establish what
the associated data in the environment should be. Furthermore, we allow the user
to define different environments with potentially incompatible associated data.
Hence, instead we define well-scopedness by using domains of environments. In
fact, this is all we need to establish well-scopedness.

Figure 8 defines the well-scopedness relation on de Bruijn indices as well as
sort and environment terms. The relation h . n denotes that n is a well-scoped
de Bruijn index for namespace « with respect to the variables in h. This is a
refinement of n < h in which only the successors for namespace « in h are
taken into account. This is accomplished by rule WsHoM which strips away one
successor in the homogeneous case and rule WSHET that simply skips successors
in the heterogeneous case. Rule WSZERO forms the base case for n = 0 which
requires that h has a successor tagged with a.

Rule WSVAR delegates well-scopedness of variable constructors to the well-
scopedness of the index in the appropriate namespace. In rule WSCTOR, the
heterogeneous variable list h is extended for each subterm wu; with the result of
evaluating its binding specification bs;.

The relation h + I' defines the well-scopedness of environment terms with
respect to previously existing variables h. We will also write - I" as short-hand
for 0 = I'. Note in particular that rule WSCONSs extends h with the domain of
the existing bindings when checking the well-scopedness of associated data.

5 Infrastructure Operations

In this section, we generically define common infrastructure operations generi-
cally over all terms of a specifications. This includes shifting and substitution in
sort and environment terms and lookups in environments.

Needle & Knot: Binder Boilerplate Tied Up 433

c:=0]8c¢ Cutoffs

weakeny i ¢ — h — ¢ lshifta::CHUHu‘
weakenq ¢ 0 =c shift, ¢ (K n) =
weakenq ¢ (Sg h) = ifK:a— S
ifa=p then K (shifty ¢ n)
then S (weakena ¢ h) else K n
else weakeny ¢ h shift,, ¢ (K @) =
’shiftN e n— n‘ K shift?o (weakena c [bs],) u
: where
Shl_ftNO n =5n KT ([bs]t:T) € spec
shifty (S ¢) 0 =0 d=1=u

shifty (S ¢) (S n) =S (shifty ¢ n)

’shz’ft?a::c—>u—>u‘

’weaken::u—)h—wt‘

shift?q ¢ u =
if a € depsOf u
then shift,, c u else u

weaken u 0 =u
weaken u (Sq h) =
shift?o 0 (weaken u h)

Fig. 9. Shifting of terms

5.1 Shifting

Shifting adapts indices when a variable z is inserted into the context.
INAte~T(z:7),AF e

Indices in e for a-variables in I" need to be incremented to account for the new
variable while indices for variables in A remain unchanged. The shift function
is defined in Fig.9 implements this. It is parameterized over the namespace «
of variable z in which the shift is performed. It takes a cut-off parameter c
that is the number of a-variable bindings in A. In case of a variable constructor
K:a — S, the index is shifted using the shifty function. For variable constructors
of other namespaces, we keep the index unchanged. In the case of a regular
constructor, we need to calculate the cut-offs for the recursive calls. This is done
by evaluating the binding specification bs and weakening the cut-off. Using the
calculated cut-offs, the shift?, function can proceed recursively on the subterms
that depend on the namespace a.
Instead of using the traditional arithmetical implementation

if n<cthennelsen—+1

we use an equivalent recursive definition of shifty that inserts the successor
constructor at the right place. This follows the inductive structure of A which
facilitates inductive proofs on A.

434 S. Keuchel et al.
=0 Sq z Trace
Fa @ Famn B € depsOf a
WFTRACEZERO WEFTRACESUCC
Fo O Fa Sn

’weakena::zﬁhax‘

weakenq ¢ 0
weakena ¢ (Sg h)
if B € depsOf «
then Sg (weakena x h)
else weakena x h

=cC

substa,N::v—>z—>n—>u‘

substan v 0 0 =
substan v 0 (Sn)y=Kn
where K :a — T € spec
substa,n v (Sa) 0 =KO0
where K :a — T € spec
substan v (Sa z) (S n) =
weaken (substN v z n) 1l
substan v (Sg z) n
weaken (substN v z n) 1g

lsubsta::v—>x—>u—>u‘

substa v (K n)
ifK:a— S
then substan vz n
else K n
substo vz (K W) =
K subst?o v (weakena x [bs],) u
where
KT ([bs]t:T) € spec
9 u

=t

subst?a::vamﬁUﬁu‘

subst?o v T U =
if a € depsOf u
then subst, v z u
else u

Fig. 10. Substitution of terms

Weakening. Weakening is the transportation of a term e from a context I" to a

bigger context I', A where variables are only added at the end.

I'Fe~T AR e

Figure9 shows the implementation of weaken, that iterates the 1-place
shift?, function. Its second parameter h is the domain of A; the range of A

is not relevant for weakening.

5.2 Substitution

Next, we define substitution of a single variable z for a term e in some other
term e’ generically. In the literature, two commonly used variants can be found.

1. The first variant keeps the invariant that e and e’ are in the same context
and immediately weakens e when passing under a binder while traversing e’

to keep this invariant. It corresponds to the substition lemma

At e

5 (0]

Iz:0,AF €7

NAr{zw—e}le:r

Needle & Knot: Binder Boilerplate Tied Up 435

2. The second variant keeps the invariant that e’ is in a weaker context than e.
It defers weakening of e until the variable positions are reached to keep the
invariant and performs shifting if the variable is substituted. It corresponds
to the substitution lemma

I'ke:o Iz:o0,AFe€:1
NAb[z—e|e:T

Both variants were already present in de Bruijn’s seminal paper [9], but the
first variant has enjoyed more widespread use. However, we will use the second
variant because it has the following advantages:

1. It supports the more general case of languages with a dependent context:

I'te:o Iz:o,AFeé 7

Nz—elArjz—e]le:[z—e]T

2. The parameter e is constant while recursing into ¢’ and hence it can also
be moved outside of inductions on the structure of e. Proofs become slightly
simpler because we do not need to reason about any changes to s when going
under binders.

For the definition of substitution, we again need to use a refinement of nat-
ural numbers, a different one from before: we need to keep track of variable
bindings of the namespaces to transport e into the context of ¢/, i.e. those in
depsOf S where S is the sort of e. Figure 10 contains the refinement, which we
call “traces”, a well-formedness condition that expresses the namespace restric-
tion and a weaken,, function for traces.

Figure 10 also contains the definition of substitution. Like for shift, we define
substitution by three functions. The function subst,n v z n defines the oper-
ation for namespace « on indices by recursing on z and case distinction on n.
If the index and the trace match, then the result is the term v. If the index n
is strictly smaller or strictly larger than the trace z, then subst, n constructs a
term using the variable constructor for a. In the recursive cases, subst, n per-
forms the necessary shifts when coming out of the recursion in the same order in
which the binders have been crossed. This avoids a multiplace weaken on terms.

The substitution subst, traverses terms to the variable positions and weak-
ens the trace according to the binding specification. As previously discussed v
remains unchanged. The function subst?, only recurses into the term if it is
interesting to do so.

5.3 Environment Lookups

The paramount infrastructure operation on environments is the lookup of vari-
ables and their associated data. Lookup is a partial function. For that reason, we
define it as a relation (n: @) €, I that witnesses that looking up the index n

436 S. Keuchel et al.

(n:w) €a I’ domain I' - u; (Vi)
(0: weaken u 1o) €o (I'>a W)
(n:w) €a I
(weakena n 1g : weaken u lg) €o (I'bg D)

INHERE

INTHERE

Fig. 11. Environment lookup

of namespace « in the environment term I is valid and that @ is the associated
data. Figure 11 contains the definition.

Rule INHERE forms the base case where n = 0. In this case the environ-
ment term needs to be a cons for namespace «. Note that well-scopedness of the
associated data is included as a premise. This reflects common practice of anno-
tating variable cases with with well-scopedness conditions. By moving it into the
lookup itself, we free the user from dealing with this obligation explicitly. We
need to weaken the result of the lookup to account for the binding.

Rule INTHERE encodes the case that the lookup is not the last cons of the
environment. The rule handles both the homogeneous o = 3 and the heteroge-
neous case a # [by means of weakening the index n. The associated data is
also shifted to account for the new (binding.

6 Infrastructure Lemmas

Programming language mechanizations typically rely on many boilerplate prop-
erties of the infrastructure operations that we introduced in the previous section.
To further reduce the hand-written boilerplate, we have set up the KNOT speci-
fication language in such a way that it provides all the necessary information to
generically state and prove a wide range of these properties.! Below we briefly
summarize the three different kinds of ubiquitous lemmas that we cover. In gen-
eral, it is quite challenging to tackle these boilerplate lemmas generically because
their exact statements, and in particular which premises are needed, depend
highly on the depsOf function and also on the dependencies of the associated
data in environments.

Interaction Lemmas. Formalizations involve a number of interaction boilerplate
lemmas between shift, weaken and subst. These lemmas are for example needed
in weakening and substitution lemmas for typing relations. Two operation always
commute when they are operating on different variables and a shifting followed
by a substitution on the same variable cancel each other out:

substy, v 0 « (shift, 0 a u) = u.

1 In fact, we provide more such lemmas than any other framework based on first-order
representations — see Sect. 9.

Needle & Knot: Binder Boilerplate Tied Up 437

Well-Scopedness. The syntactic operations preserve well-scoping. This includes
shifting, weakening and substitution lemmas. If a sort does not depend on the
namespace of the substitute, we can formulate a strengthening lemma instead:

h+1laFu:S a ¢ depsOf S
htwu:S

Environment Lookup. Lemmas for shifting, weakening and strengthening for
environment lookups form the variable cases for corresponding lemmas of typing
relations. These lemmas also explain how the associated data in the context is
changed. For operating somewhere deep in the context we use relations, like for
example I ‘_c)a I'; which denotes that I is the result after inserting a new
« variable at cutoff position ¢ in 7. The shifting lemma for lookups is then:

Fl‘—c>aF2 (nﬂ) e, I
(shifty ¢ n: shift?y c u) €4 It

7 Implementation

This section briefly describes our two implementations of KNOT. The first is
a generic implementation that acts as a constructive proof of the boilerplate’s
existence for all well-formed specifications. The second, called NEEDLE, is a code
generator that is better suited to practical mechanization.

7.1 The Generic Knot Implementation

We implemented the boilerplate functions generically for all well-formed KNOT
specifications in about 4.3k lines of Coq by employing datatype-generic pro-
gramming techniques [8]. Following our free monad principle, we capture de
Bruijn terms in a free monadic structure that is parameterized by namespaces
and whose underlying functor covers the regular constructors of sorts. To model
the underlying functors, we use the universe of finitary containers [1,13,14,19]
Finitary containers closely model our specification language: a set of shapes
(constructors) with a finite number of fields. We use an indexed [2] version to
model mutually recursive types and use a higher-order presentation to obtain
better induction principles for which we assume functional extensionality?. We
implemented boilerplate operations and lemmas for this universe generically.

7.2 The Needle Code Generator

While the generic Coq definitions presented in the previous sections are sat-
isfactory from a theoretical point of view, they are less so from a pragmatic
perspective. The reason is that the generic code only covers the variable binder

2 However, the code based on our generator NEEDLE does not assume any axioms.

438 S. Keuchel et al.

boilerplate; the rest of a language’s formalization still needs to be developed
manually. Developing the latter part directly on the generic form is cumber-
some. Working with conversion functions is possible but often reveals too much
of the underlying generic representation. As observed by Lee et al. [18], this
happens in particular when working with generic predicates.

For this reason, we also implemented a code generation tool, called NEEDLE
that generates all the boilerplate in a language-specific non-generic form. NEE-
DLE takes a KNOT specification and generates Coq code: the inductive definitions
of a de Bruijn representation of the object language and the corresponding spe-
cialized boilerplate definitions, lemmas and proofs. Both proof terms and proof
scripts are generated. NEEDLE is implemented in about 11k lines of Haskell.

Soundness. We have not formally established that NEEDLE always generates
type-correct code or that the proof scripts always succeed. Nevertheless, a num-
ber of important implementation choices bolster the confidence in NEEDLE’s
correctness: First, the generic-programming based implementation is evidence
for the existence of type-sound boilerplate definitions and proofs for for every
language specified with KNOT.

Secondly, the generic implementation contains a small proof-term DSL fea-
turing only the basic properties of equality such as symmetry, reflexivity, transi-
tivity and congruence and additionally stability and associativity lemmas as
axioms. The induction steps of proofs on the structure of terms or on the
structure of well-scopedness relation on terms in the generic implementation
elaborate to this DSL first and then adhere to its soundness lemma. Subse-
quently, we ported the proof term elaboration to NEEDLE. Hence, we have for-
mally established the correctness of elaboration functions but not their Haskell
implementations.

Thirdly, lemmas for which we generate proof scripts follow the structure of
the generic proofs. In particular, this includes all induction proofs on natural
number- or list-like data because these are less fragile than induction proofs on
terms. A companion library contains tactics specialized for each kind of lemma
that performs the same proof steps as the generic proof.

Finally and more pragmatically, we have implemented a test suite of
KNOT specifications for NEEDLE that contains a number of languages with
advanced binding constructs including languages with mutually recursive and
heterogeneous binders, recursive scoping and dependently-typed languages with
interdependent namespaces for which correct code is generated.

Nevertheless, the above does not rule out trivial points of failure like name
clashes between definitions in the code and the Coq standard library or software
bugs in the code generator. Fortunately, when the generated code is loaded in
Coq, Coq still performs a type soundness check to catch any issues. In short,
soundness never has to be taken at face value.

Needle & Knot: Binder Boilerplate Tied Up 439

Table 2. Size statistics of the meta-theory mechanizations.

Specification Lemmas Total

Ess. | Bpl. | KNOT | Ess. | Terms | Ctxs | Manual | KNOT
(1) Al 44 39 42| 43 0 23 149 | 83| (55.7 %)
(2) Ax | 85| 67 82| 117 0| 47 316 1198 | (62.7%)
(3) F| 54 102 53| 60 127 111 454 1118 | (26.0 %)
(4) Fy| 91| 149 93| 140 138 | 158 676 | 269 | (39.8%)
(5) Fieq | 103 | 164 99| 137 153 174 731|247 (33.8%)
(6) Fo. | 70| 124 69 | 268 128 | 178 768 | 289 | (37.6 %)
(7) | Fe. x| 114 163 112 | 402 139 | 243 1061 | 476 | (44.9 %)
(8) | F<:irea| 214 | 234 199 | 646 161 292 1547 | 831 | (53.7 %)
9) Ao | 101 95 100 | 355 128 | 108 787 | 504 | (64.0 %)
(10) F,, | 124| 106 123 | 415 129 | 108 882|591 | (67.0%)

8 Case Studies

This sections demonstrates the benefits of the KNOT approach with two case
studies. First, we compare fully manual versus KNOT-based mechanizations of
type-safety proofs for 10 languages. Second, we compare KNOT’s solution of the
POPLMARK challenge against various existing ones.

8.1 Manual vs. Knot Mechanizations

We compare manual against KNOT-based mechanization of type safety for 10
textbook calculi: (1) the simply-typed lambda calculus, (2) the simply-typed
lambda calculus with products, (3) System F, (4) System F with products, (5)
System F with sequential lets, (6) System F.. as in the POPLMARK challenge
1A + 2A, (7) System F.. with binary products, (8) System F.. with records as
in the POPLMARK challenge 1B + 2B, (9) the simply-typed lambda calculus
with type-operators, and (10) System F with type-operators.

For each language, we have two C0Q formalizations: one developed without
tool support and one that uses NEEDLE’s generated code. Table 2 gives a detailed
overview of the code sizes (LoC) of the different parts of the formalization for
each language and the total and relative amount of boilerplate code.

The Specification column comprises the language specifications. For the man-
ual approach, it is split into an essential part and a boilerplate part. The former
comprises the abstract syntax declarations (including binding specifications), the
evaluation rules, typing contexts and typing rules and is also captured (slightly
more concisely) in the KNOT specification. The latter consists of context lookups
for the variable typing rule as well as shifting and substitution operators, that are
necessary to define g-reduction and, if supported by the language, type applica-
tion; all of this boilerplate is generated by NEEDLE and thus not counted towards
the KNOT-based mechanization.

440 S. Keuchel et al.

The essential meta-theoretical Lemmas for type-safety are weakening and
substitution lemmas for the typing relations, typing and value inversion as well as
progress and preservation and where applicable this includes: pattern-matching
definedness, reflexivity and transitivity of subtyping and the Church-Rosser
property for type reductions.

We separate the binder boilerplate in these formalizations into two classes:

1. Term-related boilerplate consists of interaction lemmas discussed in Sect. 6
and other interaction lemmas between shifting, weakening and the size of
terms. This is absent form the mechanizations of A and Ay that do not require
them. In all other cases, NEEDLE derives the necessary lemmas. This is about
140 lines of code for each language. The size depends mainly on the number
of namespaces, the number of syntactic sorts and the dependency structure
between them, which is roughly the same for these languages.

2. The boilerplate context lemmas consist of weakening, strengthening and sub-
stitution lemmas for term well-scopedness relations and for context lookups.
The size depends on the number of namespaces that are handled by the con-
text. In the cases where only single-variable binding is used, we can skip
weakening and strengthening lemmas related to multi-binders.

Summary. Table 2 clearly shows that KNOT provides substantial savings in each
of the language formalizations, ranging up to 74 % for System F. Note that
these formalizations of type safety use only a fraction of the lemmas generated by
NEEDLE. For instance, none of the above formalization uses any of the interaction
lemmas for terms that are generated.

8.2 Comparison of Approaches

Because it is the most widely implemented benchmark for mechanizing metathe-
ory, we use parts 1A + 2A of the POPLMARK challenge to compare our work
with that of others. These parts prove type-safety for System F_. with algorith-
mic subtyping. As they involve only single-variable bindings, they are manage-
able for most existing approaches (though they do not particularly put KNOT’s
expressivity to the test). Figure 12 compares 9 different solutions:

— Charguéraud’s [11] developments use the locally-nameless representation and
come with proof automation for this representation.

— Vouillon [39] presents a self-contained de Bruijn solution.

— Our manual version from Sect. 8.1.

— GMETA [18] is a datatype-generic library supporting both de Bruijn indices
and the locally-nameless representation.

— LNGEN [7] is a code-generator that produces Coq code for the locally-nameless
representation from an Ott specification.

— AUTOSUBST [32] is a Coq tactic library for de Bruijn indices.

— Our KNOT solution from Sect. 8.1.

Needle & Knot: Binder Boilerplate Tied Up 441

3 o1 669 0o Spec
g 600 [523538 500 50l 0oProof
2 400 259 297 3(30 .
¢ 174 | 210220 168
] DD
0
A\ X x

(‘A \\O s 060 «© \)‘06 wO

Q‘o%&%\)e \]0\)\ W C&Ké@ N f\ew & s A *

Fig. 12. Sizes (in LoC) of POPLMARK solutions

The figure provides the size (in LoC) for each solution. The LoC counts,
generated by coqwe, are separated into proof scripts and other specification
lines, except for the TWELF solution were we made the distinction manually. We
excluded both library code and generated code. The AUTOSUBST and KNOT for-
malizations are significantly smaller than the others due to the uniformity of
weakening and substitution lemmas. KNOT’s biggest savings compared to AUTO-
SUBST come from the generation of well-scopedness relations and the automa-
tion of well-scopedness proof obligations. In summary, the KNOT solution is the
smallest solutions we are aware of.

9 Related Work

For lack of space, we cover only work on specification languages for variable
binding, and systems and tools for reasoning about syntax with binders.

9.1 Specification Languages

The OTT tool [33] allows the definition of concrete programming language syn-
tax and inductive relations on terms. Its binding specifications have inspired
those of KNOT. The main difference is that KNOT allows heterogeneous binding
specification functions instead of being restricted to homogeneous ones. While
OTT generates datatype and function definitions for abstract syntax in multiple
proof assistants, support for lemmas is absent.

The Coml tool [28] defines a specification language for abstract syntax with
binding specifications from which it generates OCaml definitions and substitu-
tions. A single abstraction construct allows atoms appearing in one subterm to
be bound in another. However this rules out nested abstractions and therefore,
the telescopic lambdas of Fig. 4 cannot be encoded directly in Caml. We are not
aware of any work that uses Caml for the purpose of mechanization.

ROMEO [34] is a programming language that checks for safe handling of
variables in programs. ROMEO’s specification language is based on the con-
cept of attribute grammars [16] with a single implicit inherited and synthesized

442 S. Keuchel et al.

attribute. In this view, KNOT also has a single implicit inherited attribute and
binding specification functions represent synthesized attributes. Moreover, we
allow multiple functions over the same sort. However, ROMEO is a full-fledged
programming language while KNOT only allows the definition of functions for
the purpose of binding specification. ROMEO has a deduction system that rules
out unsafe usage of binders but is not targeting mechanizations of meta-theory.

UNBOUND [41] is a Haskell library for programming with abstract syntax. Its
specification language consists of a set of reusable type combinators that specify
variables, abstractions, recursive and sequential scoping. The library internally
uses a locally nameless approach to implement the binding boilerplate which is
hidden from the user. The library also has a combinator called Shift which allows
to skip enclosing abstractions. This form of non-linear scoping is not supported
by KnoT. However, the objective of UNBOUND is to eliminate boilerplate in
meta-programs and not meta-theoretic reasoning.

Knot focuses on the kind of abstract syntax representations that are common
in mechanizations, which are usually fully resolved and desugared variants of the
concrete surface syntax of a language. More work is needed to specify surface
languages with complex name resolutions algorithms. In this vein, it would be
interesting to extend Knot to synthesize scope graphs [21,37], which are a recent
development to address name resolution in a syntax independent manner.

9.2 Tools for First-Order Representations

Aydemir and Weirich [7] created LNGEN, a tool that generates locally-nameless
CoQ definitions from an OTT specification. It takes care of boilerplate syntax
operations, local closure predicates and lemmas. It supports multiple namespaces
but restricts itself to single-variable binders.

The DBGEN tool [27] generates de Bruijn representations and boilerplate
code. It supports multiple namespaces, mutually recursive definitions and, to a
limited extent, multi-variable binders: one can specify that n variables are to be
bound in a field, with n either a natural number literal or a natural number field
of the constructor. It generates all basic interaction lemmas, but does not deal
with well-scopedness or contexts.

GMETA [18] is a framework for first-order representations of variable binding
developed by Lee et al. It is implemented as a library in CoQ that makes use
of datatype-generic programming concepts to implement syntactic operations
and well-scopedness predicates generically. GMETA allows multiple namespaces
but is restricted to the single-variable case. The system does not follow our free
monad principle to model namespaces explicitly, but rather establishes the con-
nection at variable binding and reference positions by comparing the structure
representation of sorts for equality. This raises the question whether the universe
models syntax adequately when different sorts have the same structure.

GMETA contains a reusable library for contexts of one or two sorts. In
the case of two sorts, e.g. term and type variables, the binding of type vari-
ables can be telescopic which is enough to address the POPLMARK challenge.
Hence, GMETA captures the structure of terms generically, but not the structure

Needle & Knot: Binder Boilerplate Tied Up 443

of contexts and the accompanying library implements only two instances, but
admittedly the ones that are used the most.

AuToSuUBST [32] is a Coq library that derives boilerplate automatically by
reflection using CoQ’s built-in tactics language. It supports variable binding
annotations in the datatype declarations but is limited to single variable bind-
ings and directly recursive definitions. AUTOSUBST derives parallel substitution
operations which is particularly useful for proofs that rely on more machinery for
substitutions than type-safety proofs like logical relation proofs for normaliza-
tion, parametricity or full-abstraction. We do not support parallel substitutions
yet, but plan to do so in the future.

9.3 Languages for Mechanization

Several languages have direct support for variable binding. Logical frameworks
such as Abella [12], Hybrid [20], Twelf [22] and Beluga [24] are specifically
designed to reason about logics and programming languages. Their specialized
meta-logic encourages the use of higher-order abstract syntax (HOAS) to repre-
sent object-level variable binding with meta-variable bindings. The advantage is
that facts about substitution, a-equivalence and well-scoping are inherited from
the meta-language. These systems also allow the definition of higher-order judge-
ments to get substitution lemmas for free if the object-language context admits
exchange [29]. If it does not admit exchange, the context can still be modeled
explicitly [17,23]. For the POPLMARK challenge for instance this becomes nec-
essary to isolate a variable in the middle of the context for narrowing.

Despite the large benefits of these systems, they are generally limited to
single variable binding and other constructs like patterns or recursive lets have
to be encoded by transforming the object language [29].

Nominal Isabelle [36] is an extension of the Isabelle/HOL framework with
support for nominal terms which provides a-equivalence for free. At the moment,
the system is limited to single variable binding but support for richer binding
structure is planned [35].

10 Conclusion

This paper has presented a new approach to mechanizing meta-theory based on
KNOT, a specification language for syntax with variable binding, and NEEDLE,
an infrastructure code generator. Our work distinguishes itself from earlier work
on two accounts. First, it covers a wider range of binding constructs featuring rich
binding forms and advanced scoping rules. Secondly, it covers a larger extent of
the boilerplate functions and lemmas needed for mechanizations. In future work,
we want to include support for typing relations.

Acknowledgements. Thanks to the anonymous reviewers for helping to improve the
presentation. This work has been funded by the Transatlantic partnership for Excel-
lence in Engineering (TEE) and by the Flemish Fund for Scientific Research (FWO).

444

S. Keuchel et al.

References

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

. Abbott, M., Altenkirch, T., Ghani, N.: Categories of containers. In: Gordon, A.D.

(ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 23-38. Springer, Heidelberg (2003)
Altenkirch, T., Morris, P.: Indexed containers. In: LICS 2009, pp. 277-285 (2009)
Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 297-311. Springer, Heidelberg
(2010)

. Altenkirch, T., Chapman, J., Uustalu, T.: Relative monads formalised. J. For-

malized Reasoning 7(1), 1-43 (2014). http://jfr.unibo.it/article/view/4389. ISSN:
1972-5787

Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: Flum, J., Rodriguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol.
1683, pp. 453-468. Springer, Heidelberg (1999)

Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: POPL 2008. ACM (2008)

Aydemir, B., Weirich, S.: LNgen: Tool support for locally nameless representations.
Technical report, UPenn (2010)

Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming. In:
Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608, pp. 28-115.
Springer, Heidelberg (1999)

de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Inda-
gationes Math. (Proc.) 75(5), 381-392 (1972)

de Bruijn, N.G.: Telescopic mappings in typed lambda calculus. Inf. Comput.
91(2), 189-204 (1991). doi:10.1016/0890-5401(91)90066-B. http://www.science
direct.com/science/article/pii/089054019190066B

Charguéraud, A.: http://www.chargueraud.org/softs/In/ (Accessed 02 July 2015)
Gacek, A.: The abella interactive theorem prover (system description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154-161. Springer, Heidelberg (2008)

Gambino, N.; Hyland, M.: Wellfounded trees and dependent polynomial functors.
In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp.
210-225. Springer, Heidelberg (2004)

Jaskelioff, M., Rypacek, O.: An investigation of the laws of traversals. In: MSFP
2012, pp. 40—49 (2012)

Keuchel, S., Jeuring, J.T.: Generic conversions of abstract syntax representations.
In: WGP 2012. ACM (2012)

Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theor. 2(2), 127—
145 (1968)

Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard
ml, pp. 173-184. POPL 2007. ACM (2007)

Lee, G., Oliveira, B.C.D.S., Cho, S., Yi, K.: GMETA: a generic formal metatheory
framework for first-order representations. In: Seidl, H. (ed.) Programming Lan-
guages and Systems. LNCS, vol. 7211, pp. 436-455. Springer, Heidelberg (2012)
Moggi, E., Bell, G., Jay, C.: Monads, shapely functors and traversals. ENTCS 29,
CTCS 1999, pp. 187208 (1999)

Momigliano, A., Martin, A.J., Felty, A.P.: Two-level hybrid: a system for reasoning
using higher-order abstract syntax. In: ENTCS (2008)

http://jfr.unibo.it/article/view/4389
http://dx.doi.org/10.1016/0890-5401(91)90066-B
http://www.sciencedirect.com/science/article/pii/089054019190066B
http://www.sciencedirect.com/science/article/pii/089054019190066B
http://www.chargueraud.org/softs/ln/

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Needle & Knot: Binder Boilerplate Tied Up 445

Neron, P., Tolmach, A., Visser, E., Wachsmuth, G.: A theory of name resolution.
In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 205-231. Springer, Heidelberg
(2015)

Pfenning, F., Schiirmann, C.: System description: twelf - a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202—-206. Springer, Heidelberg (1999)

Pientka, B., Dunfield, J.: Programming with proofs and explicit contexts,
pp. 163-173. PPDP 2008. ACM (2008)

Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning
with deductive systems (system description). In: Giesl, J., Hahnle, R. (eds.) IICAR
2010. LNCS, vol. 6173, pp. 15-21. Springer, Heidelberg (2010)

Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
Pierce, B.C.: Advanced Topics in Types and Programming Languages. MIT Press,
Cambridge (2005)

Polonowski, E.: Automatically generated infrastructure for de bruijn syntaxes. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
402-417. Springer, Heidelberg (2013)

Pottier, F.: An overview of Caml. Electron. Notes Theoret. Comput. Sci. 148(2),
27-52 (2006). doi:10.1016/j.entcs.2005.11.039. http://www.sciencedirect.com/
science/article/pii/S1571066106001253. ISSN: 1571-0661

The Twelf Project: The Twelf Wiki. http://twelf.org/wiki (Accessed: 14 October
2015)

Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. In: TLDI 2010. ACM (2010)
Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LSC 6(3-4), 289-360 (1993)

Schéfer, S., Tebbi, T., Smolka, G.: Autosubst: reasoning with de bruijn terms and
parallel substitutions. In: Zhang, X., Urban, C. (eds.) ITP 2015. Lecture Notes in
Computer Science, vol. 9236, pp. 359-374. Springer, Heidelberg (2015)

Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: effective tool support for the working semanticist. JFP 20(1), 71-122 (2010)
Stansifer, P., Wand, M.: Romeo: a system for more flexible binding-safe program-
ming. In: ICFP 2014, pp. 53-65. ACM (2014)

Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in nominal
Isabelle. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 480-500. Springer,
Heidelberg (2011)

Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNATI), vol. 3632, pp. 38-53. Springer, Heidelberg (2005)
Van Antwerpen, H., Néron, P., Tolmach, A., Visser, E., Wachsmuth, G.: A Con-
straint Language for Static Semantic Analysis based on Scope Graphs. Technical
report, TU Delft (2015)

Virga, R.: Higher-order rewriting with dependent types. Ph.D. thesis, Carnegie
Mellon University Pittsburgh, PA (1999)

Vouillon, J.: A solution to the poplmark challenge based on de bruijn indices. JAR
49(3), 327-362 (2012)

Watkins, K., Cervesato, 1., Pfenning, F., Walker, D.W.: A concurrent logical frame-
work: the propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES 2003. LNCS, vol. 3085, pp. 355-377. Springer, Heidelberg (2004)
Weirich, S., Yorgey, B.A., Sheard, T.: Binders unbound. In: ICFP 2011. ACM
(2011)

Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38-94 (1994)

http://dx.doi.org/10.1016/j.entcs.2005.11.039
http://www.sciencedirect.com/science/article/pii/S1571066106001253
http://www.sciencedirect.com/science/article/pii/S1571066106001253
http://twelf.org/wiki

	Needle & Knot: Binder Boilerplate Tied Up
	1 Introduction
	2 Overview
	2.1 Syntax: Variable Representation
	2.2 Semantics: Shifting and Substitution
	2.3 Theorems: Commutation, Weakening and Preservation
	2.4 Summary
	2.5 Our Solution: Needle and Knot

	3 The Knot Specification Language
	3.1 Knot Syntax
	3.2 Examples
	3.3 Well-Formed KNOT Specifications

	4 Knot Semantics
	4.1 Term Semantics
	4.2 Binding Specification Semantics
	4.3 Well-Scopedness

	5 Infrastructure Operations
	5.1 Shifting
	5.2 Substitution
	5.3 Environment Lookups

	6 Infrastructure Lemmas
	7 Implementation
	7.1 The Generic Knot Implementation
	7.2 The Needle Code Generator

	8 Case Studies
	8.1 Manual vs. Knot Mechanizations
	8.2 Comparison of Approaches

	9 Related Work
	9.1 Specification Languages
	9.2 Tools for First-Order Representations
	9.3 Languages for Mechanization

	10 Conclusion
	References

