
Leakage-Resilient Public-Key Encryption
from Obfuscation

Dana Dachman-Soled1(B), S. Dov Gordon2, Feng-Hao Liu3, Adam O’Neill4,
and Hong-Sheng Zhou5

1 University of Maryland, College Park, USA
danadach@ece.umd.edu

2 George Mason University, Fairfax, USA
crypto@dovgordon.com

3 Florida Atlantic University, Boca Raton, USA
fenghao.liu@fau.edu

4 Georgetown University, Washington, D.C., USA
adam@cs.georgetown.edu

5 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. The literature on leakage-resilient cryptography contains
various leakage models that provide different levels of security. In this
work, we consider the bounded leakage and the continual leakage models.
In the bounded leakage model (Akavia et al. – TCC 2009), it is assumed
that there is a fixed upper bound L on the number of bits the attacker
may leak on the secret key in the entire lifetime of the scheme. Alter-
natively, in the continual leakage model (Brakerski et al. – FOCS 2010,
Dodis et al. – FOCS 2010), the lifetime of a cryptographic scheme is
divided into “time periods” between which the scheme’s secret key is
updated. Furthermore, in its attack the adversary is allowed to obtain
some bounded amount of leakage on the current secret key during each
time period.

In the continual leakage model, a challenging problem has been to
provide security against leakage on key updates, that is, leakage that
is a function not only of the current secret key but also the random-
ness used to update it. We propose a new, modular approach to over-
come this problem. Namely, we present a compiler that transforms
any public-key encryption or signature scheme that achieves a slight
strengthening of continual leakage resilience, which we call consecutive
continual leakage resilience, to one that is continual leakage resilient
with leakage on key updates, assuming indistinguishability obfuscation

D. Dachman-Soled—This work was done in part while the author was visiting the
Simons Institute for the Theory of Computing, supported by the Simons Foundation
and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-1523467.
S. Dov Gordon—This work was done when the author was a research scientist at
Applied Communication Sciences.
F.-H. Liu—This work was done when the author was a postdoc at the University of
Maryland.

c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part II, LNCS 9615, pp. 101–128, 2016.
DOI: 10.1007/978-3-662-49387-8 5

102 D. Dachman-Soled et al.

(Barak et al. – CRYPTO 2001, Garg et al. – FOCS 2013). Under the
stronger assumption of public-coin differing-inputs obfuscation (Ishai
et al. – TCC 2015) the leakage rate tolerated by our compiled scheme
is essentially as good as that of the starting scheme. Our compiler is
obtained by making a new connection between the problems of leak-
age on key updates and so-called “sender-deniable” encryption (Canetti
et al. – CRYPTO 1997). In particular, our compiler adapts and opti-
mizes recent techniques of Sahai and Waters (STOC 2014) that make any
encryption scheme sender-deniable. We then show that prior continual
leakage resilient schemes can be upgraded to security against consecutive
continual leakage without introducing new assumptions.

In the bounded leakage model, we develop an entirely new approach to
constructing leakage-resilient encryption from obfuscation directly, based
upon the public-key encryption scheme from iO and punctured pseudo-
random functions due to Sahai and Waters (STOC 2014). In particular,
we achieve (1) leakage-resilient public key encryption tolerating L bits
of leakage for any L from iO and one-way functions, (2) leakage-resilient
public key encryption with optimal leakage rate of 1 − o(1) based on
public-coin differing-inputs obfuscation and collision-resistant hash func-
tions.

1 Introduction

1.1 Background and Motivation

In recent years, researchers have uncovered a variety of ways to capture crypto-
graphic keys through side-channel attacks: physical measurements, such asbreak
execution time, power consumption, and even sound waves generated by the
processor. This has prompted cryptographers to build models for these attacks
and to construct leakage resilient schemes that remain secure in the face of such
attacks. Of course, if the adversary can leak the entire secret key, security becomes
impossible, and so the bounded leakage model was introduced (cf. [1,4,19,22]).
Here, it is assumed that there is a fixed upper bound, L on the number of bits the
attacker may leak, regardless of the parameters of the scheme, or, alternatively, it
is assumed that the attacker is allowed to leak L = λ · |sk| total number of bits,
where the amount of leakage increases as the size of the secret key increases. Vari-
ous works constructed public key encryption and signature schemes with optimal
leakage rate of λ = 1−o(1), from specific assumptions (cf. [4,22]). Hazay et al. [17]
constructed a leakage resilient public key encryption scheme in this model, assum-
ing only the existence of some standard public key encryption scheme; the tradeoff
is that they tolerate a leakage rate of only O(log(κ)/|sk|), where |sk| is the size of
the secret key when using security parameter κ.

Surprisingly, it is possible to do better; an interesting strengthening of the
model — the continual leakage model1 — allows the adversary to request
1 Here “continual” refers to the fact that the total amount of leakage obtained by

the adversary is unbounded. Additionally, the model is more accurately called the
continual memory leakage model to contrast with schemes constructed under an
assumption that “only computation leaks” [21].

Leakage-Resilient Public-Key Encryption from Obfuscation 103

unbounded leakage. This model was introduced by Brakerski et al. [5] and Dodis
et al. [11], who constructed continual-leakage resilient (CLR) public-key encryp-
tion and signature schemes. Intuitively, the CLR model divides the lifetime of the
attack, which may be unbounded, into time periods and: (1) allows the adver-
sary to obtain the output of a “bounded” leakage function in each time period,
and (2) allows the secret key (but not the public key!) to be updated between
time periods. So, while the adversary’s leakage in each round is bounded, the
total leakage is unbounded.

Note that the algorithm used by any CLR scheme to update the current secret
key to the next one must be randomized, since otherwise the adversary can obtain
some future secret key, bit-by-bit, via its leakage in each time period. While the
CLR schemes of [5,11] were able to tolerate a remarkable 1 − o(1) leakage rate
(the ratio of the allowed number of bits leaked per time period to the length
of the secret key) handling leakage during the update procedure itself — that
is, produced as a function of the randomness used by the update algorithm as
well as the current secret key — proved to be much more challenging. The first
substantial progress on this problem of “leakage on key updates” was made by
Lewko et al. [20], with their techniques being considerably refined and generalized
by Dodis et al. [12]. In particular, they give encryption and signature schemes
that are CLR with leakage on key updates tolerating a constant leakage rate,
using “dual-system” techniques (cf. [24]) in bilinear groups.

1.2 Overview of Our Results

Our first main contribution is to show how to compile any public-key encryption
or signature scheme that satisfies a slight strengthening of CLR (which we call
“consecutive” CLR or 2CLR) without leakage on key updates to one that is CLR
with leakage on key updates. Our compiler is based on a new connection we make
between the problems of leakage on key updates and “sender-deniability” [6] for
encryption schemes. In particular, our compiler uses program obfuscation —
either indistinguishability obfuscation (iO) [2,14] or the public-coin differing-
inputs obfuscation [18]2 — and adapts and extends techniques recently developed
by Sahai and Waters [23] to achieve sender-deniable encryption. This demon-
strates the applicability of the techniques of [23] to other seemingly unrelated
contexts.3 We then show that the existing CLR encryption scheme of Brakerski
et al. [5] can be extended to meet the stronger notion of 2CLR that we require
for our compiler. Additionally, we show all our results carry over to signatures
as well. In particular, we show that 2CLR PKE implies 2CLR signatures (via
the intermediate notion of CLR “one-way relations” of Dodis et al. [11]), and
2 To the best of our knowledge, no impossibility results are known for public-coin

differing-inputs obfuscation. Indeed, the impossibility results of Garg et al. [15] do
not apply to this setting.

3 We note that the techniques of [23] have been shown useful in adaptively secure two-
party and multiparty computation [7,9,16] and “only computation leaks” (OCL)
circuits without trusted hardware [10]. We note that this work precedes the work
of [9].

104 D. Dachman-Soled et al.

observe that our compiler also upgrades 2CLR signatures to ones that are CLR
with leak on updates.

Our second main contributions concerns constructions of leakage-resilient
public-key encryption directly from obfuscation. In particular, we show that the
approach of Sahai and Waters to achieve public-key encryption from iO and
punctured pseudorandom functions [23] can be extended to achieve leakage-
resilience in the bounded-leakage model. Specifically, we achieve (1) leakage-
resilient public key encryption tolerating L bits of leakage for any L from iO
and one-way functions, (2) leakage-resilient public key encryption with optimal
leakage rate of 1 − o(1) based on public-coin differing-inputs obfuscation and
collision-resistant hash functions. Extending these constructions to continual
leakage-resilience (without introducing additional assumptions) is an interest-
ing open problem.

In summary, we provide a thorough study of the connection between program
obfuscation and leakage resilience. We define a new notion of leakage-resilience
(2CLR), and demonstrate new constructions of 2CLR secure encryption and sig-
nature schemes from program obfuscation. Also using program obfuscation, we
construct a compiler that lifts 2CLR-secure schemes to CLR with leakage on
updates; together with our new constructions, this provides a unified and modu-
lar method for constructing CLR with leakage on key updates. Under appropriate
assumptions (namely, the ones used by Brakerski et al. [5] in their construction),
this approach allows us to achieve a leakage rate of 1/4 − o(1), a large improve-
ment over prior work, where the best leakage rate was 1/258−o(1) [20]. Our result
nearly matches the trivial upper-bound of 1/2 − o(1).4 In the bounded leakage
model, we show that it is possible to achieve optimal-rate leakage-resilient public
key encryption from obfuscation and generic assumptions. As we have mentioned
above, Hazay et al. [17] constructed leakage resilient public key encryption in
this model from a far weaker generic assumption, albeit with a far worse leakage
rate. In addition to offering a tradeoff between the strength of the assumption
and the leakage rate, the value of our result in the bounded leakage model is
that it provides direct insight into the connection between program obfuscation
and leakage resilience. We are hopeful that our techniques might lead to future
improvements in the continual-leakage models.

1.3 Details and Techniques

Part I: The Leak-on-Update Compiler. As described above, in the model of
continual leakage-resilience (CLR) [5,11] for public-key encryption or signature
schemes, the secret key can be updated periodically (according to some algorithm

4 Unlike the case of CLR without leakage on key updates, observe that any scheme that
is CLR with leakage on key updates can leak at most 1/2 · |sk|-bits per time period,
since otherwise the adversary can recover an entire secret key. As a consequence,
the optimal leakage rate for a scheme that is CLR with leakage on key updates is
at most 1/2·|sk|

|sk|+|rup| < 1/2, where |sk| is the secret key length and |rup| is the length of

the randomness needed by the update algorithm.

Leakage-Resilient Public-Key Encryption from Obfuscation 105

Update) and the adversary can obtain bounded leakage between any two updates.
Our compiler applies to schemes that satisfy a slight strengthening of CLR we
call consecutive CLR, where the adversary can obtain bounded leakage as a joint
function of any two consecutive keys. More formally, let sk0, sk1, sk2, . . . , skt, . . .
be the secret keys at each time period, where ski = Update(ski−1, ri), and
each ri denotes fresh random coins used at that round. For leakage functions
f1, . . . , ft, . . . (chosen adaptively by the adversary), consider the following two
leakage models:
(1) For consecutive CLR (2CLR), the adversary obtains leakage

f1(sk0, sk1), f2(sk1, sk2), . . . , ft(skt−1, skt),

(2) For CLR with leakage on key updates, the adversary obtains leakage

f1(sk0, r1), f2(sk1, r2), . . . , ft(skt−1, rt),

Our compiler from 2CLR to CLR with leakage on key updates produces
a slightly different Update algorithm for the compiled scheme depending on
whether we assume indistinguishability-obfuscation (iO) [2,14] or public-coin
differing-inputs obfuscation [18]. In both cases, if we start with an underlying
scheme that is consecutive two-key CLR while allowing μ-bits of leakage, then
our compiled scheme is CLR with leakage on key updates with leakage rate

μ

|sk| + |rup| ,

where |rup| is the length of the randomness required by Update. When using iO,
we obtain |rup| = 6|sk|, where |sk| is the secret key length for the underlying
2CLR scheme, whereas using public-coin differing-input obfuscation we obtain
|rup| = |sk|. Thus:

– Assuming iO, the compiled scheme is CLR with leakage on key updates with
leakage rate μ

7·|sk| .
– Assuming public-coin differing-input obfuscation, the compiled scheme is CLR

with leakage on key updates with leakage rate μ
2·|sk| .

Thus, if the underlying 2CLR scheme tolerates the optimal number of bits of
leakage (≈ 1/2·|sk|), then our resulting public-coin differing-inputs based scheme
achieves leakage rate 1/4 − o(1).

Our compiler is obtained by adapting and extending the techniques developed
by [23] to achieve sender-deniable PKE from any PKE scheme. In sender-deniable
PKE, a sender, given a ciphertext and any message, is able to produce coins that
make it appear that the ciphertext is an encryption of that message. Intuitively,
the connection we make to leakage on key updates is that the simulator in the
security proof faces a similar predicament to the coerced sender in the case of
deniable encryption; it needs to come up with some randomness that “explains”
a current secret key as the update of an old one. Our compiler makes any two
such keys explainable in a way that is similar to how Sahai and Waters make

106 D. Dachman-Soled et al.

any ciphertext and message explainable. Intuitively, this is done by “encoding”
a secret key in the explained randomness in a special way that can be detected
only by the (obfuscated) Update algorithm. Once detected, the Update algorithm
outputs the encoded secret key, instead of running the normal procedure.

However, in our context, näıvely applying their techniques would result in
the randomness required by our Update algorithm being very long, which, as
described above, affects the leakage rate of our resulting CLR scheme with leak-
age on key updates in a crucial way (we would not even be able to get a constant
leakage rate). We decrease the length of this randomness in two steps. First, we
note that the sender-deniable encryption scheme of Sahai and Waters encrypts
a message bit-by-bit and “explains” each message-bit individually. This appears
to be necessary in their context in order to allow the adversary to choose its
challenge messages adaptively depending on the public key. For our setting, this
is not the case, since the secret key is chosen honestly (not by the adversary), so
“non-adaptive” security is in fact sufficient in our context and we can “explain” a
secret key all at once. This gets us to |rup| = 6 · |sk| and thus 1/14−o(1) leakage
rate assuming the underlying 2CLR scheme can tolerate the optimal leakage.
Second, we observe that by switching assumptions from iO to the public-coin
differing-inputs obfuscation we can replace some instances of sk in the explained
randomness with its value under a collision-resistant hash, which gets us to
|rup| = sk and thus 1/4 − o(1) leakage rate in this case.

A natural question is whether the upper bound of 1/2− o(1) leakage rate for
CLR with leakage on key updates, can be attained via our techniques (if at all).
We leave this as an intriguing open question, but note that the only way to do
so would be to further decrease |rup| so that |rup| < |sk|.

Part II: Constructions Against Two-Key Consecutive Continual Leakage. We
revisit the existing CLR public-key encryption scheme of [5] and show that
a suitable modification of it achieves 2CLR5 with optimal 1/4 − o(1) leak-
age rate6, under the same assumption used by [5] to achieve optimal leakage
rate in the basic CLR setting (namely the symmetric external Diffie-Hellman
(SXDH) assumption in bilinear groups; smaller leakage rates can be obtained
under weaker assumptions). Our main technical tool here is a new generaliza-
tion of the Crooked Leftover Hash Lemma [3,13] that generalizes the result of [5],
which shows that “random subspaces are leakage resilient,” showing that ran-
dom subspaces are in fact resilient to “consecutive leakage.” Our claim also leads
to a simpler analysis of the scheme than appears in [5].

Finally, we also show (via techniques from learning theory) that 2CLR public-
key encryption generically implies 2CLR one-way relations. Via a transformation
of Dodis et al. [11], this then yields 2CLR signatures with the same leakage rate

5 Note that [5] also constructs such a signature scheme, but, as discussed below, such
a signature scheme can in fact be generically obtained, and therefore for simplicity
we do not consider their direct construction here.

6 In the 2CLR model, the maximum amount of leakage is roughly 1/2 · |sk|, so the

optimal rate is roughly 1/2·|sk|
|sk|+|sk| = 1/4.

Leakage-Resilient Public-Key Encryption from Obfuscation 107

as the starting encryption scheme. Therefore, all the above results translate
to the signature setting as well. We also show a direct approach to constructing
2CLR one-way relations following [11] based on the SXDH assumption in bilinear
groups, although we are not able to achieve as good of a leakage rate this way
(only 1/8 − o(1)).

Part III: Exploring the Relationship Between Bounded Leakage Resilience and
Obfuscation. Note that, interestingly, even the strong notion of VBB obfusca-
tion does not immediately lead to constructions of leakage resilient public-key
encryption. In particular, if we replace the secret key of a public key encryption
scheme with a VBB obfuscation of the decryption algorithm, it is not clear that
we gain anything: E.g., the VBB obfuscation may output a circuit of size |C|,
where only

√|C| number of the gates are “meaningful” and the remaining gates
are simply “dummy” gates, in which case we cannot hope to get a leakage bound
better than L =

√|C|, and a leakage rate of 1/
√|C|. Nevertheless, we are able to

show that the PKE scheme of Sahai and Waters (SW) [23], which is built from
iO and “punctured pseudorandom functions (PRFs),” can naturally be made
leakage resilient. To give some brief intuition, a ciphertext in our construction
is of the form (r, w,Ext(PRF(k; r), w) ⊕ m), where Ext is a strong extractor, r
and w are random values7, and the PRF key k is embedded in obfuscated pro-
grams that are used in both encryption and decryption. In the security proof,
we “puncture” the key k at the challenge point, t∗, and hardcode the mapping
t∗ → y, where y = PRF(k; t∗), in order to preserve the input/output behavior.
As in SW, we switch the mapping to t∗ → y∗ for a random y∗ via security of the
puncturable PRF. But now observe we have that the min-entropy of y∗ is high
even after leakage, so the output of the extractor is close to uniform. To achieve
optimal leakage rate, we further modify the scheme to separate t∗ → y∗ from the
obfuscated program and store only an encryption of t∗ → y∗ in the secret key.

2 Compiler from 2CLR to Leakage on Key Updates

In this section, we present a compiler that upgrades any scheme for public key
encryption (PKE), digital signature (SIG), or one-way relation (OWR) that is
consecutive two-key leakage resilient, into one that is secure against leak on
update. We first introduce a notion of explainable update transformation, which
is a generalization of the idea of universal deniable encryption by Sahai and
Waters [23]. We show how to use such a transformation to upgrade a scheme
(PKE, SIG, or OWR) that is secure in the consecutive two-key leakage model to
one that is secure in the leak-on-update model (Sect. 2.2). Finally, we show two
instantiations of the explainable update transformation: one based on indistin-
guishability obfuscation, and the other on differing-inputs obfuscation (Sect. 2.3).
For clarity of exposition, the following sections will focus on constructions of
PKE, but we remark that the same results can be translated to SIG and OWR.
7 Technically, we actually use pseudo-random value r, just as SW do. We omit this

here to make the explanation a little more clear.

108 D. Dachman-Soled et al.

2.1 Consecutive Continual Leakage Resilience (2CLR)

In this section, we present a new notion of consecutive continual leakage resilience
for public-key encryption (PKE). We remark that this notion can be easily
extended to different cases, such as signatures, leakage resilient one-way rela-
tions [11]. We only present the PKE version for simplicity and concreteness. Let κ
denote the security parameter, and μ be the leakage bound between two updates.
Let PKE = {Gen,Enc,Dec,Update} be an encryption scheme with update.

Setup Phase. The game begins with a setup phase. The challenger calls
PKE.Gen(1κ) to create the initial secret key sk0 and public key pk. It gives
pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function
f1, whose output is at most μ bits. The challenger updates the secret key
(changing it from sk0 to sk1), and then gives the attacker f1(sk0, sk1). The
attacker then repeats this a polynomial number of times, each time supplying
an efficiently computable leakage function fi whose output is at most μ bits.
Each time, the challenger updates the secret key from ski−1 to ski according
to Update(·), and gives the attacker fi(ski−1, ski).

Challenge Phase. The attacker chooses two messages m0, m1 which it gives to the
challenger. The challenger chooses a random bit b ∈ {0, 1}, encrypts mb, and
gives the resulting ciphertext to the attacker. The attacker then outputs a
guess b′ for b. The attacker wins the game if b = b′. We define the advantage
of the attacker in this game as |12 − Pr[b′ = b]|.

Definition 1 (Continual Consecutive Leakage Resilience). We say a
public-key encryption scheme is μ-leakage resilient against consecutive contin-
ual leakage (or μ-2CLR) if any probabilistic polynomial time attacker only has
a negligible advantage (negligible in κ) in the above game.

2.2 Explainable Key-Update Transformation

Now we introduce a notion of explainable key-update transformation, and show
how it can be used to upgrade security of a PKE scheme from 2CLR to CLR with
leakage on key updates. Informally, an encryption scheme has an “explainable”
update procedure if given both ski−1 and ski = Update(ski−1, ri), there is an
efficient way to come up with some explained random coins r̂i such that no
adversary can distinguish the real coins ri from the explained coins r̂i. Intuitively,
this gives a way to handle leakage on random coins given just leakage on two
consecutive keys.

We start with any encryption scheme PKE that has some key update proce-
dure, and we introduce a transformation that produces a scheme PKE′ with an
explainable key update procedure.

Definition 2 (Explainable Key Update Transformation). Let PKE =
PKE.{Gen,Enc,Dec,Update} be an encryption scheme with key update. An
explainable key update transformation for PKE is a ppt algorithm TransformGen

Leakage-Resilient Public-Key Encryption from Obfuscation 109

that takes input security parameter 1κ, an update circuit CUpdate (that imple-
ments the key update algorithm PKE.Update(1κ, ·; ·)), a public key pk of PKE,
and outputs two programs Pupdate,Pexplain with the following syntax:

Let (pk, sk) be a pair of public and secret keys of the encryption scheme

– Pupdate takes inputs sk, random coins r, and Pupdate(sk; r) outputs a updated
secret key sk′;

– Pexplain takes inputs (sk, sk′), random coins v̄, and Pexplain(sk, sk′; v̄) outputs a
string r.

Given a public key pk, we define Πpk =
⋃poly(κ)

j=0 Πj, where Π0 = {sk :
(pk, sk) ∈ PKE.Gen}, Πi = {sk : ∃sk′ ∈ Πi−1, sk ∈ Update(sk′)} for i =
1, 2, . . . ,poly(κ). In words, Πpk is the set of all secret keys sk such that either
(pk, sk) is in the support of PKE.Gen or sk can be obtained by the update procedure
Update (up to polynomially many times) with an initial (pk, sk′) ∈ PKE.Gen.

We say the transformation is secure if:

(a) For any pk, all sk ∈ Πpk, any Pupdate ∈ TransformGen(1κ,PKE.Update, pk),
the following two distributions are statistically close: {Pupdate(sk)} ≈
{PKE.Update(sk)}. Note that the circuit Pupdate and the update algorithm
PKE.Update might have different spaces for random coins, but the distribu-
tions can still be statistically close.

(b) For any public key pk and secret key sk ∈ Πpk, the following two distributions
are computationally indistinguishable:

{(Pupdate,Pexplain, pk, sk, u)} ≈ {(Pupdate,Pexplain, pk, sk, e)},

where (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk), u ←
Upoly(κ), sk

′ = Pupdate(sk;u),
e ← Pexplain(sk, sk′), and Upoly(κ) denotes the uniform distribution over a
polynomial number of bits.

Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption
scheme and TransformGen be an explainable key update transformation
for PKE as above. We define the following transformed scheme PKE′ =
PKE′.{Gen,Enc,Dec,Update} as follows:

– PKE′.Gen(1κ): compute (pk, sk) ← PKE.Gen(1κ).
Then compute (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk).
Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– PKE′.Enc(pk′,m): parse pk′ = (pk,Pupdate,Pexplain). Then output c ←
PKE.Enc(pk,m).

– PKE′.Dec(sk′, c): output m = PKE.Dec(sk′, c).
– PKE′.Update(sk′): sample sk′′ ← Pupdate(sk′) and overwrite the old key, i.e.

sk′ := sk′′.

Then we are able to show the following theorem for the upgraded scheme
PKE′.

110 D. Dachman-Soled et al.

Theorem 1. Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryp-
tion scheme that is μ-2CLR (without leakage on update), and TransformGen a
secure explainable key update transformation for PKE. Then the transformed
scheme PKE′ = PKE′.{Gen,Enc,Dec,Update} described above is μ-CLR with
leakage on key updates.

Proof. Assume towards contradiction that there is a PPT adversary A and a
non-negligible ε(·) such that for infinitely many values of κ, AdvA,PKE′ ≥ ε(κ)
in the leak-on-update model. Then we show that there exists B that breaks the
security of the underlying PKE (in the consecutive two-key leakage model) with
probability ε(κ) − negl(κ). This is a contradiction.

For notionally simplicity, we will use AdvA,PKE′ to denote the advantage of the
adversary A attacking the scheme PKE′ (according to leak-on-update attacks),
and AdvB,PKE to denote the advantage of the adversary B attacking the scheme
PKE (according to consecutive two-key leakage attacks).

We define B in the following way: B internally instantiates A and participates
externally in a continual consecutive two-key leakage experiment on public key
encryption scheme PKE′. Specifically, B does the following:

– Upon receiving pk∗ externally, B runs
(Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk∗). Note that by the
properties of the transformation, this can be done given only pk∗. B sets
pk′ = (pk∗,Pupdate, Pexplain) to be the public key for the PKE′ scheme and
forwards pk′ to A.

– When A asks for a leakage query f(sk′
i−1, ri), B asks for the following leakage

query on (ski−1, ski): f ′(ski−1, ski) = f(ski−1,Pexplain(ski−1, ski)) and forwards
the response to A. Note that the output lengths of f and f ′ are the same.

– At some point A submits m0,m1 and B forwards them to its external exper-
iment.

– Upon receiving the challenge ciphertext c∗, B forwards it to A and outputs
whatever A outputs.

Now we would like to analyze the advantage of B. It is easy to see that B
has the same advantage as A, however there is a subtlety such that A does not
necessarily have advantage ε(κ): the simulation of leakage queries provided by B
is not identical to the distribution in the real game that A would expect. Recall
that in the security experiment of the scheme PKE′, the secret keys are updated
according to Pupdate. In the above experiment (where B set up), the secret keys
were updated using the Update externally, and the random coins were simulated
by the Pexplain algorithm.

Our goal is to show that actually A has essentially the same advantage in
this modified experiment as in the original experiment. We show this by the
following lemma:

Lemma 1. For any polynomial n, the following two distributions are computa-
tionally indistinguishable.

Leakage-Resilient Public-Key Encryption from Obfuscation 111

D1 ≡ (Pupdate,Pexplain, pk, sk0, r1, sk1, . . . , skn−1, rn, skn) ≈
D2 ≡ (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝkn−1, r̂n, ŝkn),

where the initial pk, sk0 and TransformGen(1κ, pk) are sampled identically in both
experiment; in D1 ski+1 = Pupdate(ski; ri+1), and ri+1’s are uniformly random;
in D2, ŝki+1 ← Update(ŝki), r̂i+1 ← Pexplain(ŝki, ŝki+1). (Note ŝk0 = sk0).

Proof. To show the lemma, we consider the following hybrids: for i ∈ [n] define

H(i) = (Pupdate, Pexplain, pk, sk0, r̂1, ̂sk1, . . . , ̂ski−1, ri, ski, ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to D2 for up to ŝki−1. Then it samples a
uniformly random ri, sets ski = Pupdate(ŝki−1; ri), and proceeds as D1.

H(i.5) = (Pupdate, Pexplain, pk, sk0, r̂1, ̂sk1, . . . , ̂ski−1, r̂i, ski, ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to H(i) for up to ŝki−1, and then it samples
ski ← Pupdate(ŝki−1), and r̂i ← Pexplain(ŝki−1, ski). The experiment is identical to
D1 for the rest.

Then we establish the following lemmas, and the lemma follows directly.

Lemma 2. For i ∈ [n − 1], H(i.5) is statistically close to H(i+1).

Lemma 3. For i ∈ [n], H(i) is computationally indistinguishable from H(i.5).

This first lemma follows directly from the property (a) of Definition 2. We
now prove Lemma 3.

Proof. Suppose there exists a (polysized) distinguisher D that distinguishes H(i)

from H(i.5) with non-negligible probability, then there exist pk∗, sk∗, and another
D′ that can break the property (b).

From the definition of the experiments, we know that Pupdate,Pexplain

are independent of the public key and the first i secret keys, i.e. p =
(pk, sk0, ŝk1, . . . , ŝki−1). By an average argument, there exists a fixed

p∗ = (pk∗, sk∗
0, ŝk

∗
1, . . . , ŝk

∗
i−1)

such that D can distinguish H(i) from H(i.5) conditioned on p∗ with non-
negligible probability (the probability is over the randomness of the rest exper-
iment). Then we are going to argue that there exist a polysized distinguisher
D′, a key pair pk′, sk′ such that D′ can distinguish (Pupdate,Pexplain, pk

′, sk′, u)
from (Pupdate,Pexplain, pk

′, sk′, e) where u is from the uniform distribution, sk′′ =
Pupdate(sk′;u), and e ← Pexplain(sk′, sk′′).

Let pk′ = pk∗, sk′ = ŝk
∗
i−1, and we define D′ (with the prefix p∗ hardwired)

who on the challenge input (Pupdate,Pexplain, pk
′, sk′, z) does the following:

– For j ∈ [i − 1], D′ samples r̂j = Pexplain(sk∗
j−1, sk

∗
j).

– Set ski−1 = sk′ and ri = z, ski = Pupdate(ski−1, z).

112 D. Dachman-Soled et al.

– For j ≥ i + 1, D′ samples rj from the uniform distribution and sets skj =
Pupdate(skj−1; rj).

– Finally, D′ outputs D(Pupdate,Pexplain, pk
′, sk∗

0, r̂1, sk
∗
1, . . . , ski−1, ri, ski, ri+1,

. . . , skn).

Clearly, if the challenge z was sampled according to uniformly random (as u),
then D′ will output according to D(H(i)|p∗). On the other hand, suppose it was
sampled according to Pexplain (as e), then D′ will output according to D(Hi.5|p∗).
This completes the proof of the lemma.

Remark. The non-uniform argument above is not necessary. We present in this
way for simplicity. The uniform reduction can be obtained using a standard
Markov type argument, which we omit here.

Now, we are ready to analyze the advantage of B (and A). Denote AdvA,PKE′;D
as the advantage of A in the experiment where the leakage queries are answered
according to the distribution D. By assumption, we know that AdvA,PKE′;D1 =
ε(κ), and by definition the leakage queries are answered according to D1. By the
above lemma, we know that |AdvA,PKE′;D1 − AdvA,PKE′;D2 | ≤ negl(κ), otherwise
D1 and D2 are distinguishable. Thus, we know AdvA,PKE′;D2 ≥ ε(κ)− negl(κ). It
is not hard to see that AdvB,PKE = AdvA,PKE′;D2 , since B answers A’s the leakage
queries exactly according the distribution D2. Thus, AdvB,PKE ≥ ε(κ) − negl(κ),
which is a contradiction. This completes the proof of the theorem.

2.3 Instantiations via Obfuscation

In this section, we show how to build an explainable key update transforma-
tion from program obfuscation. Our best parameters are achieved using public-
coin differing-inputs obfuscation [18] (rather than the weaker indistinguishability
obfuscation (iO) [2,14]), so we present this version here.

Let PKE = (Gen,Enc,Dec,Update) be a public-key encryption scheme (or a
signature scheme with algorithms Verify,Sign) with key-update, and diO be a
public-coin differing-inputs obfuscator (for some class defined later). Let κ be
a security parameter. Let Lsk be the length of secret keys in PKE and Lr be
the length of randomness used by Update. For ease of notation, we suppress
the dependence of these lengths on κ. We note that in the 2CLR case, it is
without loss of generality to assume Lr << Lsk, because we can always use
pseudorandom coins (e.g. the output of a PRG) to do the update. Since only the
two consecutive keys are leaked (not the randomness, e.g. the seed to the PRG),
the update with the pseudorandom coins remains secure, assuming the PRG is
secure.

Let H be a family of public-coin collision resistant hash functions, as well as
a family of (2κ, ε)-good unseeded extractors8, mapping 2Lsk + 2κ bits to κ bits.
Let F1 and F2 be families of puncturable pseudo-random functions, where F1

8 The extractor outputs a distribution that is ε close to the uniform distribution if the
source has min-entropy 2κ. Here we set ε to be some negligible. The hash function
is chosen from a family of functions, and once chosen, it is a deterministic function.

Leakage-Resilient Public-Key Encryption from Obfuscation 113

has input length 2Lsk + 3κ bits and output length Lr bits, and it is as well an
(Lr + κ,ε)-good unseeded extractor; F2 has input length κ and output length
Lsk + 2κ. Here |u1| = κ and |u2| = Lsk + 2κ, |r′| = 2κ.

Define the algorithm TransformGen(1κ, pk) that on input the security para-
meter, a public key pk and a circuit that implements PKE.Update(·) as follows:

– TransformGen samples K1,K2 as keys for the puncturable PRF as above, and
h ← H. Let P1 be the program as Fig. 1, and P2 as Fig. 2.

– Then it samples Pupdate ← diO(P1), and Pexplain ← diO(P2). It outputs
(Pupdate,Pexplain).

Internal (hardcoded) state: Public key pk, keysK1,K2, and h.

On input secret key sk1; randomness u = (u1, u2).

– If F2(K2, u1) ⊕ u2 = (sk2, r
′) for (proper length) strings sk2, r

′ and u1 =
h(sk1, sk2, r

′), then output sk2.
– Else let x = F1(K1, (sk1, u)). Output sk2 = PKE.Update(pk, sk1;x).

Fig. 1. Program update

Internal (hardcoded) state: key K2.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– Set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 2. Program explain

Then we can establish the following theorem.

Theorem 2. Let PKE be any public key encryption scheme with key update.
Assume diO is a secure public-coin differing-inputs indistinguishable obfuscator
for the circuits required by the construction, F1, F2 are puncturable pseudoran-
dom functions with the additional properties stated above, and H is a family
of public-coin collision resistant hash function with the extraction property as
above. Then the transformation TransformGen defined above is a secure explain-
able update transformation for PKE as defined in Definition 2.

Proof. Recall we need to demonstrate that for any public key pk∗ and secret key
sk∗ ∈ Πpk, the following two distributions are computationally indistinguishable:

{(Pupdate,Pexplain, pk
∗, sk∗, u∗)} ≈ {(Pupdate,Pexplain, pk

∗, sk∗, e∗)},

where these values are generated by

114 D. Dachman-Soled et al.

1. (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk∗),
2. u∗ = (u∗

1, u
∗
2) ← {0, 1}Lsk+3κ,

3. Set x∗ = F1(K1, sk
∗||u∗), sk′ = Pupdate(sk∗;u∗). Then choose uniformly ran-

dom r∗ of length κ, and set e∗
1 = h(sk∗, sk′, r∗) and e∗

2 = F2(K2, e
∗
1)⊕(sk′, r∗).

We prove this through the following sequence of hybrid steps.

Hybrid 1: In this hybrid step, we change Step 3 of the above challenge. Instead
of computing sk′ = Pupdate(sk∗;u∗), we compute sk′ = PKE.Update(pk∗, sk∗;x∗):

1. (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk∗),
2. u∗ = (u∗

1, u
∗
2) ← {0, 1}Lsk+3κ,

3. Set x∗ = F1(K1, sk
∗||u∗), sk′ = PKE.Update(pk∗, sk∗;x∗), and choose uni-

formly random r∗ of length κ. Then, e∗
1 = h(sk∗, sk′, r∗) and e∗

2 = F2(K2, e
∗
1) ⊕

(sk′, r∗).

Note that the only time in which this changes the experiment is when the values
(u∗

1, u
∗
2) ← {0, 1}2Lsk+3κ happen to satisfy F2(K2, u

∗
1) ⊕ u∗

2 = (sk′, r′) such that
u∗
1 = h(sk∗, sk′, r′). For any fixed u∗

1, sk
∗, sk′, and a random u2∗ , we know the

marginal probability of r′ is still uniform given u∗
1, sk

∗, sk′. Therefore, we have
Pru2∗[h(sk∗, sk′, r′) = u∗

1] = Prr′ [h(sk∗, sk′, r′) = u∗
1] < 2−κ + ε. This is because h

is a (2κ, ε)-extractor, so the output of h is ε-close to uniform over {0, 1}κ, and a
uniform distribution hits a particular string with probability 2−κ. Since we set ε
to be some negligible, the two distributions are only different with the negligible
quantity.

Hybrid 2: In this hybrid step, we modify the program in Fig. 1, puncturing key
K1 at points {sk1||u∗} and {sk1||e∗}, and adding a line of code at the beginning
of the program to ensure that the PRF is never evaluated at these two points. See
Fig. 3. We claim that with overwhelming probability over the choice of u∗, this
modified program has identical input/output as the program that was used in
Hybrid 1 (Fig. 1). Note that on input (sk∗, e∗) the output of the original program
was already sk′ as defined in Hybrid 1, so the outputs of the two programs are
identical on this input. (This follows because e∗ anyway encodes sk′, so when the
“Else if” statement is triggered in the program of Fig. 1, the output is sk′.) As
long as u∗

1 and u∗
2 do not have the property that u∗

1 = h(sk∗, F2(K2, u
∗
1) ⊕ u∗

2),
then the programs have identical output on input (sk∗, u∗) as well. (This follows
because sk′ is defined as sk′ = Pupdate(sk∗;F1(K1, sk

∗||u∗)) in the challenge game,
which is also the output of the program in Fig. 1 when u∗

1 and u∗
2 fail this

condition.) As we argued in Hybrid 1, with very high probability, u∗ does not
have this property. (We stress that u∗ is fixed before we construct the obfuscated
program described in Fig. 3, so with overwhelming probability over the choice of
u∗, the two programs have identical input output behavior.) Indistinguishability
of Hybrids 1 and 2 follows from the security of the obfuscation.

Hybrid 3: In this Hybrid we change the challenge game to use truly ran-
dom x∗ when computing sk′ = PKE.Update(pk∗, sk∗;x∗), (instead of x∗ =
F1(K1; sk∗||u∗)). Security holds by a reduction to the pseudo-randomness of

Leakage-Resilient Public-Key Encryption from Obfuscation 115

Internal (hardcoded) state: Public key pk∗, keys ˜K1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}),K2, sk′ (as defined in Hybrid 1) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output the value sk′.
– Else If F2(K2;u1) ⊕ u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 3. Program update, as used in Hybrid 2

F1 at the punctured point (sk∗, u∗). More specifically, given an adversary A
that distinguishes Hybrid 2 from Hybrid 3 on values pk∗, sk∗, we describe
an reduction B that attacks the security of the puncturable PRF, F1. B
generates u∗ at random and submits (sk∗, u∗) to his challenger. He receives
K̃1 = PRF.Punct(K1, {sk∗||u∗}), and a value x∗ as a challenge. B computes
sk′ = PKE.Update(pk∗, sk∗;x∗), chooses r∗ at random, and computes e∗ as in
the original challenge game. He creates Pupdate using K̃1 and sampling K2 hon-
estly. The same K2 is used for creating Pexplain. B obfuscates both circuits, which
completes the simulation of A’s view.

Hybrid 4: In this hybrid, we puncture K2 at both u∗
1 and e∗

1, and modify the
Update program to output appropriate hardcoded values on these inputs. (See
Fig. 4.) To prove that Hybrids 3 and 4 are indistinguishable, we rely on secu-
rity of public-coin differing-inputs obfuscation and public-coin collision resistant
hash function. In particular, we will show that suppose the Hybrids are distin-
guishable, then we can break the security of the collision resistant hash function.

Consider the following sampler Samp(1κ) : outputs C0, C1 as the two update
programs as in Hybrids 3 and 4 respectively; and it outputs an auxiliary input
aux = (pk∗, sk∗, sk′, u∗, e∗,K2, h, r∗) sampled as in the both hybrids. Note that
aux includes all the random coins of the sampler. Suppose there exists a distin-
guisher D for the two hybrids, then there exists a distinguished D′ that distin-
guishes (diO(C0), aux) from (diO(C1), aux). This is because given the challenge
input, D′ can complete the rest of the experiment either according to Hybrid
3 or Hybrid 4. Then by security of the diO, we know there exists an adver-
sary (extractor) B that given (C0, C1, aux) finds an input such that C0 and C1

evaluate differently. However, this contradicting the security of the public-coin
collision resistant hash function. We establish this by the following lemma.

Lemma 4. Assume h is sampled from a family of public-coin collision resistant
hash function, (and (2κ, ε)-extracting) as above. Then for any PPT adversary,
the probability is negligible to find a differing input given (C0, C1, aux) as above.

Proof. By examining the two circuits, we observe that the differing inputs have
the following two forms: (s̄k, u∗

1, ū2) such that u∗
1 = h(s̄k, F2(K2;u∗

1) ⊕ ū2),
(s̄k, ū2) �= (sk∗, u∗

2); or (s̄k, e∗
1, ē2) such that e∗

1 = h(s̄k, F2(K2; e∗
1)⊕ ē2), (s̄k, ē2) �=

(sk∗, e∗
2). This is because they will run enter the first Else IF in Hybrid 3 (Fig. 3),

116 D. Dachman-Soled et al.

but will enter the modified line (the first Else IF) in Hybrid 4 (Fig. 4). We argue
that both cases happen with negligible probability; otherwise security of the
hash function can be broken.

For the first case, we observe that the collision resistance and (2κ, ε) extract-
ing guarantee that the probability of finding an pre-image of a random value
u∗
1 is small, even given aux; otherwise there is an adversary who can break

collision resistance. For the second case, we know that e∗
1 = h(sk∗, sk′, r∗) =

h(s̄k, F2(K2; e∗
1) ⊕ ē2) = h(s̄k, e∗

2 ⊕ (sk′, r∗) ⊕ ē2). Since we know that (s̄k, ē2) �=
(sk∗, e∗

2), we find a collision, which again remains hard even given aux.
Thus, suppose there exists a differing-input finder A, we can define an adver-

sary B to break the collision resistant hash function: on input h, B simulates
the sampler Samp with the h. Then it runs A to find a differing input. Then
according to the above argument, either of the two cases will lead to finding a
collision.

Internal (hardcoded) state: Public key pk∗, keys ˜K1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), ˜K2 = PRF.Punct(K2, {u∗

1}, {e∗
1}), sk′ (as

defined in Hybrid 3) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output value sk′.
– Else If u1 = u∗

1 or u1 = e∗
1, let x = F1(˜K1, sk1||u). Output sk2 =

PKE.Update(pk∗, sk1;x).
– Else
– If F2(K2;u1) ⊕ u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 4. Program update, as used in Hybrid 4

Hybrid 5: In this hybrid, we puncture K2 at both u∗
1 and e∗

1, and mod-
ify the Explain program to output appropriate hardcoded values on these
inputs. (See Fig. 5.) Similar to the argument for the previous hybrids,
we argue that Hybrids 4 and 5 are indistinguishable by security of the
public-coin differing-inputs obfuscation and public-coin collision resistant hash
function. Consider a sampler Samp(1κ) : outputs C0, C1 as the two explain pro-
grams as in Hybrids 4 and 5 respectively; and it outputs an auxiliary input
aux = (pk∗, sk∗, sk′, u∗, e∗, K̃2, h, r∗) sampled as in the both hybrids (note that
aux includes all the random coins of the sampler). Similar to the above argu-
ment: suppose there exists a distinguisher D that distinguishers Hybrids 4 and 5,
then we can construct a distinguisher D′ that distinguishes (diO(C0), aux) from
(diO(C1), aux). This is because given the challenging input, D′ can simulate the
hybrids. Then by security of the diO, there exists an adversary (extractor) B
that can find differing inputs. Now we want to argue that suppose the h comes
from a public-coin collision resistant hash family, then no PPT adversary can
find differing inputs. This leads to a contradiction.

Leakage-Resilient Public-Key Encryption from Obfuscation 117

Lemma 5. Assume h is sampled from a family of public-coin collision resistant
hash function, (and (2κ, ε)-extracting) as above. Then for any ppt adversary,
the probability is negligible to find a differing input given (C0, C1, aux) as above.

Proof. The proof is almost identical to that of Lemma4. We omit the details.

Internal (hardcoded) state: key ˜K2 = PRF.Punct(K2, {u∗
1}, {e∗

1}), u∗, e∗.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– If u∗
1 = h(sk1, sk2, r), output u∗. Else If e∗

1 = h(sk1, sk2, r), output e∗.
– Else, set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 5. Program explain, as used in Hybrid 5

Hybrid 6: In this hybrid, we change both e∗
1 and e∗

2 to uniformly random.
Hybrids 5 and 6 are indistinguishable by the security of the puncturable PRF
F2, and by the fact that h is (2κ, ε)-extracting. Clearly in this hybrid, the dis-
tributions of {(Pupdate,Pexplain, pk

∗, sk∗, u∗)} and {(Pupdate,Pexplain, pk
∗, sk∗, e∗)}

are identical. From the indistinguishable arguments that the original game and
Hybrid 6 are indistinguishable, we can argue that the distributions in the original
game are indistinguishable. This concludes the proof.

3 2CLR from “Leakage Resilient Subspaces”

We show that the PKE scheme of Brakerski et al. [5] (BKKV), which has been
proven CLR, can achieve 2CLR (with a slight adjustment in the scheme’s para-
meters). We note that our focus on PKE here is justified by the fact that we
show generically in the full version [8] that any CLR (resp. 2CLR) PKE scheme
implies a CLR “one-way relation” (OWR) [11]; to the best of our knowledge,
such an implication was not previously known. Therefore, by the results of Dodis
et al. [11], this translates all our results about PKE to the signature setting as
well. In the full version [8] of the paper, we show that the approach of Dodis
et al. [11] for constructing CLR OWRs can be extended to 2CLR one-way rela-
tions, but we achieve weaker parameters this way.

Recall that in the work [5], to prove that their scheme is CLR, they show
“random subspaces are leakage resilient”. In particular, they show that for a
random subspace X, the statistical difference between

(
X, f(v)

)
and

(
X, f(u)

)

is negligible, where f is an arbitrary length-bounded function, v is a random
point in the subspace, and u is a random point in the whole space. Then by
a simple hybrid argument, they show that

(
X, f1(v0), f2(v1), . . . , ft(vt−1)

)
and(

X, f1(u0), f2(u1), . . . , ft(ut−1)
)

are indistinguishable, where f1, . . . , ft are arbi-
trary and adaptively chosen length-bounded functions, v0, v1, . . . , vt−1 are inde-
pendent random points in the subspace, and u0, u1, . . . , ut−1 are independent
random points in the whole space. This lemma plays the core role in their proof.

118 D. Dachman-Soled et al.

In order to show that their scheme satisfies the 2CLR security, we consider
random subspaces under “consecutive” leakage. That is, we want to show:

(

X, f1(v0, v1), f2(v1, v2), . . . , ft(vt−1, vt)
) ≈ (X, f1(u0, u1), f2(u1, u2), . . . , ft(ut−1, ut)

)

,

for arbitrary and adaptively chosen fi’s, i.e. each fi can be chosen after seeing the
previous leakage values f1, . . . , fi−1. However, this does not follow by a hybrid
argument of

(
X, f(v)

) ≈ (
X, f(u)

)
, because in the 2CLR case each point is

leaked twice. It is not clear how to embed a challenging instance of (X, f(z))
into the larger experiment while still being able to simulate the rest.

To handle this technical issue, we establish a new lemma showing random
subspaces are “consecutive” leakage resilient. With the lemma and a hybrid argu-
ment, we can show that the above experiments are indistinguishable. Then we
show how to use this fact to prove that the scheme of BKKV is 2CLR.

Lemma 6. Let t, n, �, d ∈ N, n ≥ � ≥ 3d, and q be a prime. Let (A,X) ←
Z

t×n
q × Z

n×�
q such that A · X = 0, T, T ′ ← Rkd(Z�×d

q), U ← Z
n×d
q such that

A · U = 0, (i.e. U is a random matrix in Ker(A)), and f : Zt×n
q × Z

n×2d
q → W

be any function9 . Then we have:

Δ
((

A,X, f(A,XT,XT ′),XT ′),
(
A,X, f

(
A,U,XT ′),XT ′)) ≤ ε,

as long as |W | ≤ (1 − 1/q) · q�−3d+1 · ε2.

Proof. We will actually prove something stronger, namely we will prove, under
the assumptions of the Lemma 6, that

Δ
((

A,X, f(A,X · T,X · T ′),X · T ′, T ′
)
,
(
A,X, f(A,U,X · T ′),X · T ′, T ′

))

≤ 1
2

√
3|W |

(1 − 1/q)q�−3d+1
< ε .

Note that this implies the Lemma by solving for ε, after noting that ignoring
the last component in each tuple can only decrease statistical difference.

For the proof, we will apply Lemma7 as follows. We will take hash function H
to be H : Zn×�

q ×Z
�×d
q → Z

n×d
q where HK(D) = KD (matrix multiplication), and

take the set Z to be Zn×�
q ×Z

�×d
q . Next we take random variable K to be uniform

on Z
n×�
q (denoted as the matrix X), D to be uniform on Rkd(Z�×d

q), and finally
Z = (A,XT ′, T ′) where A is uniform conditioned on AX = 0, T ′ ∈ Rkd(Z�×d

q)
is independent uniform. We define U|Z as the uniform distribution such that
AU = 0. This also means that U is a random matrix in the kernel of A.

It remains to prove under these settings that

Pr [(D,D′, Z) ∈ BAD] ≤ 1
(1 − 1/q)q�−3d+1

9 Note: Rk denotes rank. Here we use n as the dimension (different from [5] who used
m) to avoid overloading notation.

Leakage-Resilient Public-Key Encryption from Obfuscation 119

with BAD defined as in Lemma 7. For this let us consider

Δ
(
(HK|Z (T1),HK|Z (T2)), (U|Z , U ′

|Z)
)

where Z = (A,XT ′, T ′) as defined above. The above statistical distance is zero
as long as the outcomes of T1, T2, T

′ are all linearly independent. This is so
because � ≥ 3d. Now, by a standard formula the probability that T1, T2, T

′ have
a linear dependency is bounded by 1

(1−1/q)q�−3d+1 , and we are done.

We note that this lemma is slightly different that the original lemma in the
work [5]: the leakage function considered here also takes in a public matrix A,
which is used as the public key in the system. We observe that both our work
and [5] need this version of the lemma to prove security of the encryption scheme.

We actually prove Lemma 6 as a consequence of a new generalization of
the Crooked Leftover Hash Lemma (LHL) [3,13] we introduce (to handle hash
functions that are only pairwise independent if some bad event does not happen),
as follows.

Lemma 7. Let H : K × D → R be a hash function and (K,Z) be joint random
variables over (K,Z) for the set K and some set Z. Define the following set

BAD =
{(

d, d′, z
) ∈ D × D × Z : Δ

(
(HK|Z=z

(d), HK|Z=z
(d′)), (U|Z=z , U ′

|Z=z)
)

> 0
}

, (1)

where U|Z=z, U
′
|Z=z denote two independent uniform distributions over R con-

ditioned on Z = z, and K|Z=z is the conditional distribution of K given Z = z.
We note that R might depend on z, so when we describe a uniform distribution
over R, we need to specify the condition Z = z.

Suppose D and D′ are i.i.d. random variables over D, (K,Z) are random
variables over K × Z satisfying Pr [(D,D′, Z) ∈ BAD] ≤ ε′. Then for any set S
and function f : R × Z → S it holds that

Δ((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z))) ≤ 1
2

√
3ε′ |S| .

Proof. The proof is an extension of the proof of the Crooked LHL given in [3].
First, using Cauchy-Schwarz and Jensen’s inequality we have

Δ((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z)))

� 1
2

√√√√|S|Ek,z

[
∑

s

(Pr [f(Hk(D), z) = s] − Pr
[
f(U|Z=z, z) = s

]
)2

]

,

where U|Z=z is uniform on R conditioned on Z = z, and the expectation is over
(k, z) drawn from (K,Z). Thus, to complete the proof it suffices to prove the
following lemma.

120 D. Dachman-Soled et al.

Lemma 8.

Ek,z

[
∑

s

(
Pr [f(Hk(D), z) = s] − Pr

[
f(U|Z=z, z) = s

])2
]

≤ 3ε′ . (2)

Proof. By the linearity of expectation, we can express Eq. 2 as:

Ek,z

∑
s

Pr [f(Hk(D), z) = s]2 − 2Ek,z

∑
s

Pr [f(Hk(D), z) = s]Pr
[
f(U|Z=z , z) = s

]

+EzCol(f(U|Z=z , z)), (3)

where U|Z=z is uniform on R conditioned on Z = z, and Col is the collision prob-
ability of its input random variable. Note that since f(U|Z=z, z) is independent
of k, we can drop it in the third term. In the following, we are going to calculate
bounds for the first two terms.

For any s ∈ S, we can write Pr [f(Hk(D), z) = s] =
∑

d Pr [D = d]
δf(Hk(d),z),s where δa,b is 1 if a = b and 0 otherwise, and thus

∑

s

Pr [f(Hk(D), z) = s]2 =
∑

d,d′
Pr [D = d]Pr [D = d′]δf(Hk(d),z),f(Hk(d′),z) .

So we have

Ek,z

∑
s

Pr [f(Hk(D), z) = s]2 = Ek,z

⎡
⎣∑

d,d′
Pr [D = d]Pr

[
D = d′]δf(Hk(d),z),f(Hk(d′),z)

⎤
⎦

= Ez

⎡
⎣∑

d,d′
Pr [D = d]Pr

[
D = d′]Ek

[
δf(Hk(d),z),f(Hk(d′),z)

]
⎤
⎦

≤
∑

z,d,d′ /∈BAD

Pr [Z = z]Pr [D = d]Pr
[
D = d′]Ek

[
δf(Hk(d),z),f(Hk(d′),z)

]
+ ε′

= Ez
[
Col(f(U|Z=z , z))

]
+ ε′, (4)

where BAD is defined as in Eq. (1) from Lemma 7. The inequality holds because,
by our definition of BAD, if (z, d, d′) /∈ BAD, (Hk(d),Hk(d′)) are distributed
exactly as two uniformly chosen elements (conditioned on Z = z), and because
Pr[(z, d, d′) ∈ BAD] ≤ ε′.

By a similar calculation, we have:

Ek,z

∑

s

Pr [f(Hk(D), z) = s]Pr
[
f(U|Z=z, z) = s

] ≥ Ez

[
Col(f(U|Z=z, z))

]−ε′ .

(5)
For the same reason, Hk(D) is uniformly random except for the bad event, whose
probability is bounded by ε′.

Putting things together, the inequality in Eq. 2 follows immediately by plug-
ging the bounds in Eqs. 4 and 5. This concludes the proof.

Leakage-Resilient Public-Key Encryption from Obfuscation 121

Here we describe the BKKV encryption scheme, and show it is 2CLR-secure.
We begin by presenting the main scheme in BKKV, which uses the weaker
linear assumption, but achieves a worse leakage rate (that can tolerate roughly
1/8 · |sk| − o(κ)). In that work [5], it is also pointed out that under the stronger
SXDH assumption, the rate can be improved to tolerate roughly 1/4 · |sk|−o(k),
with essentially the same proof. The same argument also holds in the 2CLR
setting. To avoid repetition, we just describe the original scheme in BKKV, and
prove that it is actually 2CLR under the linear assumption.

– Parameters. Let G,GT be two groups of prime order p such that there exists
a bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a
generator of GT). An additional parameter � ≥ 7 is polynomial in the security
parameter. (Setting different � will enable a tradeoff between efficiency and
the rate of tolerable leakage). For the scheme to be secure, we require that
the linear assumption holds in the group G, which implies that the size of the
group must be super-polynomial, i.e. p = κω(1).

– Key-generation. The algorithm samples A ← Z
2×�
p , and Y ← Ker2(A), i.e.

Y ∈ Z
�×2
p can be viewed as two random (linearly independent) points in the

kernel of A. Then it sets pk = gA, sk = gY . Note that since A is known, Y
can be sampled efficiently.

– Key-update. Given a secret key gY ∈ G�×2, the algorithm samples R ←
Rk2(Z2×2

p) and then sets sk′ = gY ·R.
– Encryption. Given a public key pk = gA, to encrypt 0, it samples a random

r ∈ Z
2
p and outputs c = grT ·A. To encrypt 1, it just outputs c = guT

where
u ← Z

�
p is a uniformly random vector.

– Decryption. Given a ciphertext c = gvT

and a secret key sk = gY , the
algorithm computes e(g, g)vT ·Y . If the result is e(g, g)0, then it outputs 0;
otherwise 1.

Then we are able to achieve the following theorem:

Theorem 3. Under the linear assumption, for every � ≥ 7, the encryption
scheme above is μ-bit leakage resilient against two-key continual and consecu-
tive leakage, where μ = (�−6)·log p

2 − ω(κ). Note that the leakage rate would be
μ

|sk|+|sk| ≈ 1/8, as � is chosen sufficiently large.

Proof. The theorem follows directly from the following lemma:

Lemma 9. For any t ∈ poly(κ), r ← Z
2
p, A ← Z

2×�
p , random Y ∈ Ker2(A), and

polynomial sized functions f1, f2, . . . , ft where each fi : Z�×2
p × Z

�×2
p → {0, 1}μ

and can be adaptively chosen (i.e. fi can be chosen after seeing the leakage values
of f1, . . . , fi−1), the following two distributions, D0 and D1, are computationally
indistinguishable:

D0 = (g, gA, grT ·A, f1(sk0, sk1), . . . ft(skt−1, skt))

D1 = (g, gA, gu, f1(sk0, sk1), . . . ft(skt−1, skt)),

where sk0 = gY and ski+1 = (ski)Ri for Ri a random 2 by 2 matrix of rank 2.

122 D. Dachman-Soled et al.

Basically, the distribution D0 is the view of the adversary when given an
encryption of 0 as the challenge ciphertext and continual leakage of the secret
keys; D1 is the same except the challenge ciphertext is an encryption of 1. Our
goal is to show that no polynomial sized adversary can distinguish between them.

We show the lemma in the following steps:

1. We first consider two modified experiment D′
0 and D′

1 where in these experi-
ments, all the secret keys are sampled independently, i.e. sk′

i+1 ← Ker2(A). In
other words, instead of using a rotation of the current secret key, the update
procedure resamples two random (linearly independent) points in the kernel
of A. Denote D′

b = (g, gA, gz, f1(sk′
0, sk

′
1), . . . ft(sk′

t−1, sk
′
t)) for gz is sampled

either from grT ·A or gu depending on b ∈ {0, 1}. Intuitively, the operations
are computed in the exponent, so the adversary cannot distinguish between
the modified experiments from the original ones. We formally prove this using
the linear assumption.

2. Then we consider the following modified experiments: for b ∈ {0, 1}, define

D′′
b = (g, gA, gz, f1(gu0 , gu1), f2(gu1 , gu2), · · · , ft(gut−1 , gut)),

where the distribution samples a random X ∈ Z
�×(�−3)
p such that A · X = 0;

then it samples each ui = X · Ti for Ti ← Rk2(Z
(�−3)×2
p); finally it samples

z either as rT · A or uniformly random as in D′
b. We then show that D′′

b is
indistinguishable from D′

b using the new geometric lemma.
3. Finally, we show that D′′

0 ≈ D′′
1 under the linear assumption.

To implement the approach just described, we establish the following lemmas.

Lemma 10. For both b ∈ {0, 1}, Db is computationally indistinguishable from
D′

b.

To show this lemma, we first establish a lemma:

Lemma 11. Under the linear assumption, (g, gA, gY , gY ·U) ≈ (g, gA, gY , gY ′
),

where A ← Z
2×�
p , Y, Y ′ Ker2(A), and U ← Rk2(Z2×2

p).

Suppose there exists a distinguisher A that breaks the above statement with
non-negligible probability, then we can construct B that can break the linear
assumption (the matrix form). In particular, B distinguishes (g, gC , gC·U) from
(g, gC , gC′

) where C and C ′ are two independent and uniformly random samples
from Z

(�−2)×2
p , and U is uniformly random matrix from Z

2×2
p . Note that when

p = κω(1) (this is required by the linear assumption), then with overwhelming
probability, (C||C ′) is a rank 4 matrix, and (C||C · U) is a rank 2 matrix. The
linear assumption is that no polynomial time adversary can distinguish the two
distributions when given in the exponent.

B does the following on input (g, gC , gZ), where Z is either C·U or a uniformly
random matrix C ′:

Leakage-Resilient Public-Key Encryption from Obfuscation 123

– B samples a random rank 2 matrix A ∈ Z
2×�
p . Then B computes an arbitrary

basis of Ker(A) (note that Ker(A) = {v ∈ Z
�
p : A · v = 0}), denoted as X. By

the rank-nullity theorem (see any linear algebra textbook), the dimension of
Ker(A) plus Rk(A) is �. So we know that X ∈ Z

�×(�−2)
p , i.e. X contains (�−2)

vectors that are linearly independent.
– B computes gX·C and gX·Z . This can be done efficiently given (gC , gZ) and

X in the clear.
– B outputs A(g, gA, gX·C , gX·Z).

We observe that when p = κω(1), the distribution of A is statistically close
to a random matrix, and U is statistically close to a random rank 2 matrix.
Then it is not hard to see that gX·C is identically distributed to gY , and gX·Z

is distributed as g(X·C)·U if Z = C · U , and otherwise as gY ′
. So B can break

the linear assumption with probability essentially the same as that of A. This
completes the proof of the lemma.

Then Lemma 10 can be proven using the lemma via a standard hybrid argu-
ment. We show that D0 ≈ D′

0 and the other one can be shown by the same
argument. For i ∈ [t + 1], define hybrids Hi as the experiment as D0 except
the first i secret keys are sampled independently, as D′

0; the rest are sampled
according to rotations, as D0. It is not hard to see that H1 = D0, Ht+1 = D′

0,
and Hi ≈ Hi+1 using the lemma. The argument is obvious and standard, so we
omit the detail.

Then we recall the modified distribution D′′
b : for b ∈ {0, 1},

D′′
b = (g, gA, gz, f1(gu0 , gu1), f2(gu1 , gu2), · · · , ft(gut−1 , gut)),

where the distribution samples a random X ∈ Z
�×(�−2)
p such that A · X = 0;

then it samples each ui = X ·Ti for Ti ← Rk2(Z
(�−2)×2
p), and z is sampled either

rT · A or uniformly random. We then establish the following lemma.

Lemma 12. For b ∈ {0, 1}, D′
b is computationally indistinguishable from D′′

b .

We prove the lemma using another hybrid argument. We prove that D′
0 ≈ D′′

0 ,
and the other follows from the same argument. We define hybrids Qi for i ∈ [t]
where in Qi, the first i secret keys (the exponents) are sampled randomly from
Ker2(A) (as D′

0), and the rest secret keys (the exponents) are sampled as X · T
(as D′′

0). Clearly, Q0 = D′′
0 and Qt+1 = D′

0. Then we want to show that Qi is
indistinguishable from Qi+1 using the extended geometric lemma (Lemma 6).

For any i ∈ [t + 1], we argue that suppose there exists an (even unbounded)
adversary that distinguishes Qi from Qi+1 with probability better than ε, then
there exist a leakage function L and an adversary B such that B can distinguish(
A,X,L(A,X ·T,X ·T ′),X ·T ′

)
from

(
A,X,L(A,U,X ·T ′),X ·T ′

)
in Lemma 6

with probability better than ε − negl(κ) (dimensions will be set later). We will
set the parameters of Lemma 6 such that the two distributions have negligible
statistical difference; thus ε can be at most a negligible quantity.

Now we formally set the dimensions: let X be a random matrix in Z
�×(�−3);

T, T ′ be two random rank 2 matrices in Z
(�−3)×2
p , i.e. Rk2

(
Z
(�−3)×2
p

)
; L : Z�×2

p ×

124 D. Dachman-Soled et al.

Z
�×2
p → {0, 1}2μ; recall that 2μ = (�−6)·log p−ω(κ), and thus |L| ≤ p�−6 ·κ−ω(1).

By Lemma 6, for any (even computationally unbounded) L, we have

Δ
((

A, X, L(A, X · T, X · T ′), X · T ′
)
,
(
A, X, L(A, U, X · T ′), X · T ′

))
< κ−ω(1) = negl(κ).

Let g be a random generator of G, and ω is some randomness chosen uni-
formly. We define a particular function L∗, with g, ω hardwired, as follows:
L∗(A,w, v) on input A,w, v does the following:

– It first samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it
sets skj = gYj for j ∈ [i − 1].

– It simulates the leakage functions, adaptively, obtains the values
f1(sk0, sk1), . . . , fi−1(ski−2, ski−1), and obtains the next leakage function fi.

– It computes fi(ski−1, g
w), and then obtains the next leakage function fi+1.

– Finally it outputs fi(ski−1, g
w)||fi+1(gw, gv).

Recall that fi, fi+1 are two leakage functions with μ bits of output, so L∗ has
2µ bits of output. Now we construct the adversary B as follows:

– Let g be the random generator, ω be the random coins as stated above, and L∗

be the function defined above. Then B gets input (A,X,L∗(A,Z,X ·T ′),X ·T ′)
where Z is either uniformly random or X · T .

– B samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it sets
skj = gYj for j ∈ [i−1]. We note that the secret keys (in the first i−1 rounds)
are consistent with the values used in the leakage function for they use the
same randomness ω.

– B sets ski+2 = gX·T ′
.

– B samples Ti+3, . . . , Tt+1 ← Rk2(Z
(�−3)×2
p) and sets skj = gX·Tj for j ∈ {i +

3, . . . , t + 1}.
– B outputs A

(
gA, gz, f1(sk0, sk1), f2(sk1, sk2), · · · , fi−1(ski−2, ski−1), L∗(Z,X ·

T ′), fi+2(ski+2, sk
′
i+3), . . . , ft(sk′

t, sk
′
t+1)

)
.

Then it is not hard to see that if Z comes from the distribution XT , then the
simulation of B and L∗ distributes as Qi, and otherwise Qi−1. Thus, suppose A
can distinguish Qi from Qi+1 with non-negligible probability ε, then B can dis-
tinguish the two distributions with a non-negligible probability. This contradicts
Lemma 6.

Finally, we show that D′′
0 is computationally indistinguishable from D′′

1 under
the linear assumption.

Lemma 13. Under the linear assumption, the distributions D′′
0 and D′′

1 are
computationally indistinguishable.

We use the same argument as the work [5]. In particular, we will prove that
suppose there exists an adversary A that distinguishes D′′

0 from D′′
1 , then there

Leakage-Resilient Public-Key Encryption from Obfuscation 125

exists an adversary B that distinguishes the distributions {gC : C ← Z
3×3
p } and

{gC : C ← Rk2(Z3×3
p)}. We assume that the second distribution samples two

random rows, and then sets the third row as a random linear combination of
the first two rows. As argued in the work [5], this assumption is without loss of
generality.

Now we describe the adversary B. B on input gC does the following.

– B samples a random matrix X ← Z
�×(�−3)
p , and a random matrix B ← Z

3×�
p

such that B · X = 0.
– B computes gCB , and sets its first two rows as gA and the last row as gz.
– B samples T1, . . . , Tt ← Rk2(Z

(�−3)×2
p), and sets ski = gXTi for i ∈ [t].

– B outputs A(g, gA, gz, f1(sk0, sk1), . . . , ft(skt−1, skt)).

As argued in the work [5], if C is uniformly random, then (A, z) is distributed
uniformly as D′′

1 . If C is of rank 2, then (A, z) is distributed as (A, rT A) for some
random r ∈ Z

2
p as D′′

0 . Thus, suppose A can distinguish D′′
0 from D′′

1 with non-
negligible probability, then B breaks the linear assumption with non-negligible
probability.

Lemma 9 (D0 ≈ D1) follows directly from Lemmas 10, 12, and 13. This suf-
fices to prove the theorem. We present the proofs of Lemmas 10, 12, and 13.

4 Bounded Leakage-Resilient Encryption Schemes
from Obfuscation

We show that by modifying the Sahai-Waters (SW) public key encryption
scheme [23] in two simple ways, the scheme already becomes non-trivially leak-
age resilient in the one-time, bounded setting. Recall that in this setting, the
adversary, after seeing the public key and before seeing the challenge ciphertext,
may request a single leakage query of length L bits. We require that semantic
security hold, even given this leakage.

Our scheme can tolerate an arbitrary amount of one-time leakage. Specifi-
cally, for any L = L(κ) = poly(κ), we can obtain a scheme which is L-leakage
resilient by setting the parameter ρ in Fig. 6 depending on L. However, our leak-
age rate is not optimal, since the size of the secret key sk, grows with L. In the
full version [8] of the paper, we will show how to further modify the construction
to achieve optimal leakage rate.

On a high-level, we modify SW in the following ways: (1) Instead of following
the general paradigm of encrypting a message m by xoring with the output of
a PRF, we first apply a strong randomness extractor Ext to the output of the
PRF and then xor with the message m; (2) We modify the secret key of the
new scheme to be an iO of the underlying decryption circuit. Recall that in SW,
decryption essentially consists of evaluating a puncturable PRF. In our scheme,
sk consists of an iO of the puncturable PRF, padded with poly(L) bits.

We show that, even given L bits of leakage, the attacker cannot distinguish
Ext(y) from random, where y is the output of the PRF on a fixed input t∗. This

126 D. Dachman-Soled et al.

will be sufficient to prove security. We proceed by a sequence of hybrids: First,
we switch sk to be an obfuscation of a circuit which has a PRF key punctured at
t∗ and a point function t∗ → y hardcoded. On input t �= t∗, the punctured PRF
is used to compute the output, whereas on input t∗, the point function is used.
Since the circuits compute the same function and—due to appropriate padding—
they are both the same size, security of the iO implies that an adversary cannot
distinguish the two scenarios. Next, just as in SW, we switch from t∗ → y to
t∗ → y∗, where y∗ is uniformly random of length L+Lmsg+2 log(1/ε) bits; here we
rely on the security of the punctured PRF. Now, observe that since y∗ is uniform
and since Ext is a strong extractor for inputs of min-entropy Lmsg + 2 log(1/ε)
and output length Lmsg, Ext(y∗) looks random, even under L bits of leakage.

The informal theorem statement is below. We present the formal theorem
and proof in the full version (Figs. 7 and 8).

Encryption Scheme E = (E .Gen, E .Enc, E .Dec)

Key Generation: (pk, sk0) ← E .Gen(1κ)
Compute k ← PRF.Gen(1κ), where PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ. Let Ck be the
circuit described in Figure 7, and let CEnc ← iO(Ck).
Let Ck,κ+ρ be the circuit described in Figure 8, and let CDec ← iO(Ck,κ+ρ).
Output pk = (CEnc) and sk = (CDec).

Encryption: c ← E .Enc(pk,m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w,Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and Ext :
{0, 1}ρ × {0, 1}d → {0, 1}Lmsg .

Decryption: m̂ ← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(t).
If y �= ⊥, output m̂ = Ext(y, w) ⊕ v. Otherwise, output m̂ = ⊥.

Fig. 6. The one-time, bounded leakage encryption scheme, E .

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 7. This program Ck is obfuscated using iO and placed in the public key to be used
for encryption.

Theorem 4 (Informal.). Under appropriate assumptions, E is L-leakage
resilient against one-time key leakage where L = ρ − 2 log(1/ε) − Lmsg.

Leakage-Resilient Public-Key Encryption from Obfuscation 127

Internal (hardcoded) state: k.

On input: t

– Output z = PRF.Eval(k, t).

Fig. 8. The circuit above is padded with poly(κ+ρ) dummy gates to obtain the circuit
Ck,κ+ρ. Ck,κ+ρ is then obfuscated using iO and placed in the secret key.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

3. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

4. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

5. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: public-key cryptography resilient to continual memory leakage. In: 51st
FOCS, pp. 501–510. IEEE Computer Society Press, October 2010

6. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

7. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015)

8. Dachman-Soled, D., Gordon, S.D., Liu, F.-H., O’Neill, A., Zhou, H.-S.: Leakage-
resilient public-key encryption from obfuscation. Full version (2016)

9. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015)

10. Dachman-Soled, D., Liu, F.-H., Zhou, H.-S.: Leakage-resilient circuits revisited –
optimal number of computing components without leak-free hardware. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 131–158. Springer,
Heidelberg (2015)

11. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, pp. 511–520. IEEE Computer Society
Press, October 2010

12. Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 688–697. IEEE Computer Society
Press, October 2011

13. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 654–663. ACM Press, May
2005

128 D. Dachman-Soled et al.

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

15. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

16. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)

17. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

18. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 668–697. Springer, Heidelberg (2015)

19. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

20. Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 725–734. ACM Press, June 2011

21. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

22. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

23. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

	Leakage-Resilient Public-Key Encryption from Obfuscation
	1 Introduction
	1.1 Background and Motivation
	1.2 Overview of Our Results
	1.3 Details and Techniques

	2 Compiler from 2CLR to Leakage on Key Updates
	2.1 Consecutive Continual Leakage Resilience (2CLR)
	2.2 Explainable Key-Update Transformation
	2.3 Instantiations via Obfuscation

	3 2CLR from ``Leakage Resilient Subspaces''
	4 Bounded Leakage-Resilient Encryption Schemes from Obfuscation
	References

