
Visible Type Application

Richard A. Eisenberg(B), Stephanie Weirich(B), and Hamidhasan G. Ahmed

University of Pennsylvania, Philadelphia, USA
{eir,sweirich}@cis.upenn.edu, hamidhasan14@gmail.com

Abstract. The Hindley-Milner (HM) type system automatically infers
the types at which polymorphic functions are used. In HM, the inferred
types are unambiguous, and every expression has a principal type. Type
annotations make HM compatible with extensions where complete type
inference is impossible, such as higher-rank polymorphism and type-level
functions. However, programmers cannot use annotations to explicitly
provide type arguments to polymorphic functions, as HM requires type
instantiations to be inferred.

We describe an extension to HM that allows visible type applica-
tion. Our extension requires a novel type inference algorithm, yet its
declarative presentation is a simple extension to HM. We prove that our
extended system is a conservative extension of HM and admits princi-
pal types. We then extend our approach to a higher-rank type system
with bidirectional type-checking. We have implemented this system in
the Glasgow Haskell Compiler and show how our approach scales in the
presence of complex type system features.

1 Introduction

The Hindley-Milner (HM) type system [7,13,18] achieves remarkable concision.
While allowing a strong typing discipline, a program written in HM need not
mention a single type. The brevity of HM comes at a cost, however: HM pro-
grams must not mention a single type. While this rule has long been relaxed
by allowing visible type annotations (and even requiring them for various type
system extensions), it remains impossible for languages based on HM, such as
OCaml and Haskell, to use visible type application when calling a polymorphic
function.1

This restriction makes sense in the HM type system, where visible type appli-
cation is unnecessary, as all type instantiations can be determined via unification.
Suppose the function id has type ∀ a. a → a. If we wished to visibly instanti-
ate the type variable a (in a version of HM extended with type annotations),
we could write the expression (id :: Int → Int). This annotation forces the type

1 Syntax elements appearing in a programmer’s source code are often called explicit,
in contrast to implicit terms, which are inferred by the compiler. However, the
implicit/explicit distinction also can indicate whether terms are computationally
significant [19]. Our work applies only to the inferred vs. specified distinction, so we
use visible to refer to syntax elements appearing in source code.

c© Springer-Verlag Berlin Heidelberg 2016
P. Thiemann (Ed.): ESOP 2016, LNCS 9632, pp. 229–254, 2016.
DOI: 10.1007/978-3-662-49498-1 10

230 R.A. Eisenberg et al.

Fig. 1. The type systems studied in this paper

checker to unify the provided type Int → Int with the type a → a, concluding
that type a should be instantiated with Int.

However, this annotation is a roundabout way of providing information to
the type checker. It would be much more direct if programmers could provide
type arguments explicitly, writing the expression id @Int instead.

Why do we want visible type application? In the Glasgow Haskell Compiler
(GHC) – which is based on HM but extends it significantly – there are two main
reasons:

First, type instantiation cannot always be determined by unification. Some
Haskell features, such as type classes [28] and GHC’s type families [3,4,11], do
not allow the type checker to unambiguously determine type arguments from an
annotation. The current workaround for this issue is the Proxy type which clutters
implementations and requires careful foresight by library designers. Visible type
application improves such code. (See Sect. 2.)

Second, even when type arguments can be determined from an annotation,
this mechanism is not always friendly to developers. For example, the variable to
instantiate could appear multiple times in the type, leading to a long annotation.
Partial type signatures help [29], but they do not completely solve the problem.2

Although the idea seems straightforward, adding visible type applications to
the HM type system requires care, as we describe in Sect. 3. In particular, we
observe that we can allow visible type application only at certain types: those
with specified type quantification, known to the programmer via type annota-
tion. Such types may be instantiated either visibly by the programmer, or when
possible, invisibly through inference.

This paper presents a systematic study of the integration of visible type
application within the HM typing system. In particular, the contributions of
this paper are the four novel type systems (HMV, V, SB, B), summarized in
Fig. 1. These systems come in pairs: a declarative version that justifies the com-
positionality of our extensions and a syntax-directed system that explains the
structure of our type inference algorithm.

– System HMV extends the declarative version of the HM type system with
a single, straightforward new rule for visible type application. In support of
this feature, it also includes two other extensions: scoped type variables and a
distinction between specified and generalized type quantification. The impor-
tance of this system is that it demonstrates that visible type application can
be added orthogonally to the HM type system, an observation that we found
obvious only in hindsight.

2 The extended version of this paper [12] contains an example of this issue.

Visible Type Application 231

– System V is a syntax-directed version of HMV. This type system directly
corresponds to a type inference algorithm, called V. Although Algorithm V
works differently than Algorithm W [8], it retains the ability to calculate
principal types. The key insight is that we can delay the instantiation of type
variables until necessary. We prove that System V is sound and complete with
respect to HMV, and that Algorithm V is sound and complete with respect
to System V. These results show the principal types property for HMV.

– System SB is a syntax-directed bidirectional type system with higher-rank
types, i.e. higher-rank types. In extending GHC with visible type application,
we were required to consider the interactions of System V with all of the many
type system extensions featured in GHC. Most interactions are orthogonal, as
expected from the design of V. However, GHC’s extension to support higher-
rank types [23] changes its type inference algorithm to be bidirectional. System
SB shows that our approach in designing System V straightforwardly extends
to a bidirectional system. System SB’s role in this paper is twofold: to show
how our approach to visible type application meshes well with type system
extensions, and to be the basis for our implementation in GHC.

– System B is a novel, simple declarative specification of System SB. We prove
that System SB is sound and complete with respect to System B. A similar
declarative specification was not present in prior work [23]; this paper shows
that an HM-style presentation is possible even in the case of higher-rank
systems.

Our visible type application extension is part of GHC 8.0. The extended
version [12] describes this implementation and elaborates on interactions between
our algorithm and other features of GHC.3

2 Why Visible Type Application?

Before we discuss how to extend HM type systems with visible type application,
we first elaborate on why we would like this feature in the first place.

When a Haskell library author wishes to give a client the ability to control
type variable instantiation, the current workaround is the standard library’s
Proxy type.

data Proxy a = Proxy

However, as we shall see, programming with Proxy is noisy and painfully
indirect. With built-in visible type application, these examples are streamlined
and easier to work with.4 In the following example and throughout this paper,
3 Although the type inference algorithm in this paper uses unification to determine

type instantiations, following Damas’s Algorithm W [7], the results in this paper
are applicable to GHC’s implementation based on constraint-solving. What matters
here is how constraints are generated (specified by the syntax-directed versions of
type systems) not how they are solved.

4 Visible type application has been a GHC feature request since 2011. See https://
ghc.haskell.org/trac/ghc/ticket/5296.

https://ghc.haskell.org/trac/ghc/ticket/5296
https://ghc.haskell.org/trac/ghc/ticket/5296

232 R.A. Eisenberg et al.

unadorned code blocks are accepted by GHC 7.10, blocks with a solid gray bar
at the left are ill-typed, and blocks with a gray background are accepted only
by our implementation of visible type application.

Resolving Type Class Ambiguity. Suppose a programmer wished to
normalize the representation of expression text by running it through a
parser and then pretty printer. The normalize function below maps the string
"7 - 1 * 0 + 3 / 3" to "((7 - (1 * 0)) + (3 / 3))", resolving prece-
dence and making the meaning clear.5

normalize :: String → String
normalize x = show ((read :: String → Expr) x)

However, the designer of this function cannot make it polymorphic in a
straightforward way. Adding a polymorphic type signature results in an ambigu-
ous type, which GHC rightly rejects, as it cannot infer the instantiation for a at
call sites.

normalizePoly :: ∀ a. (Show a,Read a) ⇒ String → String
normalizePoly x = show ((read :: String → a) x)

Instead, the programmer must add a Proxy argument, which is never eval-
uated, to allow clients of this polymorphic function to specify the parser and
pretty-printer to use

normalizeProxy :: ∀ a. (Show a,Read a)
⇒ Proxy a → String → String

normalizeProxy x = show ((read :: String → a) x)
normalizeExpr :: String → String
normalizeExpr = normalizeProxy (Proxy :: Proxy Expr)

With visible type application, we can write these two functions more
directly:6

normalize :: ∀ a. (Show a,Read a) ⇒ String → String
normalize x = show (read @a x)
normalizeExpr :: String → String
normalizeExpr = normalize @Expr

5 This example uses the following functions from the standard library,

show :: ∀ a. Show a ⇒ a → String
read :: ∀ a. Read a ⇒ String → a

as well as user-defined instances of the Show and Read classes for the type Expr.
6 Our new extension TypeApplications implies the extension AllowAmbiguousTypes,

which allows our updated normalize definition to be accepted.

Visible Type Application 233

Although the show/read ambiguity is somewhat contrived, proxies are indeed
useful in more sophisticated APIs. For example, suppose a library designer would
like to allow users to choose the representation of an internal data structure to
best meet the needs of their application. If the type of that data structure is not
included in the input and output types of the API, then a Proxy argument is a
way to give this control to clients.7

Other Examples. More practical examples of the need for visible type applica-
tion require a fair amount of build-up to motivate the need for the intricate types
involved. We have included two larger examples in the extended version [12]. One
builds from recent work on deferring constraints until runtime [2] and the other
on translating a dependently typed program from Agda [16] into Haskell.

3 Our Approach to Visible Type Application

Visible type application seems like a straightforward extension, but adding this
feature – both to GHC and to the HM type system that it is based on – turned
out to be more difficult and interesting than we first anticipated. In particular,
we encountered two significant questions.

3.1 Just What are the Type Parameters?

The first problem is that it is not always clear what the type parameters to a
polymorphic function are!

One aspect of the HM type system is that it permits expressions to be given
multiple types. For example, the identity function for pairs,

pid (x, y) = (x, y)

can be assigned any of the following most general types:

(1) ∀ a b. (a, b) → (a, b)
(2) ∀ a b. (b, a) → (b, a)
(3) ∀ c a b. (a, b) → (a, b)

All of these types are principal; no type above is more general than any other.
However, the type of the expression,

pid @Int @Bool

is very different depending on which “equivalent” type is chosen for pid:

(Int,Bool) → (Int,Bool) -- pid has type (1)
(Bool, Int) → (Bool, Int) -- pid has type (2)

∀ b. (Bool, b) → (Bool, b) -- pid has type (3)

7 See http://stackoverflow.com/questions/27044209/haskell-why-use-proxy.

http://stackoverflow.com/questions/27044209/haskell-why-use-proxy

234 R.A. Eisenberg et al.

Fig. 2. Why specified polytypes?

Of course, there are ad hoc mechanisms for resolving this ambiguity. We
could try to designate one of the above types (1–3) as the real principal type
for pid, perhaps by disallowing the quantification of unused variables (ruling
out type 3 above) and by enforcing an ordering on how variables are quantified
(preferring type 1 over type 2 above). Our goal would be to make sure that
each expression has a unique principal type, with respect to its quantified type
variables. However, in the context of the full Haskell language, this strategy
fails. There are just too many ways that types that are not α-equivalent can be
considered equivalent by HM. See Fig. 2 for a list of language features that cause
difficulties.

In the end, although it may be possible to resolve all of these ambiguities, we
prefer not to. That approach leads to a system that is fragile (a new extension
could break the requirement that principal types are unique up to α-equivalence),
difficult to explain to programmers (who must be able to determine which type
is principal) and difficult to reason about.

Our Solution: Specified Polytypes. Our system is designed around the fol-
lowing principle:

Only user-specified type parameters can be instantiated via explicit type
applications.

In other words, we allow visible type application to instantiate a polytype only
when that type is given by a user annotation. This restriction follows in a long
line of work requiring user annotations to support advanced type system fea-
tures [14,22,23]. We refer to variables quantified in type annotations as specified
variables, distinct from compiler-generated quantified variables, which we call
generalized variables.

Visible Type Application 235

There is one nuance to this rule in practice. Haskell allows programming to
omit variable quantification, allowing a type signature like

const :: a → b → a -- NB: no ∀

Are these variables specified? We have decided that they are. There is a very
easy rule at work here: just order the variables left-to-right as the user wrote
them. We thus consider variables from type signatures to be specified, even when
not bound by an explicit ∀.

3.2 Is Our Extension Compatible with the Rest of the Type
System?

We do not want to extend just the type inference algorithm that GHC uses.
We would also like to extend its specification, which is rooted in HM. This way,
we will have a concise description (and better understanding) of what programs
type check, and a simple way to reason about the properties of the type system.

Our first attempt to add type application to GHC was based on our under-
standing of Algorithm W, the standard algorithm for HM type inference. This
algorithm instantiates polymorphic functions only at occurrences of variables.
So, it seems that the only new form we need to allow is a visible type right after
variable occurrences:

x @τ1 ... @τn

However, this extension is not very robust to code refactoring. For example, it
is not closed under substitution. If type application is only allowed at variables,
then we cannot substitute for this variable and expect the code to still type
check. Therefore our algorithm should allow visible type applications at other
expression forms. But where else makes sense?

For example, it seems sensible to allow a type instantiation is after a poly-
morphic type annotation (such an annotation certainly specifies the type of the
expression):

(λx → x :: ∀ a b. (a, b) → (a, b)) @Int

Likewise, we should also allow a visible instantiation after a let to enable
refactoring:8

(let y = ((λx → x) :: ∀ a b. (a, b) → (a, b)) in y) @Int

However, how do we know that we have identified all sites where visible type
applications should be allowed? Furthermore, we may have identified them all
for core HM, but what happens when we go to the full language of GHC, which
includes features that may expose new potential sites?

8 In fact, the Haskell 2010 Report [15] defines type annotations by expanding to a
let-declaration with a signature.

236 R.A. Eisenberg et al.

One way to think about this issue in a principled way is to develop a compo-
sitional specification of the type system, which allows type application for any
expression that can be assigned a polytype. Then, if our algorithm is complete
with respect to this specification, we will know that we have allowed type appli-
cations in all of the appropriate places. This specification is itself useful in its
own right, as we will have a concise description (and better understanding) of
what programs type check and a simple way to reason about the properties of
the type system.

Once we started thinking of specifications, we found that Algorithm W could
not be matched up with the compositional specification that we wanted. That
led us to reconsider our algorithm and develop a new approach to HM type
inference.

Our Solution: Lazy Instantiation for Specified Polytypes. Our new type
inference algorithm, which we call Algorithm V, is based on the following design
principle:

Delay instantiation of “specified” type parameters until absolutely neces-
sary.

Although Algorithm W instantiates all polytypes immediately, it need not
do so. In fact, it is possible to develop a sound and complete alternative imple-
mentation of the HM type system that does not do this immediate instantiation.
Instead, instantiation is done only on demand, such as when a polymorphic func-
tion is applied to arguments. Lazy instantiation has been used in (non-HM) type
inference before [10] and may be folklore; however this work contains the first
proof that it can be used to implement the HM type system.

In the next section, we give this algorithm a simple specification, presented
as a small extension of HM’s existing declarative specification. We then continue
with a syntax-directed account of the type system, characterizing where lazy
instantiations actually must occur during type checking.

4 HM with Visible Type Application

To make our ideas precise, we next review the declarative specification of the
HM type system [7,13,18] (which we call System HM), and then show how to
extend this specification with visible type arguments.

4.1 System HM

The grammar of System HM is shown in Fig. 3. The expression language com-
prises the Curry-style typed λ-calculus with the addition of numeric literals
(of type Int) and let-expressions. Monotypes are as usual, but we diverge from
standard notation in type schemes as they quantify over a possibly-empty set
of type variables. Here, we write these type variables in braces to emphasize

Visible Type Application 237

Fig. 3. Grammars for Systems HM and HMV

that they should be considered order-independent. We sometimes write τ for
the type scheme ∀{ }. τ with an empty set of quantified variables and write
∀{a}.∀{b}. τ to mean ∀{a, b}. τ . Here – and throughout this paper – we liber-
ally use the Barendregt convention that bound variables are always distinct from
free variables.

The declarative typing rules for System HM appear in Fig. 4. (The figure also
includes the definition for our extended system, called System HMV, described
in Sect. 4.2.) System HM is not syntax-directed; rules HM Gen and HM Sub
can apply anywhere.

So that we can better compare this system with others in the paper, we make
two changes to the standard HM rules. Neither of these changes are substantial;
our version types the same programs as the original.9 First, in HM Let, we
allow the type of a let expression to be a polytype σ, instead of restricting it to
be a monotype τ . We discuss this change further in Sect. 5.2. Second, we replace
the usual instantiation rule with HM Sub. This rule allows the type of any
expression to be converted to any less general type in one step (as determined
by the subsumption relation σ1 ≤hm σ2). Note that in rule HM InstG the lists
of variables a1 and a2 need not be the same length.

4.2 System HMV: HM with Visible Types

System HMV is an extension of System HM, adding visible type applica-
tion. A key detail in its design is its separation of specified type variables from
those arising from generalization, as initially explored in Sect. 3.1. Types may
be generalized at any time in HMV, quantifying over a variable free in a type
but not free in the typing context. The type variable generalized in this manner
is not specified, as the generalization takes place absent any direction from the
programmer. By contrast, a type variable mentioned in a type annotation is
specified, precisely because it is written in the program text.
9 Both ways of the equivalence proof proceed by induction, liberally using instantia-

tion, generalization, and subsumption to bridge the gap between the two systems.

238 R.A. Eisenberg et al.

Fig. 4. Typing rules for Systems HM and HMV

The grammar of System HMV appears in Fig. 3. The type language is
enhanced with a new intermediate form υ that quantifies over an ordered list of
type variables. (We sometimes write ∀a.∀b. τ as ∀a, b. τ .) This form sits between
type schemes and monotypes; σs contain υs, which then contain τs.10 Thus the
full form of a type scheme σ can be written as ∀{a}, b. τ , including both a set of

10 The grammar for System HMV redefines several metavariables. These metavariables
then have (slightly) different meanings in different sections of this paper, but disam-
biguation should be clear from context. In analysis relating systems with different
grammars (for example, in Lemma 1), the more restrictive grammar takes prece-
dence.

Visible Type Application 239

Fig. 5. Examples of HMV subsumption relation

generalized variables {a} and a list of specified variables b. Note that order never
matters for generalized variables (they are in a set) while order does certainly
matter for specified variables (the list specifies their order). We say that υ is the
metavariable for specified polytypes, distinct from type schemes σ.

Expressions in HMV include two new forms: e @τ instantiates a specified
type variable with a monotype τ , while (Λa.e : υ) allows us to annotate an
expression with its type, potentially binding scoped type variables if the type is
polymorphic. Requiring a type annotation in concert with scoped type variable
binding ensures that the order of quantification is specified: the type annotation
is a specified polytype υ. We do not allow annotation by type schemes σ: if the
user writes the type, all quantified variables are considered specified.

Typing contexts Γ in HMV are enhanced with the ability to store type vari-
ables. This feature is used to implement scoped type variables, where the type
variables a, bound in Λa.e, are available for use in types occurring within e.

Typing Rules. The type system of HMV includes all of the rules of HM plus the
new rules and relation shown at the bottom of Fig. 4. The HMV rules inherited
from System HM are modified to recur back to System HMV relations: in effect,
replace all hm subscripts with hmv subscripts. Note, in particular, rule HM Sub;
in System HMV, this rule refers to the σ1 ≤hmv σ2 relation, described below.

The most important addition to this type system is HMV TApp, which
enables visible type application when the type of the expression is quantified
over a specified type variable.

A type annotation (Λa.e : υ), typed with HMV Annot, allows an expression
to be assigned a specified polytype. We require the specified polytype to have
the form ∀a, b. τ ; that is, a prefix of the specified polytype’s quantified variables
must be the type variables scoped in the expression.11 The inner expression e
is then checked at type τ , with the type variables a (but not the b) in scope.
Types that appear in expressions (such as in type annotations and explicit type
applications) may mention only type variables that are currently in scope.
11 Note that the Barendregt convention allows bound variables to α-vary, so only the

number of scoped type variables is important.

240 R.A. Eisenberg et al.

Of course, in the Γ, a �hmv e : τ premise, the variables a and b may appear
in τ . We call such variables skolems and say that skolemizing υ yields τ . In
effect, these variables form new type constants when type-checking e. When the
expression e has type τ , we know that e cannot make any assumptions about
the skolems a, b, so we can assign e the type ∀a, b. τ . This is, in effect, specified
generalization.

The relation σ1 ≤hmv σ2 (Fig. 4) implements subsumption for System HMV.
The intuition is that, if σ1 ≤hmv σ2, then an expression of type σ1 can be used
wherever one of type σ2 is expected. For type schemes, the standard notion of σ1

being a more general type than σ2 is sufficient. However for specified polytypes,
we must be more cautious.

Suppose an expression x @τ1 @τ2 type checks, where x has type ∀a, b. υ1. The
subsumption rule means that we can arbitrarily change the type of x to some
υ, as long as υ ≤hmv ∀a, b. υ1. Therefore, υ must be of the form ∀a, b. υ2 so that
x @τ1 @τ2 will continue to instantiate a with τ1 and b with τ2. Accordingly, we
cannot, say, allow subsumption to reorder specified variables.

However, it is safe to allow some instantiation of specified variables as part of
subsumption, as in rule HMV InstS. Examine this rule closely: it instantiates
variables from the right. This odd-looking design choice is critical. Continuing
the example above, υ could also be of the form ∀a, b, c. υ3. In this case, the
additional specified variable c causes no trouble – it need not be instantiated
by a visible application. But we cannot allow instantiation left-to-right as that
would allow the visible type arguments to skip instantiating a or b.

Further examples illustrating ≤hmv appear in Fig. 5.

4.3 Properties of System HMV

We wish System HMV to be a conservative extension of System HM. That is,
any expression that is well-typed in HM should remain well-typed in HMV, and
any expression not well-typed in HM (but written in the HM subset of HMV)
should also not be well-typed in HMV.

Lemma 1 (Conservative Extension for HMV). Suppose Γ and e are both
expressible in HM; that is, they do not include any type instantiations, type
annotations, scoped type variables, or specified polytypes. Then, Γ �hm e : σ if
and only if Γ �hmv e : σ.

This property follows directly from the definition of HMV as an extension of
HM. Note, in particular, that no HM typing rule is changed in HMV and that the
≤hmv relation contains ≤hm ; furthermore, the new rules all require constructs
not found in HM.

We also wish to know that making generalized variables into specified vari-
ables does not disrupt types:

Lemma 2 (Extra knowledge is harmless). If Γ, x :∀{a}. τ �hmv e : σ, then
Γ, x :∀a. τ �hmv e : σ.

This property follows directly from the context generalization lemma below,
noting that ∀a. τ ≤hmv ∀{a}. τ .

Visible Type Application 241

Lemma 3 (Context generalization for HMV). If Γ �hmv e : σ and Γ ′ ≤hmv

Γ , then Γ ′ �hmv e : σ.

This lemma is proved in the extended version [12].
In practical terms, Lemma 2 means that if an expression contains let x =

e1 in e2, and the programmer figures out the type assigned to x (say, ∀{a}. τ)
and then includes that type in an annotation (as let x = (e1 : ∀a. τ) in e2), the
outer expression’s type does not then change.

However, note that, by design, context generalization is not as flexible for
specified polytypes as it is for type schemes. In other words, suppose the following
expression type-checks.

let x = ((λy → y) :: ∀ a b. (a, b) → (a, b)) in ...

The programmer cannot then replace the type annotation with the type
∀ a. a → a, because x may be used with visible type applications. This behavior
may be surprising, but it follows directly from the fact that ∀ a. a → a �≤hmv

∀ a b. (a, b) → (a, b).
Finally, we would also like to show that HMV retains the principal types

property, defined with respect to the enhanced subsumption relation σ1 ≤hmv σ2.

Theorem 4 (Principal types for HMV). For all terms e well-typed in a
context Γ , there exists a type scheme σp such that Γ �hmv e : σp and, for all σ
such that Γ �hmv e : σ, σp ≤hmv σ.

Before we can prove this, we first must show how to extend HM’s type infer-
ence algorithm (Algorithm W [8]) to include visible type application. Once we
do so, we can prove that this new algorithm always computes principal types.

5 Syntax-Directed Versions of HM and HMV

The type systems in the previous section declare when programs are well-formed,
but they are fairly far removed from an algorithm. In particular, the rules
HM Gen and HM Sub can appear at any point in a typing derivation.

5.1 System C

We can explain the HM type system in a more algorithmic manner by using a
syntax-directed specification, called System C, in Fig. 6. This version of the type
system, derived from Clément et al. [5], clarifies exactly where generalization
and instantiation occur during type checking. Notably, instantiation occurs only
at the usage of a variable, and generalization occurs only at a let-binding. These
rules are syntax-directed because the conclusion of each rule in the main judg-
ment Γ �c e : τ is syntactically distinct. Thus, from the shape of an expression,
we can determine the shape of its typing derivation.

However, the judgment Γ �c e : τ is still not quite an algorithm: it makes non-
deterministic guesses. For example, in the rule C Abs, the type τ1 is guessed;

242 R.A. Eisenberg et al.

Fig. 6. Syntax-directed version of the HM type system

there is no indication in the expression what the choice for τ1 should be. The
advantage of studying a syntax-directed system such as System C is that doing
so separates concerns: System C fixes the structure of the typing derivation (and
of any implementation) while leaving monotype-guessing as a separate problem.
Algorithm W deduces the monotypes via unification, but a constraint-based
approach [25,27] would also work.

5.2 System V: Syntax-Directed Visible Types

Just as System C is a syntax-directed version of HM, we can also define Sys-
tem V, a syntax-directed version of HMV (Fig. 7). However, although we could
define HMV by a small addition to HM (two new rules, plus subsumption), the
difference between System C and System V is more significant.

Like System C, System V uses multiple judgments to restrict where general-
ization and instantiation can occur. In particular, the system allows an expres-
sion to have a type scheme only as a result of generalization (using the judgment
Γ �genv e : σ). Generalization is, once again, available only in let-expressions.

However, the main difference that enables visible type annotation is the sep-
aration of the main typing judgment into two: Γ �v e : τ and Γ �∗v e : υ. The key
idea is that, sometimes, we need to be lazy about instantiating specified type
variables so that the programmer has a chance to add a visible instantiation.
Therefore, the system splits the rules into a judgment �v that requires e to have
a monotype, and those in �∗v that can retain specified quantification.

The first set of rules in Fig. 7, as in System C, infers a monotype for the
expression. The premises of the rule V Abs uses this same judgment, for exam-
ple, to require that the body of an abstraction have a monotype. All expressions
can be assigned a monotype; if the first three rules do not apply, the last rule
V InstS infers a polytype instead, then instantiates it to yield a monotype.
Because implicit instantiation happens all at once in this rule, we do not need

Visible Type Application 243

Fig. 7. Typing rules for System V

to worry about instantiating specified variables out of order, as we did in Sys-
tem HMV.

The second set of rules (the �∗v judgment) allows e to be assigned a specified
polytype. Note that the premise of rule V TApp uses this judgment.

Rule V Var is like rule C Var: both look up a variable in the environ-
ment and instantiate its generalized quantified variables. The difference is that
C Var’s types can contain only generalized variables; System V’s types can
have specified variables after the generalized ones. Yet we instantiate only the
generalized ones in the V Var rule, lazily preserving the specified ones.

Rule V Let is likewise similar to C Let. The only difference is that the
result type is not restricted to be a monotype. By putting V Let in the �∗v
judgment and returning a specified polytype, we allow the following judgment
to hold:

· �v (let x = (λy . y : ∀a. a → a) in x)@Int : Int → Int

The expression above would be ill-typed in a system that restricted the result of
a let-expression to be a monotype. It is for this reason that we altered System
HM to include a polytype in its HM Let rule, for consistency with HMV.

244 R.A. Eisenberg et al.

Rule V Annot is identical to rule HMV Annot. It uses the �v judgment in
its premise to force instantiation of all quantified type variables before regeneral-
izing to the specified polytype υ. In this way, the V Annot rule is effectively able
to reorder specified variables. Here, reordering is acceptable, precisely because
it is user-directed.

Finally, if an expression form cannot yield a specified polytype, rule V Mono
delegates to �v to find a monotype for the expression.

5.3 Relating System V to System HMV

Systems HMV and V are equivalent; they type check the same set of expressions.
We prove this correspondence using the following two theorems.

Theorem 5 (Soundness of V against HMV)

1. If Γ �v e : τ , then Γ �hmv e : τ .
2. If Γ �∗v e : υ, then Γ �hmv e : υ.
3. If Γ �genv e : σ, then Γ �hmv e : σ.

Theorem 6 (Completeness of V against HMV). If Γ �hmv e : σ, then there
exists σ′ such that Γ �genv e : σ′ where σ′ ≤hmv σ.

The proofs of these theorems appear in the extended version [12].
Having established the equivalence of System V with System HMV, we can

note that Lemma 2 (“Extra knowledge is harmless”) carries over from HMV to V.
This property is quite interesting in the context of System V. It says that a typing
context where all type variables are specified admits all the same expressions as
one where some type variables are generalized. In System V, however, specified
and generalized variables are instantiated via different mechanisms, so this is a
powerful theorem indeed.

It is mechanical to go from the statement of System V in Fig. 7 to an algo-
rithm. In the extended version [12], we define Algorithm V which implements
System V, analogous to Algorithm W which implements System C. We then
prove that Algorithm V is sound and complete with respect to System V and
that Algorithm V finds principal types. Linking the pieces together gives us the
proof of the principal types property for System HMV (Theorem4). Further-
more, Algorithm V is guaranteed to terminate, yielding this theorem:

Theorem 7. Type-checking System V is decidable.

6 Higher-Rank Type Systems

We now extend the design of System HMV to include higher-rank polymor-
phism [17]. This extension allows function parameters to be used at multiple
types. Incorporating this extension is actually quite straightforward. We include
this extension to show that our framework for visible type application is indeed
easy to extend – the syntax-directed system we study in this section is essentially

Visible Type Application 245

a merge of System V and the bidirectional system from our previous work [23].
This system is also the basis for our implementation in GHC.

As an example, the following function does not type check in the vanilla
Hindley-Milner type system, assuming id has type ∀ a. a → a.

let foo = λf → (f 3, f True) in foo id

Yet, with the RankNTypes language extension and the following type anno-
tation, GHC is happy to accept

let foo :: (∀ a. a → a) → (Int,Bool)
foo = λf → (f 3, f True)

in foo id

Visible type application means that higher-rank arguments can also be explic-
itly instantiated. For example, we can instantiate lambda-bound identifiers:

let foo :: (∀ a. a → a) → (Int → Int,Bool)
foo = λf → (f @Int, f True)

in foo id

Higher-rank types also mean that visible instantiations can occur after other
arguments are passed to a function. For example, consider this alternative type
for the pair function:

pair :: ∀ a. a → ∀ b. b → (a, b)
pair = λx y → (x, y)

If pair has this type, we can instantiate b after providing the first component
for the pair, thus:

bar = pair ’x’ @Bool
-- bar inferred to have type Bool → (Char,Bool)

In the rest of this section, we provide the technical details of these language
features and discuss their interactions. In contrast to the presentation above, we
present the syntax-directed higher-rank system first. We do so for two reasons:
understanding a bidirectional system requires thinking about syntax, and thus
the syntax-directed system seems easier to understand; and we view the declar-
ative system as an expression of properties – or a set a metatheorems – about
the higher-rank type system.

6.1 System SB: Syntax-Directed Bidirectional Type Checking

Figures 8 and 9 show System SB, the higher-rank, bidirectional analogue of
System V, supporting predicative higher-rank polymorphism and visible type
application.

This system shares the same expression language of Systems HMV and V,
retaining visible type application and type annotations. However, types in Sys-
tem SB may have non-prenex quantification. The body of a specified polytype

246 R.A. Eisenberg et al.

Fig. 8. Syntax-directed bidirectional type system

Visible Type Application 247

Fig. 9. Higher-rank subsumption relations

υ is now a phi-type φ: a type that has no top-level quantification but may have
quantification to the left or to the right of arrows. Note also that these inner
quantified types are υs, not σs. In other words, non-prenex quantification is over
only specified variables, never generalized ones. As we will see, inner quantified
types are introduced only by user annotation, and thus there is no way the sys-
tem could produce an inner type scheme, even if the syntactic restriction were
not in place.

248 R.A. Eisenberg et al.

The grammar also defines rho-types ρ, which also have no top-level quan-
tification, but do allow inner quantification to the left of arrows. We convert
specified polytypes (which may quantify to the right of arrows) to correspond-
ing rho-types by means of the prenex operation, which appears in Fig. 9.

System SB is defined by five mutually recursive judgments: Γ �sb e ⇒ φ,
Γ �∗sb e ⇒ υ, and Γ �gensb e ⇒ σ are synthesis judgments, producing the type as
an output; Γ �sb e ⇐ ρ and Γ �∗sb e ⇐ υ are checking judgments, requiring the
type as an input.

Type Synthesis. The synthesis judgments are very similar to the judgments
from System V, ignoring direction arrows. The differences stem from the non-
prenex quantification allowed in SB. The level of similarity is unsurprising, as
the previous systems essentially all work only in synthesis mode; they derive
a type given an expression. The novelty of a bidirectional system is its abil-
ity to propagate information about specified polytypes toward the leaves of an
expression.

Type Checking. Rule SB DAbs is what makes the system higher-rank. The
checking judgment Γ �sb e ⇐ ρ pushes in a rho-type, with no top-level quantifi-
cation. Thus, SB DAbs can recognize an arrow type υ1 → ρ2. Propagating this
type into an expression λx . e, SB DAbs uses the type υ1 as x ’s type when check-
ing e. This is the only place in system SB where a lambda-term can abstract
over a variable with a polymorphic type. Note that the synthesis rule SB Abs
uses a monotype for the type of x.12

Rule SB Infer mediates between the checking and synthesis judgments.
When no checking rule applies, we synthesize a type and then check it according
to the ≤dsk deep skolemization relation, taken directly from previous work and
shown in Fig. 9. For brevity, we do not explain the details of this relation here,
instead referring readers to Peyton Jones et al. [23, Sect. 4.6] for much deeper
discussion. However, we note that there is a design choice to be made here;
we could have also used Odersky–Läufer’s slightly less expressive higher-rank
subsumption relation [21] instead. We present the system with deep skolemiza-
tion for backwards compatibility with GHC. See the extended version [12] for a
discussion of this alternative.

The entry point into the type checking judgments is through the Γ �∗sb e ⇐ υ
judgment. This judgment has just one rule, SB DeepSkol. The rule skolemizes
all type variables appearing at the top-level and to the right of arrows. Skolem-
izing here is necessary to expose a rho-type to the Γ �sb e ⇐ ρ judgment, so
that rule SB DAbs can fire.13 The reason this rule requires deep skolemization
12 Higher-rank systems can also include an “annotated abstraction” form, λx :υ. e. This

form allows higher-rank types to be synthesized for lambda expressions as well as
checked. However, this form is straightforward to add but is not part of GHC, which
uses patterns (beyond the scope of this paper) to bind variables in abstractions.
Therefore we omit the annotated abstraction form from our formalism.

13 Our choice to skolemize before SB DLet is arbitrary, as SB DLet does not interact
with the propagated type.

Visible Type Application 249

Fig. 10. System B

instead of top-level skolemization is subtle, but this choice is not due to visible
type application or lazy instantiation; the same choice is made in prior work [23,
rulegen2 of Fig. 8]. We refer readers to the extended version [12] for the details.

6.2 System B: Declarative Specification

Figure 10 shows the typing rules of System B, a declarative system that accepts
the same programs as System SB. This declarative type system itself is a novel
contribution of this work. (The systems presented in related work [10,21,23] are
more similar to SB than to B.)

Although System B is bidirectional, it is also declarative. In particular, the
use of generalization (B Gen), subsumption (B Sub), skolemization (B Skol),
and mode switching (B Infer), can happen arbitrarily in a typing derivation.
Understanding what expressions are well-typed does not require knowing pre-
cisely when these operations take place.

The subsumption rule (B Sub) in the synthesis judgment corresponds to
HMV Sub from HMV. However, the novel subsumption relation ≤b used by
this rule, shown at the top of Fig. 9, is different from the ≤dsk deep skolemization

250 R.A. Eisenberg et al.

relation used in System SB. This σ1 ≤b σ2 judgment extends the action of
≤hmv to higher-rank types: in particular, it allows subsumption for generalized
type variables (which can be quantified only at the top level) and instantiation
(only) for specified type variables. We could say that this judgment enables inner
instantiation because instantiations are not restricted to top level. See also the
examples at the bottom of Fig. 9.

In contrast, rule B Infer (in the checking judgment) uses the stronger of the
two subsumption relations ≤dsk. This rule appears at precisely the spot in the
derivation where a specified type from synthesis mode meets the specified type
from checking mode. The relation ≤dsk subsumes ≤b ; that is, σ1 ≤b υ2 implies
σ1 ≤dsk υ2.

Properties of System B and SB. We can show that Systems SB and B admit
the same expressions.

Lemma 8 (Soundness of System SB)

1. If Γ �sb e ⇒ φ then Γ �b e ⇒ φ.
2. If Γ �∗sb e ⇒ υ then Γ �b e ⇒ υ.
3. If Γ �gensb e ⇒ σ then Γ �b e ⇒ σ.
4. If Γ �∗sb e ⇐ υ then Γ �b e ⇐ υ.
5. If Γ �sb e ⇐ ρ then Γ �b e ⇐ ρ.

Lemma 9 (Completeness of System SB)

1. If Γ �b e ⇒ σ then Γ �gensb e ⇒ σ′ where σ′ ≤b σ.
2. If Γ �b e ⇐ υ then Γ �∗sb e ⇐ υ.

What is the role of System B? In our experience, programmers tend to prefer
the syntax-directed presentation of the system because that version is more
algorithmic. As a result, it can be easier to understand why a program type
checks (or doesn’t) by reasoning about System SB.

However, the fact that System B is sound and complete with respect to
System SB provides properties that we can use to reason about SB. The main
difference between the two is that System B divides subsumption into two dif-
ferent relations. The weaker ≤b can be used at any time during synthesis, but
it can only instantiate (but not generalize) specified variables. The stronger ≤dsk

is used at only the check/synthesis boundary but can generalize and reorder
specified variables.

The connection between the two systems tells us that B Sub is admissible for
SB. As a result, when refactoring code, we need not worry about precisely where
a type is instantiated, as we see here that instantiation need not be determined
syntactically.

Likewise, the proof also shows that System B (and System SB) is flexible with
respect to the instantiation relation ≤b in the context. As in System HMV, this
result implies that making generalized variables into specified variables does not
disrupt types.

Visible Type Application 251

Lemma 10 (Context Generalization). Suppose Γ ′ ≤b Γ .

1. If Γ �b e ⇒ σ then there exists σ′ ≤b σ such that Γ ′ �b e ⇒ σ′.
2. If Γ �b e ⇐ υ and υ ≤b υ′ then Γ ′ �b e ⇐ υ′.

Proofs of these properties appear in the extended version [12].

6.3 Integrating Visible Type Application with GHC

System SB is the direct inspiration for the type-checking algorithm used in our
version of GHC enhanced with visible type application. It is remarkably straight-
forward to implement the system described here within GHC; accounting for
the behavior around imported functions (Sect. 3.1) was the hardest part. The
other interactions (the difference between this paper’s scoped type variables and
GHC’s, how specified type variables work with type classes, etc.) are generally
uninteresting; see the extended version [12] for further comments.

One pleasing synergy between visible type application and GHC concerns
GHC’s recent partial type signature feature [29]. This feature allows wildcards,
written with an underscore, to appear in types; GHC infers the correct replace-
ment for the wildcard. These work well in visible type applications, allowing the
user to write @ as a visible type argument where GHC can infer the argu-
ment. For example, if f has type ∀ a b. a → b → (a, b), then we can write
f @ @[Int] True [] to let GHC infer that a should be Bool but to visibly instan-
tiate b to be [Int]. Getting partial type signatures to work in the new context of
visible type applications required nothing more than hooking up the pieces.

7 Related Work and Conclusions

Explicit Type Arguments. The F# language [26] permits explicit type argu-
ments in function applications and method invocations. These explicit argu-
ments, typically mandatory, are used to resolve ambiguity in type-dependent
operations. However, the properties of this feature have not been studied.

Implicit Arguments in Dependently-Typed Languages. Languages such
as Coq [6], Agda [20], Idris [1] and Twelf [24] are not based on the HM type
system, so their designs differ from Systems HMV and B. However, they do
support invisible arguments. In these languages, an invisible argument is not
necessarily a type; it could be any argument that can be inferred by the type
checker.

Coq, Agda, and Idris require all quantification, including that for invisible
arguments, to be specified by the user. These languages do not support gen-
eralization, i.e., automatically determining that an expression should quantify
over an invisible argument (in addition to any visible ones). They differ in how
they specify the visibility of arguments, yet all of them provide the ability to
override an invisibility specification and provide such arguments visibly. These

252 R.A. Eisenberg et al.

languages also provide a facility for named invisible arguments, allowing users
to specify argument values by name instead of by position. This choice means
that α-equivalent types are no longer fully interchangeable. Though we have not
studied this possibility deeply, we conjecture that formally specifying a named-
argument system would encounter many of the same subtleties (in particular,
requiring two different subsumption relations in the metatheory) that we encoun-
tered with positional arguments.

Twelf, on the other hand, supports invisible arguments via generalization and
visible arguments via specification. Although it is easy to convert between the
two versions, there is no way to visibly provide an invisible argument as we have
done. Instead, the user must rely on type annotations to control instantiations.

Specified vs. Generalized Variables. Dreyer and Blume’s work on speci-
fying ML’s type system and inference algorithm in the presence of modules [9]
introduces a separation of (what we call) specified and generalized variables.
Their work focuses on the type parameters to ML functors, finding inconsisten-
cies between the ML language specification and implementations. They conclude
that the ML specification as written is hard to implement and propose a new
one. Their work includes a type system that allows functors to have invisible
arguments alongside their visible ones. This specification is easier to implement,
as they demonstrate.

Their work has similarities to ours in the separation of classes of variables
and the need to alter the specification to make type inference reasonable. Inter-
estingly, they come from the opposite direction from ours, adding invisible argu-
ments in a place where arguments previously were all visible. However, despite
these surface similarities, we have not found a deeper connection between our
work and theirs.

Predicative, Higher-Rank Type Systems. As we have already indicated,
Systems B and SB are directly inspired by GHC’s design for higher-rank
types [23]. However, in this work we have redesigned the algorithm to use lazy
instantiation and have made a distinction between specified polytypes and gen-
eralized polytypes. Furthermore, we have pushed the design further, providing
a declarative specification for the type system.

Our work is also closely related to recent work on using a bidirectional type
system for higher-rank polymorphism by Dunfield and Krishnaswami [10], called
DK below. The closest relationship is between their declarative system (Fig. 4 in
their paper) and our System SB (Fig. 8). The most significant difference is that
the DK system never generalizes. All polymorphic types in their system are spec-
ified; functions must have a type annotation to be polymorphic. Consequently,
DK uses a different algorithm for type checking than the one proposed in this
work. Nevertheless, it defers instantiations of specified polymorphism, like our
algorithm.

Our relation ≤dsk, which requires two specified polytypes, is similar to the
DK subsumption relation. The DK version is slightly weaker as it does not

Visible Type Application 253

use deep skolemization; but that difference is not important in this context.
Another minor difference is that System SB uses the Γ �sb e ⇒ φ judgment
to syntactically guide instantiation whereas the the DK system uses a separate
application judgment form. System B – and the metatheory of System SB –
also includes implicit subsumption ≤b , which does not have an analogue in the
DK system. A more extended comparison with the DK system appears in the
extended version [12].

Conclusion. This work extends the HM type system with visible type applica-
tion, while maintaining important properties of that system that make it useful
for functional programmers. Our extension is fully backwards compatible with
previous versions of GHC. It retains the principal types property, leading to
robustness during refactoring. At the same time, our new systems come with
simple, compositional specifications.

While we have incorporated visible type application with all existing features
of GHC, we do not plan to stop there. We hope that our mix of specified poly-
types and type schemes will become a basis for additional type system extensions,
such as impredicative types, type-level lambdas, and dependent types.

Acknowledgments. Thanks to Simon Peyton Jones, Dimitrios Vytiniotis, Iavor
Diatchki, Adam Gundry, Conor McBride, Neel Krishnaswami, and Didier Rémy for
helpful discussion and feedback.

References

1. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Prog. 23, 552–593 (2013)

2. Buiras, P., Vytiniotis, D., Alejandro Russo, H.: Mixing static and dynamic typing
for information-flow control in Haskell. In: International Conference on Functional
Programming, ICFP 2015. ACM (2015)

3. Chakravarty, M.M.T., Keller, G., Peyton Jones, S.: Associated type synonyms. In:
International Conference on Functional Programming, ICFP 2005. ACM (2005)

4. Chakravarty, M.M.T., Keller, G., Peyton Jones, S., Marlow, S.: Associated types
with class. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (2005)

5. Clément, D., Despeyroux, T., Kahn, G., Joëlle Despeyroux, A.: simple applicative
language : Mini-ML. In: Conference on LISP and Functional Programming, LFP
1986. ACM (1986)

6. Coq development team. The Coq proof assistant reference manual. LogiCal Project.
Version 8.0 (2004). http://coq.inria.fr

7. Damas, L.: Type Assignment in Programming Languages. PhD thesis, University
of Edinburgh (1985)

8. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Sym-
posium on Principles of Programming Languages, POPL 1982. ACM (1982)

9. Dreyer, D., Blume, M.: Principal type schemes for modular programs. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 441–457. Springer, Heidelberg
(2007)

http://coq.inria.fr

254 R.A. Eisenberg et al.

10. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking
for higher-rank polymorphism. In: International Conference on Functional Pro-
gramming, ICFP 2013. ACM (2013)

11. Eisenberg, R.A., Vytiniotis, D., Peyton Jones, S., Weirich, S.: Closed type families
with overlapping equations. In: Principles of Programming Languages, POPL 2014.
ACM (2014)

12. Eisenberg, R.A., Weirich, S., Ahmed, H.: Visible type application (extended version)
(2015). http://www.seas.upenn.edu/∼sweirich/papers/type-app-extended.pdf

13. Hindley, J.R.: The principal type-scheme of an object in combinatory logic. Trans.
Am. Math. Soc. 146, 29–60 (1969)

14. Le Botlan, D., Rémy, D.: MLF : Raising ML to the power of System F. In: Inter-
national Conference on Functional Programming. ACM (2003)

15. Marlow, S. (ed.): Haskell language report (2010)
16. McBride, C.: Agda-curious? Keynote. In: ICFP 2012 (2012)
17. McCracken, N.: The typechecking of programs with implicit type structure. In:

Kahn, G., MacQueen, D.B., Plotkin, G. (eds.) Semantics of Data Types. LNCS,
vol. 173, pp. 301–315. Springer, Heidelberg (1984)

18. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17, 348–375 (1978)

19. Miquel, A.: The implicit calculus of constructions. In: Abramsky, S. (ed.) TLCA
2001. LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001)

20. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007

21. Odersky, M., Läufer, K.: Putting type annotations to work. In: Symposium on
Principles of Programming Languages, POPL 1996. ACM (1996)

22. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: International Conference on Functional Pro-
gramming, ICFP 2006. ACM (2006)

23. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference
for arbitrary-rank types. J. Func. Program. 17(1), 1–82 (2007)

24. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202–206. Springer, Heidelberg (1999)

25. Pottier, F., Rémy, D.: The Essence of ML Type Inference. In: Pierce, B.C. (ed.)
Advanced Topics in Types and Programming Languages, pp. 387–489. The MIT
Press (2005)

26. Syme, D.: The F# 2.0 Language Specification. Microsoft Research and the
Microsoft Developer Division (2012). http://fsharp.org/specs/language-spec/2.0/
FSharpSpec-2.0-April-2012.pdf

27. Vytiniotis, D., Peyton Jones, S., Schrijvers, T., Sulzmann, M.: OutsideIn(X) mod-
ular type inference with local assumptions. J. Funct. Program. 21(4–5), 333–412
(2011)

28. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: POPL,
pp. 60–76. ACM (1989)

29. Winant, T., Devriese, D., Piessens, F., Schrijvers, T.: Partial type signatures for
haskell. In: Flatt, M., Guo, H.-F. (eds.) PADL 2014. LNCS, vol. 8324, pp. 17–32.
Springer, Heidelberg (2014)

http://www.seas.upenn.edu/~sweirich/papers/type-app-extended.pdf
http://fsharp.org/specs/language-spec/2.0/FSharpSpec-2.0-April-2012.pdf
http://fsharp.org/specs/language-spec/2.0/FSharpSpec-2.0-April-2012.pdf

	Visible Type Application
	1 Introduction
	2 Why Visible Type Application?
	3 Our Approach to Visible Type Application
	3.1 Just What are the Type Parameters?
	3.2 Is Our Extension Compatible with the Rest of the Type System?

	4 HM with Visible Type Application
	4.1 System HM
	4.2 System HMV: HM with Visible Types
	4.3 Properties of System HMV

	5 Syntax-Directed Versions of HM and HMV
	5.1 System C
	5.2 System V: Syntax-Directed Visible Types
	5.3 Relating System V to System HMV

	6 Higher-Rank Type Systems
	6.1 System SB: Syntax-Directed Bidirectional Type Checking
	6.2 System B: Declarative Specification
	6.3 Integrating Visible Type Application with GHC

	7 Related Work and Conclusions
	References

