
Functional Encryption for Inner Product
with Full Function Privacy

Pratish Datta(B), Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. Functional encryption (FE) supports constrained decryption
keys that allow decrypters to learn specific functions of encrypted mes-
sages. In numerous practical applications of FE, confidentiality must be
assured not only for the encrypted data but also for the functions for
which functional keys are provided. This paper presents a non-generic
simple private key FE scheme for the inner product functionality, also
known as inner product encryption (IPE). In contrast to the existing sim-
ilar schemes, our construction achieves the strongest indistinguishability-
based notion of function privacy in the private key setting without
employing any computationally expensive cryptographic tool or non-
standard complexity assumption. Our construction is built in the asym-
metric bilinear pairing group setting of prime order. The security of our
scheme is based on the well-studied Symmetric External Diffie-Hellman
(SXDH) assumption.

Keywords: Functional encryption · Inner product · Function privacy ·
Asymmetric bilinear group

1 Introduction

The recent advancement in cloud technology has triggered an emerging trend
among individuals and organizations to outsource potentially sensitive private
informations to external untrustworthy servers and remotely carry out various
computations on the outsourced data at some later point in time by querying
the server. Functional encryption (FE) is an ambitious vision of modern cryptog-
raphy that attempts to preserve confidentiality of externally stored data while
allowing entities to delegate computations on the outsourced data in such cloud
computing platforms. FE supports “restricted” decryption keys, also known
as “functional keys”, that enable decrypters to learn specific functions of the
encrypted data and nothing else. More precisely, in an FE scheme for certain
function family F , it is possible to derive functional keys skf for any function
f ∈ F from a master secret key. Any party given such a functional key skf and
a ciphertext ctz encrypting some message z, should be able to learn f(z) and
nothing beyond that about z.

c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 164–195, 2016.
DOI: 10.1007/978-3-662-49384-7 7



Functional Encryption for Inner Product with Full Function Privacy 165

A principle focus of research on FE has been to identify what class of functions
F can be supported and what notion of security can be achieved. In terms of
functionality, starting with the seminal notions of identity-based encryption (IBE)
and attribute-based encryption (ABE), FE has progressively evolved through a
series of distinguished works to support more and more expressive function fam-
ilies culminating into the recent state of the art schemes which are now able to
realize computation of arbitrary polynomial-size circuits [6,7,10–12]. Regarding
security, the vast majority of research on FE so far has concentrated on protecting
privacy of the encrypted contents [6,15].

1.1 Function Privacy in Functional Encryption

A wide range of practical applications, however, demands not only privacy of
the encrypted messages but also privacy of the functions for which functional
keys are provided. This is especially desirable whenever the function embedded
in the functional key itself contains sensitive informations.

Consider the following motivating scenario: Assume that a health organiza-
tion subscribes to a cloud service provider to store medical records of its patients.
To ensure confidentiality of informations, the organization encrypts those records
locally using an FE scheme prior to uploading them to the cloud server. Now,
using the inherent feature of FE, later on the organization can request the cloud
server to perform some analysis on the encrypted records by providing the server
the functional key for the respective function. However, if the FE scheme in use
does not guarantee any hiding for the functions, which may include sensitive
contents, embedded in the functional keys, then the functional keys might reveal
the functions completely to the cloud, thereby leaking sensitive informations.

Private key vs public key setup: Countless real-life applications have driven
the research on function privacy in the context of FE, using the private key
setting first by Shen et al. [16] followed by the works of [2,8], while in the pub-
lic key setting by Boneh et al. [4,5]. Intuitively, function privacy requires that
functional keys reveal no unnecessary information on their functionality. How-
ever, the extent to which function privacy can be satisfied differs dramatically
between the private key and public key regimes. Specifically, in the public key
domain, where anyone can encrypt messages, only a limited form of function
privacy can be attained. To formulate a meaningful security definition, a frame-
work must assume that the functions come from a distribution having sufficient
entropy [4,5]. On the contrary, in the private key setting, function privacy has
been shown to have tremendously greater potential compared to the public key
domain, both as a stand-alone feature and as a very useful building block.

Full-hiding security model for private key FE: For private key FE schemes,
the strongest (indistinguishability-based) notion of function privacy, also known
as full-hiding security, formulated in [2,8] considers both privacy of functional
keys and privacy of encrypted data in a perfectly symmetric manner. More pre-
cisely, full-hiding security considers adversaries that interact with



166 P. Datta et al.

(I) a left-or-right functional key generation oracle and
(II) a left-or-right encryption oracle,

where both oracles operate using the same bit c ∈ {0, 1}. The adversaries sub-
mit a pair of functions (f (j,0), f (j,1)) to the functional key generation oracle
in order to make the j-th functional key query while they submit a pair of
messages (z(�,0), z(�,1)) to the encryption oracle for making the �-th ciphertext
query. Depending on the bit c, the functional key generation oracle returns the
functional key skf(j,c) whereas the encryption oracle sends back the ciphertext
ctz(�,c) . The adversaries are allowed to interact with these oracles for any polyno-
mial number of queries and the adversaries’ goal is to distinguish the cases c = 0
and c = 1. The constraint on the adversaries is that for all (f (j,0), f (j,1)) and
(z(�,0), z(�,1)) with which they query the functional key generation and encryp-
tion oracles respectively, it should hold that f (j,0)(z(�,0)) = f (j,1)(z(�,1)). This
is clearly the minimum necessary restriction as otherwise the adversaries can
trivially determine the bit c used by the oracles.

Regarding the construction of function private FE schemes in the private key
setting, recently Brakerski and Segev [8] have presented a generic transforma-
tion from any private key (possibly non-function-private) FE scheme for general
polynomial-size circuits into one that achieves function privacy in the strongest
model discussed above. Then by combining [8] with the works of [11,12], or [10],
one can obtain private key function-private FE scheme supporting general cir-
cuits with strong security guarantee. However, the most significant drawback of
the resulting constructions is that they would employ computationally intensive
tools for secure computation such as fully homomorphic encryption or program
obfuscation and their security would rely on strong assumptions such as indis-
tinguishability obfuscation, extractability obfuscation, or polynomial hardness
of simple assumptions on multilinear maps. Consequently, these solutions are
far from being practical.

1.2 Inner Product Encryption and Function Privacy

A current motivation of cryptographic research community is to design direct and
efficient FE schemes for functionalities of practical interest which are still expres-
sive enough for real-life applications. As a first attempt, researchers have focused
on the inner product functionality which is an extremely useful functionality in
the context of descriptive statistics, for example, to compute the weighted mean
of a collection of informations. Further, the inner product enables computation
of conjunctions, disjunctions, polynomial evaluations, and exact thresholds.

An inner product function family IPp is parameterized by a prime integer
p. A function ip�y ∈ IPp is associated with a vector �y ∈ Z

n
p of length n over the

finite field Zp. On a message �x ∈ Z
n
p , ip�y(�x) is defined to be the inner product

〈�x, �y〉 modulo p of the vectors �x and �y. We stress that this formulation of inner-
product FE, also referred to as inner product encryption (IPE) is distinct from
[2,13,14,16] which study inner product in the context of predicate encryption
(PE). In inner product PE, a message M is encrypted along with a tag �x ∈ Z

n
p



Functional Encryption for Inner Product with Full Function Privacy 167

and decryption with a key corresponding to a vector �y ∈ Z
n
p yields M if and

only if 〈�x, �y〉 = 0. In contrast, the objective in the IPE formulation is to learn
the actual inner product value in Zp itself.

The first construction of IPE was presented by Abdalla et al. [1] who devel-
oped a selectively secure construction in traditional discrete log groups. However,
this construction is built in public key domain and do not support any form of
function privacy. Very recently, Bishop et al. [3] have taken a first step forward
towards exploring the possibility of attaining function privacy in the context
of IPE utilizing efficient and well-studied primitives. In fact, they have con-
structed a function-private IPE scheme in private key domain that withstands
any polynomial number of ciphertext and functional key queries. Their construc-
tion makes use of asymmetric bilinear pairing groups and derives its security from
the well-studied Symmetric External Diffie-Hellman (SXDH) assumption albeit
in a rather weak and unrealistic security model.

1.3 Our Contribution

The current state of the art leaves open the problem of constructing a private key
IPE scheme achieving the strongest practical notion of full-hiding security under
standard assumptions without employing any heavy-duty cryptographic tool. In
this paper we provide a positive answer to this challenging problem. In partic-
ular, we develop a simple and efficient private key IPE scheme achieving the
strongest notion of function privacy based on well-studied complexity assump-
tion. As in [3], our construction utilizes asymmetric bilinear pairing groups of
prime order and we are able to establish the stronger form of security under the
SXDH assumption. In order to ensure correctness of our construction, like [1,3],
we assume that the target inner products will be contained within a range of
polynomial-size. As pointed out in [1,3], this assumption is quite reasonable for
statistical applications, where, for instance, the average of some bounded quan-
tity over a polynomial-size database will naturally be included in a polynomial
range.

Although our construction has some resemblance to that of [3], we highlight
several differences below:

– We innovate new technical ideas in order to realize the strongest notion of
full-hiding security while maintaining the simplicity of the scheme. For all
(�y(j,0), �y(j,1)) and (�x(�,0), �x(�,1)) with which the adversaries query the func-
tional key generation and encryption oracles respectively, the security frame-
work of [3] assumes that

〈�x(�,0), �y(j,0)〉 = 〈�x(�,0), �y(j,1)〉 = 〈�x(�,1), �y(j,0)〉 = 〈�x(�,1), �y(j,1)〉 (1)

whereas according to the full-hiding security framework of [2,8], the only
constraint should be

〈�x(�,0), �y(j,0)〉 = 〈�x(�,1), �y(j,1)〉. (2)



168 P. Datta et al.

The additional restriction in the security model of [3] has not only weakened
the security of their construction significantly but also it has rendered the
security model itself rather unrealistic. Our security framework is free from
any such restriction beyond that specified in Eq. (2), therefore, much more
practical compared to that of [3].

– As in [3], we make use of the concept of dual pairing vector spaces (DPVS)
introduced in [13,14] to obtain the features of hidden subspaces in prime
order bilinear group setting. However, our two DPVS have dimensions 4n + 2
and 6 respectively while those of [3] have dimensions 2n and 2 respectively.
Here n is the dimension of vectors for functional keys and ciphertexts. This
results in some loss in efficiency. However, this seems rather unavoidable for
strengthening the security both from theoretical and practical point of view.

– Analogous to [3], we consider two pairs of dual orthonormal bases, one for
each of the two dimensions considered. But instead of including the complete
bases like [3], we put certain portions of them in the master secret key while
preserve the remaining dimensions for the security reduction. Specifically, we
employ 3n and 3 hidden dimensions of the pairs of bases of dimensions 4n+2
and 6 respectively to move things forward in our hybrid security argument.

– At a technical level, [3] used each component of the vectors twice while encod-
ing the vectors in ciphertexts and functional keys by coupling them with the
basis vectors included in the master secret key. On the contrary, in our con-
struction, we utilize the components of these vectors only once in the process
of encoding with the basis vectors of the master secret key.

– Although similar to [3], we treat ciphertexts and functional keys in a symmet-
ric fashion in our construction, our hybrid security proof does not maintain
any such symmetry. Specifically, the approach of [3] first established the pri-
vacy of encrypted messages in the multiple ciphertext framework and then
leveraged the symmetry between the structures of ciphertexts and functional
keys to flip the same reasoning to argue for function privacy. In doing so, they
relied on an information theoretic step that required the additional constraint
as in Eq. (1) on the queries of the adversaries. In order to remove the extra
restriction, we face several challenges. For our security analysis, we design
our hybrid argument differently using a different information theoretic prop-
erty of DPVS proven by [13] in a non-trivial way. We begin our hybrid game
transition by changing the form of the queried ciphertexts and instead of fin-
ishing it off completely, at some appropriate point, we initiate change in the
queried functional keys. Since then the transformations of functional keys and
ciphertexts proceed hand in hand.

2 Preliminaries

Throughout this paper we will follow notations presented in Fig. 1.



Functional Encryption for Inner Product with Full Function Privacy 169

Fig. 1. Notations

2.1 The Notion of Private Key Function-Private IPE

We adopt the general notion of function-private functional encryption in the pri-
vate key setting, introduced in [2,8], to the particular functionality of computing
inner products of n-length vectors over Zp for some prime integer p and some
positive integer n. We will consider only non-zero vectors. Note that this is a
reasonable consideration for all practical applications of inner products.

� Syntax: A private key function-private IPE (PKFP-IPE) scheme consists of
the following probabilistic polynomial-time algorithms:

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter
1λ and a positive integer n (polynomial in λ) specifying the desired length of
vectors for the functional keys and ciphertexts. It generates a master secret
key msk for itself while publishes public parameters pp. (Note that we are
not dealing with a public key scheme, so pp are not sufficient to encrypt –
those are just parameters that need not be kept secret.)

PKFP-IPE.Encrypt(msk,pp, �x): On input the master secret key msk, the public
parameters pp, and a vector �x ∈ Z

n
p\{�0}, where �0 denotes the all zero vector

in Z
n
p , the data owner produces a ciphertext ct�x.

PKFP-IPE.KeyGen(msk,pp, �y): Taking as input the master secret key msk, the
public parameters pp, and a vector �y ∈ Z

n
p\{�0}, the data owner provides a

functional key sk�y to a legitimate decrypter.
PKFP-IPE.Decrypt(pp,ct�x, sk�y): A decrypter takes as input the public parame-

ters pp, a ciphertext ct�x encrypting some vector �x, and a functional key
sk�y corresponding to some vector �y. It outputs either a value m ∈ Zp or the
distinguished symbol ⊥.



170 P. Datta et al.

� Correctness: The correctness of an PKFP-IPE scheme requires the following:
For all �x, �y ∈ Z

n
p\{�0},

Pr
[
(msk,pp) $←− PKFP-IPE.Setup(1λ, n);ct�x

$←− PKFP-IPE.Encrypt(msk,pp, �x);

sk�y
$←− PKFP-IPE.KeyGen(msk,pp, �y) :

PKFP-IPE.Decrypt(pp,ct�x, sk�y) = 〈�x, �y〉] > 1 − ε(λ)

for some negligible function ε. As in [1,3], in our construction as well we would
only require that the above holds when 〈�x, �y〉 is from a fixed polynomial range
of values inside Zp.

� Security: The indistinguishability-based full hiding security notion for a
PKFP-IPE scheme is defined by the following game between a probabilistic adver-
sary A and a probabilistic challenger C:

Setup: C generates (msk,pp) $←− PKFP-IPE.Setup(1λ, n). It gives pp to A. It

also selects c
$←− {0, 1}.

Query Phase: Throughout the game, A may adaptively make any polynomial
number of queries of the following two types:

– Functional key query : To make the j-th functional key query, A submits a
pair of vectors (�y(j,0), �y(j,1)) ∈ (

Z
n
p\{�0})2 to C. C creates a functional key

sk(j) $←− PKFP-IPE.KeyGen(msk, pp, �y(j,c)) and hands sk(j) to A.
– Ciphertext query : To make the �-th ciphertext query, A sends a pair of vectors

(�x(�,0), �x(�,1)) ∈ (
Z

n
p\{�0})2 to C. C forms ct(�) $←− PKFP-IPE.Encrypt(msk,

pp, �x(�,c)) and returns ct(�) to A.

Suppose that A makes q1 number of functional key queries and q2 number of
ciphertext queries during the game. The restriction on the queries is that for all
j = 1, . . . , q1 and for all � = 1, . . . , q2, 〈�x(�,0), �y(j,0)〉 = 〈�x(�,1), �y(j,1)〉.
Guess: A eventually outputs a bit c′ ∈ {0, 1}.

Let ViewA(c) denotes the view of A in the above game when the c ∈ {0, 1} is
the random bit selected by C in the setup phase.

Definition 1. A PKFP-IPE is said to achieve (full) indistinguishability-based
full hiding security if for any probabilistic polynomial-time adversary A, for any
security parameter λ, the advantage of A in the above game, AdvPKFP−IPE

A (λ) =∣
∣Pr

[A(ViewA(0)) = 1
] − Pr

[A(ViewA(1)) = 1
]∣∣ < ε(λ) for some negligible func-

tion ε.

2.2 Asymmetric Bilinear Group and SXDH Assumption

Definition 2 (Asymmetric Bilinear Pairing Group). An asymmetric
bilinear pairing group (p,G1,G2,GT , g1, g2, e) is a tuple of a prime integer p;



Functional Encryption for Inner Product with Full Function Privacy 171

cyclic multiplicative groups G1,G2,GT of order p each with polynomial-time com-
putable group operations; generators g1 ∈ G1, g2 ∈ G2; and a polynomial-time
computable non-degenerate bilinear pairing e : G1 × G2 → GT , i.e., e satisfies

– (bilinearity) e(gs
1, g

s̆
2) = e(g1, g2)ss̆ for all s, s̆ ∈ Zp and

– (non-degeneracy) e(g1, g2) �= 1GT
, where 1GT

denotes the identity element of
the group GT .

Let GABPG be an algorithm that on input the security parameter 1λ, outputs a
description (p,G1,G2,GT , g1, g2, e) of an asymmetric bilinear pairing group.

Assumption 1 (Symmetric External Diffie-Hellman: SXDH). The SXDH
problem is to distinguish between the distributions �β =

(
(p,G1,G2,GT , g1, g2, e),

gμ
1 , gν

1 ,	β ,
)

for β ∈ {0, 1} such that (p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ),

μ, ν
$←− Zp, and 	β = gμν+r

1 where r = 0 or r
$←− Zp according as β = 0 or

1 respectively.
The SXDH assumption states that for any probabilistic polynomial-time algo-

rithm C, for any security parameter λ, AdvSXDH
C (λ) =

∣
∣Pr

[C(�0) = 1
] −

Pr
[C(�1) = 1

]∣∣ < ε(λ) for some negligible function ε. It also states that the
same is true for the analogous distributions obtained from switching the roles of
G1 and G2, i.e., �̆β =

(
(p,G1,G2,GT , g1, g2, e), g

μ̆
2 , gν̆

2 , 	̆β

)
for β ∈ {0, 1} such

that μ̆, ν̆
$←− Zp, and 	̆β = gμ̆ν̆+r̆

2 where r̆ = 0 or r̆
$←− Zp according as β = 0 or

1 respectively.

2.3 Dual Pairing Vector Spaces

Definition 3 (Dual Pairing Vector Spaces (DPVS)). A dual pairing vector
space (DPVS) (p,V1,V2,GT ,A1,A2, E) by a direct product of asymmetric pairing
groups (p,G1,G2,GT , g1, g2, e) is a tuple of a prime integer p; n-dimensional
vector space Vh = G

n
h over Zp under vector addition ⊕ and scalar multiplication

⊗ defined respectively as g�v
h ⊕ g �w

h = g�v+�w
h and a ⊗ g�v

h = ga�v
h , for h = 1, 2, where

�v, �w ∈ Z
n
p , and a ∈ Zp; canonical bases Ah = {g�ei

h }i=1,...,n of Vh, for h = 1, 2,

where �ei = (
i−1︷ ︸︸ ︷

0, . . . , 0, 1,

n−i︷ ︸︸ ︷
0, . . . , 0) ∈ Z

n
p ; and a pairing E : V1 × V2 → GT . The

pairing E is defined by E(g�v
1 , g �w

2 ) =
n∏

i=1

e(gvi
1 , gwi

2 ) = e(g1, g2)〈�v,�w〉 ∈ GT , where

�v, �w ∈ Z
n
p . Observe that the map E is non-degenerate bilinear, i.e., E satisfies

– (bilinearity) E(s⊗g�v
1 , s̆⊗g �w

2 ) = E(gs�v
1 , gs̆ �w

2 ) = E(g�v
1 , g �w

2 )ss̆ for s, s̆ ∈ Zp, �v, �w ∈
Z

n
p and

– (non-degeneracy) if E(g�v
1 , g �w

2 ) = 1GT
for all �w ∈ Z

n
p , then �v = �0.

When clear from the context, we will often omit the symbols ⊕ and ⊗ for vector
addition and scalar multiplication respectively in DPVS’s. The DPVS generation
algorithm GDPVS takes input a positive integer n together with (p,G1,G2,GT , g1,



172 P. Datta et al.

g2, e)
$←− GABPG(1λ) and outputs a description (p,V1,V2, GT ,A1,A2, E) of DPVS

with n-dimensional vector spaces Vh for h = 1, 2.

In Fig. 2 we describe random dual orthonormal basis generator GOB(Zn
p ) for

some prime integer p and positive integer n. This algorithm would be utilized as
a subroutine in our PKFP-IPE construction.

Fig. 2. Dual orthonormal basis generator GOB(Z
n
p )

3 Our PKFP-IPE Scheme

� Construction:

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter
1λ and a positive integer n specifying the desired length of vectors for the
keys and ciphertexts. It proceeds as follows:
1. It first generates an asymmetric bilinear group

(p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ).

2. Then it forms

(p,V1,V2,GT ,A1,A2, E) $←− GDPVS

(
4n + 2, (p,G1,G2,GT , g1, g2, e)

)
and

(p,V′
1,V

′
2,GT ,A′

1,A
′
2, E

′) $←− GDPVS

(
6, (p,G1,G2,GT , g1, g2, e)

)
.

3. Next, it samples dual orthonormal bases
(
B = {�b1, . . . ,�b4n+2},B∗ = {�b∗

1, . . . ,
�b∗
4n+2}

) $←− GOB(Z4n+2
p ) and

(
D = {�d1, . . . , �d6},D∗ = {�d∗

1, . . . ,
�d∗
6}

) $←− GOB(Z6
p).

It defines B̂ = {�b1, . . . ,�bn,�b4n+2}, B̂∗ = {�b∗
1, . . . ,

�b∗
n, �b∗

4n+1}, D̂ = {�d1, �d6},
and D̂

∗ = {�d∗
1,

�d∗
5}.



Functional Encryption for Inner Product with Full Function Privacy 173

4. It keeps the master secret key msk = (B̂, B̂∗, D̂, D̂∗) to itself while publishes
the public parameters pp =

(
p, {Vh,V′

h}h=1,2,GT , {Ah,A′
h}h=1,2, E,E′).

PKFP-IPE.Encrypt(msk,pp, �x): Taking as input the master secret key msk, the
public parameters pp, and a vector �x ∈ Z

n
p\{�0}, the data owner prepares the

ciphertext as follows:
1. It selects α, ξ, ξ0

$←− Zp and computes

c1 = g
α
∑n

i=1 xi
�bi+ξ�b4n+2

1 = g
α
∑

i xi
�bi+ξ�b4n+2

1 , c2 = gα�d1+ξ0 �d6
1 (3)

utilizing B̂ and D̂ respectively from msk, where a sum over index i ranges
from i = 1 to i = n unless explicitly specified otherwise. We will follow
the same convention in the sequel as well.

2. It outputs the ciphertext ct�x = (c1, c2).
PKFP-IPE.KeyGen(msk,pp, �y): On input the master secret key msk, the pub-

lic parameters pp, and a vector �y ∈ Z
n
p\{�0}, the data owner performs the

following:
1. It picks γ, η, η0

$←− Zp and computes

k∗
1 = g

γ
∑

i yi
�b∗

i +η�b∗
4n+1

2 , k∗
2 = g

γ �d∗
1+η0 �d∗

5
2 (4)

utilizing B̂
∗ and D̂

∗ respectively from msk.
2. It provides the functional key sk�y = (k∗

1, k
∗
2) to a legitimate decrypter.

PKFP-IPE.Decrypt(pp,ct�x, sk�y): A decrypter takes as input the public parame-
ters pp, a ciphertext ct�x = (c1, c2), and a functional key sk�y = (k∗

1, k
∗
2). It

proceeds as follows:
1. It computes T1 = E(c1, k

∗
1), T2 = E′(c2, k

∗
2).

2. It then attempts to determine a value m ∈ Zp such that Tm
2 = T1 as

elements of GT by checking a specified polynomial-size range of possible
values. If it is successful, then it outputs m. Otherwise it outputs ⊥.

We stress that the polynomial running time of our decryption algorithm is
ensured by restricting the output to lie within a fixed polynomial-size range.

� Correctness: The correctness of the above PKFP-IPE construction can be
verified as follows: Observe that for any ciphertext ct�x = (c1, c2) encrypting
some vector �x and any functional key sk�y = (k∗

1, k
∗
2) corresponding to some

vector �y, we have

T1 = E(c1, k
∗
1) = e(g1, g2)αγ〈�x,�y〉, T2 = E′(c2, k

∗
2) = e(g1, g2)αγ .

This follows from the expressions of c1, c2, k
∗
1, k

∗
2 together with the fact that

(B,B∗) and (D,D∗) are dual orthonormal bases. Thus if 〈�x, �y〉 is contained in the
specified polynomial-size range of possible values that the decryption algorithm
checks, it would output 〈�x, �y〉 as desired.

� Discussion: In our PKFP-IPE construction, we begin with the intuition of [3]
to use an asymmetric bilinear group setting (p,G1,G2,GT , g1, g2, e), visualizing



174 P. Datta et al.

G1 as the ciphertext space whereas G2 as the functional key space. The plaintext
vectors are encrypted in the exponent of g1 while the functional key vectors are
encapsulated in the exponent of g2, so that the bilinearity of the pairing e can
be employed to compute the inner product of the plaintext and functional key
vectors in the exponent without the explicit knowledge of the vectors.

As discussed earlier in this paper, the only PKFP-IPE scheme available in
the literature so far [3] achieves a rather limited and unrealistic form of function
privacy. In particular, for the sake of managing the hybrid security proof of their
construction, they put further restrictions on the queries of the adversaries, as
shown in Eq. (1), beyond those specified in the strongest framework of full-hiding
security described in Sect. 2.1. This additional constraint not only leads to a weak
security but it is also not conformal with the intuitive spirit of function privacy.
With the motivation to remove such an undesirable restriction we recourse to
an information theoretic step that uses a nice property of DPVS introduced in
[13] that enables to hide a pair of ciphertext and functional key vectors perfectly
among all vectors having the same inner product.

To generate space for our hybrid proof, we consider two pairs of dual ortho-
normal bases, namely, (B,B∗) of dimension 4n + 2 and (D,D∗) of dimension 6,
where n is the length of vectors for ciphertexts and functional keys. The n + 2
dimensions of the first pair of bases and 3 of the second pair are used in the
actual scheme while the remaining dimensions are preserved to move things for-
ward in the security proof. As displayed in Eq. (3), to encode a vector �x in the
ciphertext, we construct a linear combination of the first n vectors together with
the (4n+2)-th vector of B, where the n components of �x masked with a random
scalar α are used as coefficients of the first n vectors of B. The resulting vector is
then placed in the exponent of g1 ∈ G1. After that, the randomness α is encoded
by forming another linear combination of the first and sixth members of D in
the exponent of g1 using the masking factor α as coefficient of the first vector
of D. The (4n + 2)-th dimension of B and the sixth dimension of D are utilized
to supply additional randomization for strengthening the security of our cipher-
texts. The encoding of a vector for the functional key is performed in a directly
symmetric fashion utilizing bases B

∗,D∗, and g2 ∈ G2 in place of B,D, and g1
respectively, as can be seen from Eq. (4), where the additional randomization is
provided by the (4n + 1)-th dimension of B∗ and the fifth dimension of D∗.

In contrast, the construction of [3] considers two pairs of dual orthonormal
bases, one of dimension 2n and the other of dimension 2. Moreover, they make
use of the complete bases in their construction itself and employ each component
of a vector as coefficient twice during formation of the linear combinations in
the process of encoding the vector for ciphertext or functional key, once for
basis vectors in the range 1 to n and again for the basis vectors ranging from
n + 1 to 2n. Further, [3] rely on the orthogonality of all the queried functional
key vectors (respectively all queried ciphertext vectors) to the difference of a
pair of queried ciphertext vectors (respectively a pair of queried functional key
vectors) to simulate a hidden dimension in the bases in the security proof that
they employ to switch from one vector of the pair to the other. However, it



Functional Encryption for Inner Product with Full Function Privacy 175

is precisely this approach which necessitates the additional constraint imposed
by them on the adversaries’ queries as in Eq. (1). Furthermore, increasing the
dimensions of the DPVS’s in use seems rather unavoidable for managing the
security reduction without requiring the extra restriction. In fact the 3n and 3
hidden dimensions of our two pairs of bases respectively that we keep aside for
the security argument play a vital role to elegantly isolate a pair of ciphertext
and functional key vectors in an n-dimensional hidden subspace in order to apply
our information theoretic argument.

In summery, although our construction has some kind of resemblance to that
of [3], our proof idea is widely apart. The most significant contribution of our
work lies in a rigorous proof of full-hiding security of a fairly simple construction.
The detail security reduction is presented in the next section.

In terms of communication cum storage complexity, observe that both the
ciphertexts and functional keys of our PKFP-IPE construction consist of 4n + 8
group elements while our master secret key contains 8n2 + 12n + 28 members
of the finite field Zp. In contrast, the ciphertexts and functional keys in the
construction of [3] are comprised of 2n + 2 group elements each whereas the
master secret key is composed of 8n2 + 8 Zp components.

Regarding computation complexity, note that both our encryption and func-
tional key generation algorithms require 4n+8 exponentiations while the decryp-
tion algorithm involves 4n+8 pairing operations followed by an exhaustive search
over a polynomial range of values in order to solve a discrete log. On the con-
trary, the encryption and functional key generation algorithms of [3] amount to
2n + 2 exponentiations each. Other than a similar exhaustive search step, their
decryption algorithm incurs 2n + 2 pairings.

It is evident that our scheme loses a constant factor of 2 compared to that of
[3] in both communication cum storage and computation efficiency. However, the
additional cost is compensated with stronger and realistic data as well as function
privacy guarantees provided by our construction as opposed to a rather limited
form of security achieved by [3]. Given the rapid advancements in computing
technology and the growing security breaches, high security is often desirable
even at the expense of an admissible increase in complexity.

The ciphertexts and master public key of the only known IPE scheme in public
key setup [1] involve n+1 and n elements respectively in a discrete log group of
prime order p while the master secret key and functional keys are comprised of n
and 1 Zp components respectively. The encryption and decryption algorithms of
[1] respectively incur 2n+1 exponentiations and n+1 exponentiations followed by
an analogous exhaustive search step towards determining a discrete log. However,
the scheme of [1] offers no function privacy and, moreover, provides only selective
data privacy.

4 Security Analysis

Theorem 1. The PKFP-IPE scheme described in Sect. 3 is secure as per the
security model of Sect. 2.1 under the SXDH assumption.



176 P. Datta et al.

Proof. The proof of Theorem 1 is structured as a hybrid argument over a series
of games which differ in the construction of the functional keys and ciphertexts
queried by the adversary A in the security game described in Sect. 2.1. In the
first game, the queried functional keys and ciphertexts are constructed as those
in the security game of Sect. 2.1 where the bit used by the challenger is c = 0.
We then progressively change the functional keys and ciphertexts in multiple
hybrid games to those in the security game of Sect. 2.1 where the bit used by
the challenger is c = 1. We prove that each game is indistinguishable from
the previous one, thus proving our PKFP-IPE construction to be secure in the
security model of Sect. 2.1. Let q1 be the number of A’s functional key queries
and q2 the number of A’s ciphertext queries. The hybrid game transition is
described below. In these games, a portion of an exponent framed by a white
box indicates those terms which were added or modified in a transition from the
previous game, unless explicitly specified otherwise, while a part of an exponent
which was deleted in the transformation from the earlier game is highlighted in
the text.

� Sequence of Hybrid Games:

〈I〉 Game 0 : This game corresponds to the real security game of Sect. 2.1 where
the bit used by the challenger to generate queried functional keys and ciphertexts
is c = 0. More precisely, for j = 1, . . . , q1, the response to the j-th functional key
query for vectors (�y(j,0), �y(j,1)) is created as sk(j) = (k∗(j)

1 , k
∗(j)
2 ) such that

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+ηj,0 �d∗

5
2 ,

}

(5)

where γj , ηj , ηj,0
$←− Zp. On the other hand, for � = 1, . . . , q2, the reply to the �-th

ciphertext query of A for vectors (�x(�,0), �x(�,1)) is generated as ct(�) = (c(�)
1 , c

(�)
2 )

such that
c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�d1+ξ�,0 �d6

1 ,

}

(6)

where α�, ξ�, ξ�,0
$←− Zp.

〈II〉 Game 1 Sequence
[
Game 1-κ-1, . . . , Game 1-κ-4 (κ = 1, . . . , q2)

]

Game 1-κ-1: Game 1-0-4 coincides with Game 0. Game 1-κ-1 is the same as
Game 1-(κ − 1)-4 except that the components of the κ-th queried ciphertext for
vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+ α′′
κ

∑
i x

(κ,0)
i

�b2n+i +ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ α′′

κ
�d3 +ξκ,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(7)



Functional Encryption for Inner Product with Full Function Privacy 177

where ακ
$←− Zp and all the other variables are generated as in Game 1-(κ− 1)-4.

Game 1-κ-2: This game is identical to Game 1-κ-1 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′′
κ

∑
i x

(κ,1)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ξκ,0 �d6

1 ,

⎫
⎬

⎭
(8)

where all the variables are generated as in Game 1-κ-1.

Game 1-κ-3: This game is analogous to Game 1-κ-2 except that the components
of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′′
κ

∑
i x

(κ,1)
i

�b2n+i+ α′′′
κ

∑
i x

(κ,1)
i

�b3n+i +ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ α′′′

κ
�d4 +ξκ,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(9)

where α′′′
κ

$←− Zp and all the other variables are generated as in Game 1-κ-2.

Game 1-κ-4: This game is the same as Game 1-κ-3 except that the components
of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′′′
κ

∑
i x

(κ,1)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(10)

where all the variables are generated as in Game 1-κ-3, i.e., in this game c
(κ)
1 and

c
(κ)
2 are modified from those in the last game by dropping the terms involving

α′′
κ in the exponent of g1.

〈III〉 Game 2 Sequence
[
Game 2-ω-1, . . . , Game 2-ω-6 (ω = 1, . . . , q1)

]

Game 2-ω-1: Game 2-0-6 coincides with Game 1-q2-4. Game 2-ω-1 is the similar
to Game 2-(ω − 1)-6 except that the components of the ω-th queried functional
key corresponding to vectors (�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i + γ′

ω

∑
i y

(ω,0)
i

�b∗
n+i + γ′′

ω

∑
i y

(ω,0)
i

�b∗
2n+i +ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+ γ′

ω
�d∗
2 + γ′′

ω
�d∗
3 +ηω,0 �d∗

5

2 ,

⎫
⎪⎪⎬

⎪⎪⎭
(11)

where γ′
ω, γ′′

ω
$←− Zp, and all the other variables are generated as in Game 2-(ω −

1)-6.

Sequence of Subgames of Game 2-ω-2
[
Game 2-ω-2-κ-1, . . . ,Game 2-ω-

2-κ-5 (κ = 1, . . . , q2)
]



178 P. Datta et al.

Game 2-ω-2-κ-1: Game 2-ω-2-0-5 coincides with Game 2-ω-1. Game 2-ω-2-κ-1 is
analogous to Game 2-ω-2-(κ− 1)-5 with the only exception that the components
of the ω-th queried functional key corresponding to vectors (�y(ω,0), �y(ω,1)) are
formed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′

ω

∑
i y

(ω,0)
i

�b∗
n+i+γ′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′

ω
�d∗
2+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

⎫
⎬

⎭
(12)

where all the variables are generated as in Game 2-ω-2-(κ − 1)-5. Here a part
of the exponent framed by a white box (respectively light gray box) indicates
those terms which were changed in the transition from the previous game when
κ ≥ 2 (respectively κ = 1). More specifically, when κ = 1, k∗(ω)

1 in Eq. (12) is
transformed from that in Eq. (11), which is the form of k∗(ω)

1 in Game 2-ω-2-0-5,
by changing the portion of the exponent framed by a light gray box. On the
other hand, when κ ≥ 2, k

∗(ω)
1 in Eq. (12) is obtained from that in Eq. (14),

which is the form of k∗(ω)
1 in Game 2-ω-2-(κ − 1)-5, by applying modification in

the portion of the exponent framed by a white box.

Game 2-ω-2-κ-2: This game is identical to Game 2-ω-2-κ-1 except that the com-
ponents of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+ α′
κ

∑
i x

(κ,0)
i

�bn+i +α′′′
κ

∑
i x

(κ,1)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ α′

κ
�d2 +α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(13)

where α′
κ

$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-1.

Game 2-ω-2-κ-3: This game is similar to Game 2-ω-2-κ-2 with the only excep-
tion that the components of the ω-th queried functional key corresponding to
vectors (�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′

ω

∑
i y

(ω,1)
i

�b∗
n+i+γ′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′

ω
�d∗
2+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

⎫
⎬

⎭
(14)

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′
κ

∑
i x

(κ,1)
i

�bn+i+α′′′
κ

∑
i x

(κ,1)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎬

⎭
(15)

where all the variables are generated as in Game 2-ω-2-κ-2.

Game 2-ω-2-κ-4: This game is the same as Game 2-ω-2-κ-3 except that the com-
ponents of the κ-th queried ciphertext corresponding to vectors (�x(κ,0), �x(κ,1))



Functional Encryption for Inner Product with Full Function Privacy 179

are computed as

c
(κ)
1 = g

∑
i(ακx

(κ,0)
i

�bi+α′
κx

(κ,1)
i

�bn+i+ ᾰ′′
κx

(κ,1)
i

�b2n+i +α′′′
κ x

(κ,1)
i

�b3n+i)+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′

κ
�d2+ ᾰ′′

κ
�d3 +α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(16)

where ᾰ′′
κ

$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-3.

Game 2-ω-2-κ-5: This game is analogous to Game 2-ω-2-κ-4 with the only
exception that the components of the κ-th queried ciphertext corresponding to
vectors (�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+ᾰ′′
κ

∑
i x

(κ,1)
i

�b2n+i+α′′′
κ

∑
i x

(κ,1)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ᾰ′′

κ
�d3+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(17)

where all the variables are generated as in Game 2-ω-2-κ-4, i.e., in this game c
(κ)
1

and c
(κ)
2 are transformed from those in the earlier game by removing the terms

involving α′
κ in the exponent of g1.

Game 2-ω-3: This game is identical to Game 2-ω-2-q2-5 with the only exception
that the components of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1))
are computed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

}

(18)

where all the variables are generated as in Game 2-ω-2-q2-5, i.e., in this game
k

∗(ω)
1 and k

∗(ω)
2 are changed from those in the last game by deleting the terms

involving γ′
ω in the exponent of g2.

Game 2-ω-4: This game is the same as Game 2-ω-3 except that the components
of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1)) are created as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ γ′′′

ω

∑
i y

(ω,1)
i

�b∗
3n+i +ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′′

ω
�d∗
3+ γ′′′

ω
�d∗
4 +ηω,0 �d∗

5

2 ,

⎫
⎪⎪⎬

⎪⎪⎭
(19)

where γ′′′
ω

$←− Zp and all the other variables are generated as in Game 2-ω-3.

Game 2-ω-5: This game is similar to Game 2-ω-4 with the only exception that
for � = 1, . . . , q2, the components of the �-th queried ciphertext for vectors
(�x(�,0), �x(�,1)) are computed as

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

}

(20)



180 P. Datta et al.

where all the variables are generated as in Game 2-ω-4, i.e., Eq. (20) resets c
(�)
1

and c
(�)
2 , for � = 1, . . . , q2, as those in Eq. (10) by dropping the terms involving

ᾰ′′
� in the exponent of g1.

Game 2-ω-6: This game is the same as Game 2-ω-5 except that the components
of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1)) are created as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′′′

ω

∑
i y

(ω,1)
i

�b∗
3n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′′′

ω
�d∗
4+ηω,0 �d∗

5
2 ,

}

(21)

where all the variables are generated as in Game 2-ω-5, i.e., in this game k
∗(ω)
1

and k
∗(ω)
2 are changed from those in the earlier game by deleting the terms

involving γ′′
ω in the exponent of g2.

〈IV〉 Game 3 : This game is analogous to Game 2-q1-6 except that for j =
1, . . . , q1, the components of the j-th queried functional key corresponding to
vectors (�y(j,0), �y(j,1)) are computed as

k
∗(j)
1 = g

γj

∑
i y

(j,1)
i

�b∗
i +γ′′′

j

∑
i y

(j,0)
i

�b∗
3n+i+ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 ,

⎫
⎪⎬

⎪⎭
(22)

while for � = 1, . . . , q2, the components of the �-th queried ciphertext for vectors
(�x(�,0), �x(�,1)) are computed as

c
(�)
1 = g

α�

∑
i x

(�,1)
i

�bi+α′′′
�

∑
i x

(�,0)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

⎫
⎬

⎭
(23)

where all the variables are generated as in Game 2-q1-6.

〈V〉 Game 4 Sequence
[
Game 4-ω-1, . . . , Game 4-ω-6 (ω = 1, . . . , q1)

]

Game 4-ω-1: Game 4-0-6 coincides with Game 3. Game 4-ω-1 is the same as
Game 4-(ω − 1)-6 except that the components of the ω-th queried functional key
for vectors (�y(ω,0), �y(ω,1)) are created as

k
∗(ω)
1 = g

γω

∑
i y

(ω,1)
i

�b∗
i + γ̆′′

ω

∑
i y

(ω,0)
i

�b∗
2n+i +γ′′′

ω

∑
i y

(ω,0)
i

�b∗
3n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+ γ̆′′

ω
�d∗
3 +γ′′′

ω
�d∗
4+ηω,0 �d∗

5

2 ,

⎫
⎪⎪⎬

⎪⎪⎭
(24)

where γ̆′′
ω

$←− Zp and all the other variables are generated as in Game 4-(ω −1)-6.

Game 4-ω-2: This game is identical to Game 4-ω-1 with the only exception that
for � = 1, . . . , q2, the components of the �-th queried ciphertext corresponding



Functional Encryption for Inner Product with Full Function Privacy 181

to vectors (�x(�,0), �x(�,1)) are computed as

c
(�)
1 = g

α�

∑
i x

(�,1)
i

�bi+ α̌′′
�

∑
i x

(�,0)
i

�b2n+i +α′′′
�

∑
i x

(�,0)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�d1+ α̌′′

�
�d3 +α′′′

�
�d4+ξ�,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(25)

where α̌′′
�

$←− Zp and all the other variables are generated as in Game 4-ω-1.

Game 4-ω-3: This game is the same as Game 4-ω-2 with the only exception that
the components of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1)) are
computed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,1)
i

�b∗
i +γ̆′′

ω

∑
i y

(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ̆′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

}

(26)

where all the variables are generated as in Game 4-ω-2, i.e., in this game k
∗(ω)
1

and k
∗(ω)
2 are transformed from those in the previous game by dropping the

terms involving γ′′′
ω in the exponent of g2.

Game 4-ω-4: This game is analogous to Game 4-ω-3 except that the components
of the ω-th queried functional key corresponding to vectors (�y(ω,0), �y(ω,1)) are
formed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,1)
i

�b∗
i + γ̆′

ω

∑
i y

(ω,0)
i

�b∗
n+i +γ̆′′

ω

∑
i y

(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+ γ̆′

ω
�d∗
2 +γ̆′′

ω
�d∗
3+ηω,0 �d∗

5

2 ,

⎫
⎪⎪⎬

⎪⎪⎭
(27)

where γ̆′
ω

$←− Zp and all the other variables are generated as in Game 4-ω-3.

Sequence of Subgames of Game 4-ω-5
[
Game 4-ω-5-κ-1, . . . ,Game 4-ω-

5-κ-5 (κ = 1, . . . , q2)
]

Game 4-ω-5-κ-1: Game 4-ω-5-0-5 coincides with Game 4-ω-4. Game 4-ω-5-κ-1 is
identical to Game 4-ω-5-(κ−1)-5 except that the components of the κ-th queried
ciphertext corresponding to vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

∑
i(ακx

(κ,1)
i

�bi+ ᾰ′
κx

(κ,0)
i

�bn+i +α̌′′
κx

(κ,0)
i

�b2n+i+α′′′
κ x

(κ,0)
i

�b3n+i)+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ ᾰ′

κ
�d2 +α̌′′

κ
�d3+α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(28)

where ᾰ′
κ

$←− Zp and all the other variables are generated as in Game 4-ω-5-
(κ − 1)-5.

Game 4-ω-5-κ-2: This game is the same as Game 4-ω-5-κ-1 except that the com-
ponents of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+ᾰ′
κ

∑
i x

(κ,0)
i

�bn+i+α′′′
κ

∑
i x

(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ᾰ′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(29)



182 P. Datta et al.

where all the variables are generated as in Game 4-ω-5-κ-1, i.e., in this game c
(κ)
1

and c
(κ)
2 are changed from those in the last game by deleting the terms involving

α̌′′
κ in the exponent of g1.

Game 4-ω-5-κ-3: This game is similar to Game 4-ω-5-κ-2 with the only excep-
tion that the components of the ω-th queried functional key corresponding to
vectors (�y(ω,0), �y(ω,1)) are computed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,1)
i

�b∗
i +γ̆′

ω

∑
i y

(ω,1)
i

�b∗
n+i+γ̆′′

ω

∑
i y

(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ̆′

ω
�d∗
2+γ̆′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

⎫
⎬

⎭
(30)

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+ᾰ′
κ

∑
i x

(κ,1)
i

�bn+i+α′′′
κ

∑
i x

(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ᾰ′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎬

⎭
(31)

where all the variables are generated as in Game 4-ω-5-κ-2.

Game 4-ω-5-κ-4: This game is the same as Game 4-ω-5-κ-3 except that the com-
ponents of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are computed
as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+α′′′
κ

∑
i x

(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(32)

where all the variables are generated as in Game 4-ω-5-κ-3, i.e., in this game c
(κ)
1

and c
(κ)
2 are transformed from those in the earlier game by removing the terms

involving ᾰ′
κ in the exponent of g1.

Game 4-ω-5-κ-5: This game is analogous to Game 4-ω-5-κ-4 with the only
exception that the components of the ω-th queried functional key corresponding
to vectors (�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g
γω

∑
i y

(ω,1)
i

�b∗
i +γ̆′

ω

∑
i y

(ω,0)
i

�b∗
n+i+γ̆′′

ω

∑
i y

(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

if κ ≤ q2 − 1

g
γω

∑
i y

(ω,1)
i

�b∗
i +γ̆′

ω

∑
i y

(ω,1)
i

�b∗
n+i+γ̆′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

if κ = q2

(33a)

(33b)

k
∗(ω)
2 = g

γω
�d∗
1+γ̆′

ω
�d∗
2+γ̆′′

ω
�d∗
3+ηω,0 �d∗

5
2 (33c)



Functional Encryption for Inner Product with Full Function Privacy 183

where all the variables are generated as in Game 4-ω-5-κ-4. Here a part of the
exponent framed by a white box (respectively light gray box) indicates those
terms which were changed from the previous game when κ ≤ q2−1 (respectively
κ = q2). More precisely, for κ ≤ q2 − 1, Eq. (33a) resets k

∗(ω)
1 as in Eq. (27) by

changing the portion of the exponent framed by a white box before executing
the sequence of subgames Game 4-ω-5-κ-1 – Game 4-ω-5-κ-5 for the next value
of κ. Equation (33b) modifies k

∗(ω)
1 only once for κ = q2 by applying change in

the portion of the exponent framed by a light gray box and comes out of the
sequence of subgames of Game 4-ω-5.

Game 4-ω-6: This game is the same as Game 4-ω-5-q2-5 with the only exception
that the components of the ω-th queried functional key corresponding to vectors
(�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,1)
i

�b∗
i +ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+ηω,0 �d∗

5
2 ,

}

(34)

where all the variables are generated as in Game 4-ω-5-q2-5, i.e., in this game
k

∗(ω)
1 and k

∗(ω)
2 are changed from those in the previous game by deleting the

terms involving γ̆′
ω and γ̆′′

ω in the exponent of g2.

〈VI〉 Game 5 Sequence
[
Game 5-κ-1, . . . , Game 5-κ-4 (κ = 1, . . . , q2)

]

Game 5-κ-1: Game 5-0-4 coincides with Game 4-q1-6. Game 5-κ-1 is similar to
Game 5-(κ − 1)-4 except that the components of the κ-th queried ciphertext for
vectors (�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+ ὰ′′
κ

∑
i x

(κ,0)
i

�b2n+i +α′′′
κ

∑
i x

(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ ὰ′′

κ
�d3 +α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎪⎬

⎪⎭
(35)

where ὰ′′
κ

$←− Zp and all the other variables are generated as in Game 5-(κ− 1)-4.

Game 5-κ-2: This game is analogous to Game 5-κ-1 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+ὰ′′
κ

∑
i x

(κ,0)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ὰ′′

κ
�d3+ξκ,0 �d6

1 ,

}

(36)

where all the variables are generated as in Game 5-κ-1, i.e., in this game c
(κ)
1 and

c
(κ)
2 are modified from those in the last game by dropping the terms involving

α′′′
κ in the exponent of g1.



184 P. Datta et al.

Game 5-κ-3: This game is identical to Game 5-κ-2 except that the components
of the κ-th queried ciphertext corresponding to vectors (�x(κ,0), �x(κ,1)) are com-
puted as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+ὰ′′
κ

∑
i x

(κ,1)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ὰ′′

κ
�d3+ξκ,0 �d6

1 ,

⎫
⎬

⎭
(37)

where all the variables are generated as in Game 5-κ-2.

Game 5-κ-4: This game is similar to Game 5-κ-3 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑
i x

(κ,1)
i

�bi+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ξκ,0 �d6

1 ,

}

(38)

where all the variables are generated as in Game 5-κ-3, i.e., in this game c
(κ)
1 and

c
(κ)
2 are changed from those in the earlier game by deleting the terms involv-

ing ὰ′′
κ in the exponent of g1. Note that in the final game, i.e., Game 5-q2-4, all

the queried functional keys sk(j) = (k∗(j)
1 , k

∗(j)
2 ), for j = 1, . . . , q1, and all the

queried ciphertexts ct(�) = (c(�)
1 , c

(�)
2 ), for � = 1, . . . , q2, corresponds to func-

tional keys and ciphertexts in the real security game of Sect. 2.1 where the bit
used by the challenger is c = 1.

� Advantages of Adversary in Hybrid Games: Denote View
(0)
A ; View(1-κ-h)

A ,
for h = 1, . . . , 4; View(2-ω-h)

A , for h = 1, 3, . . . , 6; View(2-ω-2-κ-h)
A , for h = 1, . . . , 5;

View
(3)
A ; View(4-ω-h)

A , for h = 1, . . . , 4, 6; View(4-ω-5-κ-h)
A , for h = 1, . . . , 5; and

View
(5-κ-h)
A , for h = 1, . . . , 4 to be the views of the adversary A in Game 0;

Game 1-κ-h, for h = 1, . . . , 4; Game 2-ω-h, for h = 1, 3, . . . , 6; Game 2-ω-2-κ-h,
for h = 1, . . . , 5; Game 3; Game 4-ω-h, for h = 1, . . . , 4, 6; Game 4-ω-5-κ-h,
for h = 1, . . . , 5; and Game 5-κ-h, for h = 1, . . . , 4 respectively. We define the
advantage of A in Game ι as

Adv
(ι)
A (λ) = Pr

[A(View(ι)
A ) = 1

]
,

for ι ∈ {0, 1-κ-h (h = 1, . . . , 4), 2-ω-h (h = 1, 3, . . . , 6), 2-ω-2-κ-h (h =
1, . . . , 5), 3, 4-ω-h (h = 1, . . . , 4, 6), 4-ω-5-κ-h (h = 1, . . . , 5), 5-κ-h (h =
1, . . . , 4)}.

To complete the proof of the theorem, we must show that the difference in
the advantage of the adversary A between each pair of neighbouring games of
the game sequence described above is at most negligible. Here, observe that the
transition from Game 3 to Game 5-q2-4 is actually the reverse of the transfor-
mation from Game 0 to Game 2-q1-6 with the roles of (�x(0)

� , �y
(0)
j ) exchange with

that of (�x(1)
� , �y

(1)
j ), for j = 1, . . . , q1; � = 1, . . . , q2. Therefore, it is sufficient to

consider the transition from Game 0 to Game 3.



Functional Encryption for Inner Product with Full Function Privacy 185

Indeed, in the full version of this paper [9] we have presented the complete
sequence of arguments showing that the adversary A could experience at most
a negligible difference in advantage between the neighbouring games from Game
0 to Game 3. Due to space consideration, in the next subsection we only pro-
vide those arguments which are significantly apart from one another and will
demonstrate in detail our main technical ideas. Thus, it follows that

AdvPKFP-IPEA (λ) =
∣
∣Adv(0)A (λ) − Adv

(5-q2-4)
A (λ)

∣
∣

is negligible under the SXDH assumption. Hence the theorem. ��
� Technically Distinguished Lemmas for Proof of Theorem 1:

Lemma 1. For any probabilistic adversary A, there exists a probabilistic algo-
rithm C1-1, whose running time is essentially the same as that of A, such that
for any security parameter λ,

∣
∣Adv(1-(κ−1)-4)

A (λ) − Adv
(1-κ-1)
A (λ)

∣
∣ ≤ AdvSXDH

C1-κ-1
(λ),

where C1-κ-1(·) = C1-1(κ, ·).
Proof. Suppose that there is a probabilistic adversary A that achieves a non-
negligible difference in advantage between Game 1-(κ − 1)-4 and Game 1-κ-1.
We construct a probabilistic algorithm C1-1 that attempts to decide the SXDH
problem using A as a subroutine. C1-1 is given a positive integer κ and an instance
of the SXDH problem �β =

(
(p,G1,G2,GT , g1, g2, e), g

μ
1 , gν

1 ,	β = gμν+r
1

)
, where

μ, ν
$←− Zp, and r = 0 or r

$←− Zp according as β = 0 or 1. C1-1 plays the role of
the challenger in the security game of Sect. 2.1 and interacts with A as follows:

• C1-1 forms (p,V1,V2,GT ,A1,A2, E) $←− GDPVS

(
4n+2, (p,G1,G2,GT , g1, g2, e)

)

and (p,V′
1,V

′
2,GT ,A′

1,A
′
2, E

′) $←− GDPVS

(
6, (p,G1,G2,GT , g1, g2, e)

)
. Next,

it samples dual orthonormal bases
(
F = {�f1, . . . , �f4n+2},F∗ = {�f∗

1 , . . . ,

�f∗
4n+2}

) $←− GOB(Z4n+2
p ) and

(
H = {�h1, . . . ,�h6},H∗ = {�h∗

1, . . . ,
�h∗
6}

) $←−
GOB(Z6

p). It implicitly defines

�bi = �fi + μ�f2n+i (i = 1, . . . , n), �bi = �fi (i = n + 1, . . . , 4n + 2),
�b∗
2n+i = �f∗

2n+i − μ�f∗
i (i = 1, . . . , n), �b∗

i = �f∗
i (i = 1, . . . , 2n, 3n + 1, . . . , 4n + 2),

�d1 = �h1 + μ�h3, �di = �hi (i = 2, . . . , 6),
�d∗
3 = �h∗

3 − μ�h∗
1,

�d∗
i = �h∗

i (i = 1, 2, 4, . . . , 6).

It implicitly sets B = {�b1, . . . ,�b4n+2},B∗ = {�b∗
1, . . . ,

�b∗
4n+2},D = {�d1, . . . , �d6},

and D
∗ = {�d∗

1, . . . ,
�d∗
6}. Note that (B,B∗) and (D,D∗) are dual orthonormal

bases since those are obtained by applying an invertible linear transformation
to the output of GOB(Z4n+2

p ) and GOB(Z6
p) respectively. For instance, observe

that for i = 1, . . . , n,

〈�bi,�b
∗
2n+i〉 =

0

〈�fi, �f∗
2n+i〉 −μ

1

〈�fi, �f∗
i 〉 +μ

1

〈�f2n+i, �f∗
2n+i〉 −μ2

0

〈�f2n+i, �f∗
i 〉= 0,

〈�bi,�b
∗
i 〉 =

1

〈�fi, �f∗
i 〉 +μ

0

〈�f2n+i, �f∗
i 〉= 1, etc.



186 P. Datta et al.

It hands the public parameters pp =
(
p, {Vh,V′

h}h=1,2,GT , {Ah,A′
h}h=1,2,

E,E′) to A.
• In response to the j-th functional key query of A corresponding to vectors

(�y(j,0), �y(j,1)), for j = 1, . . . , q1, C1-1 chooses γj , ηj , ηj,0
$←− Zp, computes

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�f∗
i +ηj

�f∗
4n+1

2 = g
γj

∑
i y

(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�h∗

1+ηj,0�h
∗
5

2 = g
γj

�d∗
1+ηj,0 �d∗

5
2 ,

and gives the functional key sk(j) = (k∗(j)
1 , k

∗(j)
2 ) to A.

• In reply to A’s �-th ciphertext query corresponding to vectors (�x(�,0), �x(�,1)),
C1-1 proceeds as follows:
(a) (� < κ) C1-1 picks α�, α

′′′
� , ξ�, ξ�,0

$←− Zp and computes

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�fi+α′′′
�

∑
i x

(�,1)
i

�f3n+i+ξ�
�f4n+2

1 (gμ
1 )α�

∑
i x

(�,0)
i

�f2n+i

= g
α�

∑
i x

(�,0)
i

�bi+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�h1+α′′′

�
�h4+ξ�,0�h6

1 (gμ
1 )α�

�h3 = g
α�

�d1+α′′′
�

�d4+ξ�,0 �d6
1 .

(b) (� = κ) C1-1 selects ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = (gν

1 )
∑

i x
(κ,0)
i

�fi(	β)
∑

i x
(κ,0)
i

�f2n+ig
ξκ

�f4n+2
1

= g
ν
∑

i x
(κ,0)
i (�fi+μ�f2n+i)+r

∑
i x

(κ,0)
i

�f2n+i+ξκ
�f4n+2

1

= g
ν
∑

i x
(κ,0)
i

�bi+r
∑

i x
(κ,0)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = (gν

1 )�h1(	β)�h3g
ξκ,0�h6
1 = g

ν(�h1+μ�h3)+r�h3+ξκ,0�h6
1 = g

ν �d1+r�d3+ξκ,0 �d6
1 .

(c) (� > κ) C1-1 chooses α�, ξ�, ξ�,0
$←− Zp and computes

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�fi+ξ�
�f4n+2

1 (gμ
1 )α�

∑
i x

(�,0)
i

�f2n+i = g
α�

∑
i x

(�,0)
i

�bi+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�h1+ξ�,0�h6

1 (gμ
1 )α�

�h3 = g
α�

�d1+ξ�,0 �d6
1 .

C1-1 provides the ciphertext ct(�) = (c(�)
1 , c

(�)
2 ) to A.

• Finally, A outputs a bit c′. C1-1 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form
(Eq. 6), as in Game 1-(κ − 1)-4, where ακ = ν. On the other hand, if β = 1, i.e.,

r
$←− Zp, the κ-th answered ciphertext is of the form (Eq. 7), as in Game 1-κ-1,

where ακ = ν and α′′
κ = r. Further, for � < κ, the �-th answered ciphertext is

of the form (Eq. 10) corresponding to Game 1-�-4, which is its proper form in
both Game 1-(κ−1)-4 and Game 1-κ-1 since the full sequence of transformations
Game 1-�-1 – Game 1-�-4 has already been executed, whereas for � > κ, the �-th



Functional Encryption for Inner Product with Full Function Privacy 187

answered ciphertext is of the form (Eq. 6) corresponding to Game 0, which is its
proper form since the sequence of transitions Game 1-�-1 – Game 1-�-4 has not yet
been taken place. Additionally, for j = 1, . . . , q1, the j-th answered functional
key is of the form (Eq. 5) corresponding to Game 0, which is its proper form
since in the game transition so far no change is made in the form of the queried
functional keys. Thus the view of A simulated by C1-1 is distributed as in Game
1-(κ − 1)-4 or Game 1-κ-1 according as β = 0 or 1. This completes the proof of
Lemma 1. ��
Lemma 2. For any probabilistic adversary A, for any security parameter λ,
Adv

(1-κ-1)
A (λ) = Adv

(1-κ-2)
A (λ).

Proof. In order to prove Lemma 2, we define an intermediate game, namely, Game
1-κ-1’ as follows and show the equivalence of the distributions of the views of the
adversary A in Game 1-κ-1 and that in Game 1-κ-1’ (Claim 1) as well as those
in Game 1-κ-2 and in Game 1-κ-1’ (Claim 2).

Game 1-κ-1’ (κ = 1, . . . , q2): This game is identical to Game 1-κ-1 with the
only exception that the components of the κ-th queried ciphertext corresponding
to vectors (�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′′
κ

∑
i θ

(κ)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ξκ,0 �d6

1 ,

}

(39)

where �θ(κ)
$←− Z

n
p\{�0} and all the other variables are generated as in Game 1-κ-1.

Claim 1. The distribution of the view of the adversary A in Game 1-κ-1 and
that in Game 1-κ-1’ are equivalent.

Proof. Consider the distribution of the view of A in Game 1-κ-1. We define new
dual orthonormal bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p ) below. We

generate M
$←− GL(n,Zp) and define

⎛

⎜
⎝

�u2n+1

...
�u3n

⎞

⎟
⎠ = M−1 ·

⎛

⎜
⎝

�b2n+1

...
�b3n

⎞

⎟
⎠ ,

⎛

⎜
⎝

�u∗
2n+1
...

�u∗
3n

⎞

⎟
⎠ = Mᵀ ·

⎛

⎜
⎝

�b∗
2n+1
...

�b∗
3n

⎞

⎟
⎠ ,

�ui = �bi, �u∗
i = �b∗

i ,
(i = 1, . . . , 2n, 3n + 1, . . . , 4n + 2).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(40)

We set U = {�u1, . . . , �u4n+2},U∗ = {�u∗
1, . . . , �u

∗
4n+2}. Note that (U,U∗) are indeed

dual orthonormal bases since those are obtained from the dual orthonormal bases
(B,B∗) by applying an invertible linear transformation. The components of the
κ-th queried ciphertext corresponding to vectors (�x(κ,0), �x(κ,1)) are expressed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′′
κ

∑
i x

(κ,0)
i

�b2n+i+ξκ
�b4n+2

1

= g
ακ

∑
i x

(κ,0)
i �ui+α′′

κ

∑
i θ

(κ)
i �u2n+i+ξκ�u4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ξκ,0 �d6

1 ,

⎫
⎪⎪⎬

⎪⎪⎭
(41)



188 P. Datta et al.

where ακ, α′′
κ, ξκ, ξκ,0

$←− Zp, and �θ(κ) = �x(κ,0) · M .
Since �x(κ,0) �= �0 and M is uniformly selected from GL(n,Zp), �θ(κ) is uni-

formly distributed in Z
n
p\{�0} and it is independent from all the other variables.

The components of any other �-th queried ciphertext corresponding to vectors
(�x(�,0), �x(�,1)) are expressed as

(a) (� < κ)

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1

= g
α�

∑
i x

(�,0)
i �ui+α′′′

�

∑
i x

(�,1)
i �u3n+i+ξ��u4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

(b) (� > κ)

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+ξ�
�b4n+2

1 = g
α�

∑
i x

(�,0)
i �ui+ξ��u4n+2

1 , c
(�)
2 = g

α�
�d1+ξ�,0 �d6

1 ,

and for all j = 1, . . . , q1, the components of the j-th queried functional key for
vectors (�y(j,0), �y(j,1)) are expressed as

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 = g
γj

∑
i y

(j,0)
i �u∗

i +ηj�u∗
4n+1

2 , k
∗(j)
2 = g

γj
�d∗
1+ηj,0 �d∗

5
2 ,

where all the variables are generated as in Game 1-κ-1.
Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗)

are consistent with respect to pp. Also, this transformation of bases maintains
the form (Eq. 5) of the j-th answered functional key sk(j) = (k∗(j)

1 , k
∗(j)
2 ) corre-

sponding to Game 0, for j = 1, . . . , q1. Additionally, for � < κ, the �-th answered
ciphertext ct(�) = (c(�)

1 , c
(�)
2 ) preserves its form as in Eq. (10) corresponding to

Game 1-�-4 while for � > κ, ct(�) = (c(�)
1 , c

(�)
2 ) remains the same as in Eq. (6)

corresponding to Game 0 under the basis transformation. Moreover, since the
RHS of Eq. (41) and that of Eq. (39) are of the same form, the answered cipher-
text ct(κ) = (c(κ)

1 , c
(κ)
2 ) is Game 1-κ-1 can be conceptually changed to that in

Game 1-κ-1’. ��
Claim 2. The distribution of the view of adversary A in Game 1-κ-2 and that
in Game 1-κ-1’ are equivalent.

Proof. Claim 2 is proven in a similar manner to Claim 1, using new dual ortho-
normal bases (U,U∗) as in (Eq. 40). ��
From Claims 1 and 2, it follows that adversary A’s view in Game 1-κ-1 can
be conceptually changed to that in Game 1-κ-2. This completes the proof of
Lemma 2. ��
Lemma 3. For any probabilistic adversary A, there exists a probabilistic algo-
rithm C2-1, whose running time is essentially the same as that of A, such that
for any security parameter λ,

∣
∣Adv(2-(ω−1)-6)

A (λ) − Adv
(2-ω-1)
A (λ)

∣
∣ ≤ AdvSXDH

C2-ω-1
(λ),

where C2-ω-1(·) = C2-1(ω, ·).



Functional Encryption for Inner Product with Full Function Privacy 189

Proof. Suppose that there is a probabilistic adversary A that achieves a non-
negligible difference in advantage between Game 2-(ω − 1)-6 and Game 2-ω-1.
We construct a probabilistic algorithm C2-1 that attempts to decide the SXDH
problem using A as a subroutine. C2-1 is given a positive integer ω and an instance
of the SXDH problem �̆β =

(
(p,G1,G2,GT , g1, g2, e), g

μ̆
2 , gν̆

2 , 	̆β = gμ̆ν̆+r̆
2

)
, where

μ̆, ν̆
$←− Zp, and r̆ = 0 or r̆

$←− Zp according as β = 0 or 1. C2-1 plays the role of
the challenger in the security game of Sect. 2.1 and interacts with A as follows:

• The setup phase is executed by C2-1 in an analogous fashion as that per-
formed by C1-1 in the proof of Lemma 1 except that C2-1 sets the dual
orthonormal bases

(
B = {�b1, . . . ,�b4n+2},B∗ = {�b∗

1, . . . ,
�b∗
4n+2}

)
and

(
D =

{�d1, . . . , �d6},D∗ = {�d∗
1, . . . ,

�d∗
6}

)
implicitly from

(
F = {�f1, . . . , �f4n+2},F∗ =

{�f∗
1 , . . . , �f∗

4n+2}
) $←− GOB(Z4n+2

p ) and
(
H = {�h1, . . . ,�h6},H∗ = {�h∗

1, . . . ,
�h∗
6}

)

$←− GOB(Z6
p) respectively by selecting δ, σ

$←− Zp and implicitly defining the
following:

�bn+i = �fn+i − δμ̆ �fi (i = 1, . . . , n),�b2n+i = �f2n+i − σμ̆�fi (i = 1, . . . , n),
�bi = �fi (i = 1, . . . , n, 3n + 1, . . . , 4n + 2),
�b∗

i = �f∗
i + δμ̆ �f∗

n+i + σμ̆�f∗
2n+i (i = 1, . . . , n),�b∗

i = �f∗
i (i = n + 1, . . . , 4n + 2),

�d2 = �h2 − δμ̆�h1, �d3 = �h3 − σμ̆�h1, �di = �hi (i = 1, 4, . . . , 6),
�d∗
1 = �h∗

1 + δμ̆�h∗
2 + σμ̆�h∗

3,
�d∗
i = �h∗

i (i = 2, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors
(�y(j,0), �y(j,1)), C2-1 proceeds as follows:

(a) (j < ω) C2-1 picks γj , γ
′′′
j , ηj , ηj,0

$←− Zp and computes

k
∗(j)
1 = g

∑
i(γjy

(j,0)
i

�f∗
i +γ′′′

j y
(j,1)
i

�f∗
3n+i)+ηj

�f∗
4n+1

2 ⊕
(gμ̆

2 )
∑

i(δγjy
(j,0)
i

�f∗
n+i+σγjy

(j,0)
i

�f∗
2n+i)

= g
γj

∑
i y

(j,0)
i

�b∗
i +γ′′′

j

∑
i y

(j,1)
i

�b∗
3n+i+ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�h∗

1+γ′′′
j

�h∗
4+ηj,0�h

∗
5

2 (gμ̆
2 )δγj

�h∗
2+σγj

�h∗
3 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 .

(b) (j = ω) C2-1 chooses ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = (gν̆

2 )
∑

i y
(ω,0)
i

�f∗
i (	̆β)

∑
i(δy

(ω,0)
i

�f∗
n+i+σy

(ω,0)
i

�f∗
2n+i)g

ηω
�f∗
4n+1

2

= g
∑

i

(
ν̆y

(ω,0)
i (�f∗

i +δμ̆�f∗
n+i+σμ̆�f∗

2n+i)+δr̆y
(ω,0)
i

�f∗
n+i+σr̆y

(ω,0)
i

�f∗
2n+i

)
+ηω

�f∗
4n+1

2

= g
ν̆
∑

i y
(ω,0)
i

�b∗
i +δr̆

∑
i y

(ω,0)
i

�b∗
n+i+σr̆

∑
i y

(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = (gν̆

2 )�h
∗
1 (	̆β)δ�h∗

2+σ�h∗
3g

ηω,0�h
∗
5

2 = g
ν̆(�h∗

1+δμ̆�h∗
2+σμ̆�h∗

3)+δr̆�h∗
2+σr̆�h∗

3+ηω,0�h
∗
5

2

= g
ν̆ �d∗

1+δr̆�d∗
2+σr̆�d∗

3+ηω,0 �d∗
5

2 .



190 P. Datta et al.

(c) (j > ω) C2-1 selects γj , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�f∗
i +ηj

�f∗
4n+1

2 (gμ̆
2 )δγj

∑
i y

(j,0)
i

�f∗
n+i+σγj

∑
i y

(j,0)
i

�f∗
2n+i

= g
γj

∑
i y

(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�h∗

1+ηj,0�h
∗
5

2 (gμ̆
2 )δγj

�h∗
2+σγj

�h∗
3 = g

γj
�d∗
1+ηj,0 �d∗

5
2 .

C2-1 hands the functional key sk(j) = (k∗(j)
1 , k

∗(j)
2 ) to A.

• In reply to the �-th ciphertext query of A for vectors (�x(�,0), �x(�,1)), for

� = 1, . . . , q2, C2-1 selects α�, α
′′′
� , ξ�, ξ�,0

$←− Zp and computes

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�fi+α′′′
�

∑
i x

(�,1)
i

�f3n+i+ξ�
�f4n+2

1

= g
α�

∑
i x

(�,0)
i

�bi+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�h1+α′′′

�
�h4+ξ�,0�h6

1 = g
α�

�d1+α′′′
�

�d4+ξ�,0 �d6
1 ,

and provides the ciphertext ct(�) = (c(�)
1 , c

(�)
2 ) to A.

• Finally, A outputs a bit c′. C2-1 outputs β′ = c′.

Observe that if β = 0, i.e., r̆ = 0, the ω-th answered functional key is of the
form (Eq. 5), as in Game 2-(ω −1)-6, where γω = ν̆. On the other hand, if β = 1,

i.e., r̆
$←− Zp, the ω-th answered functional key is of the form (Eq. 11), as in Game

2-ω-1, where γω = ν̆, γ′
ω = δr̆, and γ′′

ω = σr̆. Further, for j < ω, the j-th answered
functional key is of the form (Eq. 21) as in Game 2-j-6, which is its proper form
in both Game 2-(ω−1)-6 and Game 2-ω-1 since the sequence of transitions Game
2-j-1 – Game 2-j-6 has already been completed, whereas for j > ω, the j-th
answered functional key is of the form (Eq. 5) corresponding to Game 0, which is
its proper form since during Game 1 sequence of transformations no change was
made to the queried functional keys and the sequence of hybrids Game 2-j-1 –
Game 2-j-6 has not yet been executed. Additionally, for � = 1, . . . , q2, the �-th
answered ciphertext is of the form (Eq. 10) as in Game 1-q2-4, which is the proper
form since for ω = 1, no more alteration in the form of these ciphertexts has
occurred after Game 1-q2-4 and for ω ≥ 2, these ciphertexts have been reset to
this form by Eq. (20) in Game 2-(ω − 1)-5. Thus the view of A simulated by C2-1

is distributed as in Game 2-(ω − 1)-6 or Game 2-ω-1 according as β = 0 or 1.
This completes the proof of Lemma 3. ��
Lemma 4. For any probabilistic adversary A, for any security parameter λ,
Adv

(2-ω-2-κ-2)
A (λ) = Adv

(2-ω-2-κ-3)
A (λ).

Proof. The proof of Lemma 4 utilizes the following result:

Lemma 5. (Lemma 3 in [13]). For τ ∈ Zp, let Sτ = {(�χ, �ϑ) | 〈�χ, �ϑ〉 = τ} ⊂
Z

n
p × Z

n
p , where p is a prime integer and n is some positive integer. For all

(�χ, �ϑ) ∈ Sτ , for all (�ζ, �υ) ∈ Sτ ,

Pr
[
�χ · F = �ζ

∧
�ϑ · F ∗ = �υ

]
= Pr

[
�χ · F ∗ = �ζ

∧
�ϑ · F = �υ

]
= 1/�Sτ ,



Functional Encryption for Inner Product with Full Function Privacy 191

where F
$←− GL(n,Zp),F ∗ = (F ᵀ)−1, and for any set A, �A denotes the cardi-

nality of the set A.

In order to prove Lemma 4, we define an intermediate game, namely, Game
2-ω-2-κ-2’ and show the equivalence of the distribution of the view of the adver-
sary A in Game 2-ω-2-κ-2 and that in Game 2-ω-2-κ-2’ (Claim 3) as well as those
in Game 2-ω-2-κ-3 and in Game 2-ω-2-κ-2’ (Claim 4).

Game 2-ω-2-κ-2’ (ω = 1, . . . , q1; κ = 1, . . . , q2): This game is similar to
Game 2-ω-2-κ-2 with the only exception that the components of the ω-th queried
functional key corresponding to vectors (�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′

ω

∑
i ϑ

(ω)
i

�b∗
n+i+γ′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′

ω
�d∗
2+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

}

(42)

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′
κ

∑
i χ

(κ)
i

�bn+i+α′′′
κ

∑
i x

(κ,1)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(43)

such that (�χ(κ), �ϑ(ω)) $←− Sτω,κ
= {(�χ, �ϑ) | 〈�χ, �ϑ〉 = τω,κ} ⊂ Z

n
p × Z

n
p , where τω,κ =

〈�x(κ,0), �y(ω,0)〉 (
= 〈�x(κ,1), �y(ω,1)〉according to the restriction of the security game

)
,

and all the other variables are generated as in Game 2-ω-2-κ-2.

Claim 3. The distribution of the view of adversary A in Game 2-ω-2-κ-2 and
that in Game 2-ω-2-κ-2’ are equivalent.

Proof. Consider the distribution of the view of A in Game 2-ω-2-κ-2. We define
new dual orthonormal bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p ) below.

We generate W
$←− GL(n,Zp) and set

⎛

⎜
⎝

�un+1

...
�u2n

⎞

⎟
⎠ = W −1 ·

⎛

⎜
⎝

�bn+1

...
�b2n

⎞

⎟
⎠ ,

⎛

⎜
⎝

�u∗
n+1
...

�u∗
2n

⎞

⎟
⎠ = W ᵀ ·

⎛

⎜
⎝

�b∗
n+1
...

�b∗
2n

⎞

⎟
⎠ ,

�ui = �bi, �u∗
i = �b∗

i ,
(i = 1, . . . , n, 2n + 1, . . . , 4n + 2).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(44)

We define U = {�u1, . . . , �u4n+2},U∗ = {�u∗
1, . . . , �u

∗
4n+2}. Note that (U,U∗) are

indeed dual orthonormal bases since those are obtained from the dual orthonor-
mal bases (B,B∗) by applying an invertible linear transformation. The compo-
nents of the ω-th queried functional key corresponding to vectors (�y(ω,0), �y(ω,1))
are expressed as

k
∗(ω)
1 = g

γω

∑
i y

(ω,0)
i

�b∗
i +γ′

ω

∑
i y

(ω,0)
i

�b∗
n+i+γ′′

ω

∑
i y

(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2

= g
γω

∑
i y

(ω,0)
i �u∗

i +γ′
ω

∑
i ϑ

(ω)
i �u∗

n+i+γ′′
ω

∑
i y

(ω,1)
i �u∗

2n+i+ηω�u∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′

ω
�d∗
2+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

⎫
⎪⎪⎬

⎪⎪⎭
(45)



192 P. Datta et al.

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are expressed as

c
(κ)
1 = g

ακ

∑
i x

(κ,0)
i

�bi+α′
κ

∑
i x

(κ,0)
i

�bn+i+α′′′
κ

∑
i x

(κ,1)
i

�b3n+i+ξκ
�b4n+2

1

= g
ακ

∑
i x

(κ,0)
i �ui+α′

κ

∑
i χ

(κ)
i �un+i+α′′′

κ

∑
i x

(κ,1)
i �u3n+i+ξκ�u4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫
⎪⎪⎬

⎪⎪⎭
(46)

where γω, γ′
ω, γ′′

ω, ηω, ηω,0, ακ, α′
κ, α′′′

κ , ξκ, ξκ,0
$←− Zp, and �ϑω = �y(ω,0) · (W ᵀ)−1,

�χ(κ) = �x(κ,0) · W .
From Lemma 5 it follows that (�χ(κ), �ϑ(ω)) are uniformly distributed in Sτω,κ

,
where 〈�x(κ,0), �y(ω,0)〉 = τω,κ, and are independent from all the other variables.

The components of any other j-th queried functional key corresponding to
vectors (�y(j,0), �y(j,1)) are expressed as follows

(a) (j < ω)

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�b∗
i +γ′′′

j

∑
i y

(j,1)
i

�b∗
3n+i+ηj

�b∗
4n+1

2

= g
γj

∑
i y

(j,0)
i �u∗

i +γ′′′
j

∑
i y

(j,1)
i �u∗

3n+i+ηj�u∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 ,

(b) (j > ω)

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 = g
γj

∑
i y

(j,0)
i �u∗

i +ηj�u∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+ηj,0 �d∗

5
2 ,

while the components of any other �-th queried ciphertext corresponding to
vectors (�x(�,0), �x(�,1)) are expressed as

(a) (� < κ)

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+ᾰ′′
�

∑
i x

(�,1)
i

�b2n+i+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1

= g
α�

∑
i x

(�,0)
i �ui+ᾰ′′

�

∑
i x

(�,1)
i �u2n+i+α′′′

�

∑
i x

(�,1)
i �u3n+i+ξ��u4n+2

1 ,

c
(�)
2 = g

α�
�d1+ᾰ′′

�
�d3+α′′′

�
�d4+ξ�,0 �d6

1 ,

(b) (� > κ)

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1

= g
α�

∑
i x

(�,0)
i �ui+α′′′

�

∑
i x

(�,1)
i �u3n+i+ξ��u4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

where all the variables are generated as in Game 2-ω-2-κ-2.
Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗)

are consistent with respect to pp. Also, for j < ω, the j-th answered functional
key sk(j) = (k∗(j)

1 , k
∗(j)
2 ) preserves its form as in Eq. (21) corresponding to Game

2-j-6 while for j > ω, sk(j) = (k∗(j)
1 , k

∗(j)
2 ) remains the same as in Eq. (5)



Functional Encryption for Inner Product with Full Function Privacy 193

corresponding to Game 0, and for � < κ, the �-th answered ciphertext ct(�) =
(c(�)

1 , c
(�)
2 ) preserves its form as in Eq. (17) corresponding to Game 2-ω-2-�-5 while

for � > κ, ct(�) = (c(�)
1 , c

(�)
2 ) remains the same as in Eq. (10) corresponding to

Game 1-q2-4 (or equivalently of the form (Eq. 20) as in Game 2-(ω − 1)-5, for
ω ≥ 2) under the basis transformation. Moreover, since the RHS of Eq. (45)
(respectively Eq. (46)) and that of Eq. (42) (respectively Eq. (43)) are of the
same form, the ω-th queried functional key sk(ω) = (k∗(ω)

1 , k
∗(ω)
2 ) and the κ-th

queried ciphertext ct(κ) = (c(κ)
1 , c

(κ)
2 ) in Game 2-ω-2-κ-2 can be conceptually

changed to those in Game 2-ω-2-κ-2’. ��
Claim 4. The distribution of the view of the adversary A in Game 2-ω-2-κ-3
and that in Game 2-ω-2-κ-2’ are equivalent.

Proof. Claim 4 is proven in an analogous manner to Claim 3 using new dual
orthonormal bases (U,U∗) as in Eq. (44). ��
From Claims 3 and 4 it follows that adversary A’s view in Game 2-ω-2-κ-2 can
be conceptually changed to that in Game 2-ω-2-κ-3. This completes the proof of
Lemma 4. ��
Lemma 6. For any probabilistic adversary A, for any security parameter λ,
Adv

(2-q1-6)
A (λ) = Adv

(3)
A (λ).

Proof. In Game 2-q1-6, for j = 1, . . . , q1, the components of the j-th queried
functional key corresponding to vectors (�y(j,0), �y(j,1)) have the form

k
∗(j)
1 = g

γj

∑
i y

(j,0)
i

�b∗
i +γ′′′

j

∑
i y

(j,1)
i

�b∗
3n+i+ηj

�b∗
4n+1

2 , k
∗(j)
2 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 ,

as in Eq. (21), where γj , γ
′′′
j , ηj , ηj,0

$←− Zp, while for � = 1, . . . , q2, the components
of the �-th queried ciphertext for vectors (�x(�,0), �x(�,1)) of the form

c
(�)
1 = g

α�

∑
i x

(�,0)
i

�bi+α′′′
�

∑
i x

(�,1)
i

�b3n+i+ξ�
�b4n+2

1 , c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

as in Eq. (20), where α�, α
′′′
� , ξ�, ξ�,0

$←− Zp.
Therefore, by swapping the components of the dual orthonormal bases(

B = {�b1, . . . ,�b4n+2},B∗ = {�b∗
1, . . . ,

�b∗
4n+2}

) (
respectively

(
D = {�d1, . . . , �d6},

D
∗ = {�d∗

1, . . . ,
�d∗
6}

))
in the first block, i.e., in the range i = 1, . . . , n (respec-

tively i = 1) and in the fourth block, i.e., in the range i = 3n + 1, . . . , 4n
(respectively i = 4), we obtain the distribution in Game 3. More precisely,
we define new dual orthonormal bases (U,U∗) of Z

4n+2
p and (W,W∗) of Z

6
p

using (B,B∗) $←− GOB(Z4n+2
p ) and (D,D∗) $←− GOB(Z6

p) as follows: We set

�u3n+i = �bi, �u∗
3n+i = �b∗

i (i = 1, . . . , n),
�ui = �b3n+i, �u∗

i = �b∗
3n+i (i = 1, . . . n),

�ui = �bi, �u∗
i = �b∗

i (i = n + 1, . . . , 3n, 4n + 1, 4n + 2),
�w4 = �d1, �w∗

4 = �d∗
1, �w1 = �d4, �w∗

1 = �d∗
4,

�wi = �di, �w∗
i = �d∗

i (i = 2, 3, 5, 6).



194 P. Datta et al.

We define U = {�u1, . . . , �u4n+2},U∗ = {�u∗
1, . . . , �u

∗
4n+2},W = {�w1, . . . , �w6},

W
∗ = {�w∗

1 , . . . , �w∗
6}. It is clear that (U,U∗) and (W,W∗) are indeed dual ortho-

normal bases since those are obtained from the dual orthonormal bases (B,B∗)
and (D,D∗) respectively by means of invertible linear transformations.

Observe that in light of the adversary A’s view, both (B,B∗) (respectively
(D,D∗)) and (U,U∗) (respectively (W,W∗)) are consistent with respect to pp.
Moreover, it readily follows that the components of the queried functional keys
and ciphertexts in Game 2-q1-6 over bases (B,B∗) and (D,D∗) are expressed as
those in Eqs. (22) and (23) of Game 3 over bases (U,U∗) and (W,W∗). This
completes the proof of Lemma 6. ��

5 Conclusion

In this paper, we have presented the first non-generic private key FE scheme for
the inner product functionality achieving the strongest indistinguishability-based
notion of function privacy, namely, the full-hiding security [2,8]. Our construction
has utilized the standard asymmetric bilinear pairing group of prime order and
has derived its security from the SXDH assumption. A significant future direction
of research in this area would be to explore simulation-based notion of function
privacy [2] in the context of IPE in the private key setting.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015)

2. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: Function private functional encryption and property pre-
serving encryption: new definitions and positive results. Technical report, Cryptol-
ogy ePrint Archive, Report 2013/744 (2013)

3. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption.
Technical report, Cryptology ePrint Archive, Report 2015/672 (2015)

4. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

5. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

7. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

8. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015)



Functional Encryption for Inner Product with Full Function Privacy 195

9. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. Technical report, Cryptology ePrint Archive, Report
2015/1255 (2015)

10. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryp-
tion without obfuscation. Technical report, Cryptology ePrint Archive, Report
2014/666 (2014)

11. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40–49. IEEE (2013)

12. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing, pp. 555–564. ACM (2013)

13. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

14. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

15. O’Neill, A.: Definitional issues in functional encryption. Technical report, Cryptol-
ogy ePrint Archive, Report 2010/556 (2010)

16. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)


	Functional Encryption for Inner Product with Full Function Privacy
	1 Introduction
	1.1 Function Privacy in Functional Encryption
	1.2 Inner Product Encryption and Function Privacy
	1.3 Our Contribution

	2 Preliminaries
	2.1 The Notion of Private Key Function-Private IPE
	2.2 Asymmetric Bilinear Group and SXDH Assumption
	2.3 Dual Pairing Vector Spaces

	3 Our PKFP-IPE Scheme
	4 Security Analysis
	5 Conclusion
	References


