
Trading Plaintext-Awareness for Simulatability
to Achieve Chosen Ciphertext Security

Takahiro Matsuda(B) and Goichiro Hanaoka

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. In PKC 2014, Dachman-Soled showed a construction of a
chosen ciphertext (CCA) secure public key encryption (PKE) scheme
based on a PKE scheme which simultaneously satisfies a security prop-
erty called weak simulatability and (standard model) plaintext awareness
(sPA1) in the presence of multiple public keys. It is not well-known if
plaintext awareness for the multiple keys setting is equivalent to the more
familiar notion of that in the single key setting, and it is typically consid-
ered that plaintext awareness is a strong security assumption (because
to achieve it we have to rely on a “knowledge”-type assumption). In
Dachman-Soled’s construction, the underlying PKE scheme needs to be
plaintext aware in the presence of 2k + 2 public keys.

The main result in this work is to show that the strength of plain-
text awareness required in the Dachman-Soled construction can be some-
how “traded” with the strength of a “simulatability” property of other
building blocks. Furthermore, we also show that we can “separate” the
assumption that a single PKE scheme needs to be both weakly simulat-
able and plaintext aware in her construction. Specifically, in this paper
we show two new constructions of CCA secure key encapsulation mech-
anisms (KEMs): Our first scheme is based on a KEM which is chosen
plaintext (CPA) secure and plaintext aware only under the 2 keys set-
ting, and a PKE scheme satisfying a “slightly stronger” simulatability
than weak simulatability, called “trapdoor simulatability” (introduced by
Choi et al. ASIACRYPT 2009). Our second scheme is based on a KEM
which is 1-bounded CCA secure (Cramer et al. ASIACRYPT 2007) and
plaintext aware only in the single key setting, and a trapdoor simulatable
PKE scheme. Our results add new recipes for constructing CCA secure
PKE/KEM from general assumptions (that are incomparable to those
used by Dachman-Soled), and in particular show interesting trade-offs
among building blocks with those used in Dachman-Soled’s construction.

Keywords: Public key encryption · Key encapsulation mecha-
nism · Chosen ciphertext security · Plaintext-awareness · Trapdoor
simulatability

c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 3–34, 2016.
DOI: 10.1007/978-3-662-49384-7 1

4 T. Matsuda and G. Hanaoka

1 Introduction

1.1 Background and Motivation

For public key encryption (PKE), security (indistinguishability) against cho-
sen ciphertext attacks (CCA) [23,46,49] is nowadays considered as a de-facto
standard security notion required in most practical situations/applications in
which PKE schemes are used. CCA security is quite important in both practical
and theoretical points of view. It implies security against practical attacks (e.g.
Bleichenbacher’s attack [8]) and it also implies very strong and useful security
notions, such as non-malleability [23] and universal composability [10]. Thus,
constructing and understanding CCA secure PKE schemes is one of the cen-
tral research themes in the area of cryptography. In this paper, we focus on
the constructions of CCA secure PKE schemes and its closely related primitive
called key encapsulation mechanism (KEM) from general cryptographic assump-
tions. There have been a number of works that show that several different kinds
of cryptographic primitives are sufficient to realize CCA secure PKE/KEM:
These include trapdoor permutations [23] (with some enhanced property [27]),
identity-based encryption [12] and a weaker primitive called tag-based encryp-
tion [32], lossy trapdoor function [48] and related primitives [13,33,42,50,54],
PKE schemes with weaker-than-but-close-to-CCA security [31,34,40], positive
results on cryptographic obfuscation [38,52], the combination of a CPA secure
PKE scheme and a strong form of hash functions [39], and very recently, the com-
bination of a sender non-committing encryption scheme and a key-dependent-
message secure symmetric key encryption (SKE) scheme [41]. (We review more
works in Sect. 1.4).

In PKC 2014, Dachman-Soled [18] showed a construction of a CCA secure
PKE scheme based on a PKE scheme which simultaneously satisfies a secu-
rity property called weak simulatability [20,43] and (standard model) plain-
text awareness (sPA1) [5] in the presence of multiple public keys [43], which is
based on the earlier work by Myers et al. [43] who showed a construction of
a PKE scheme that achieves security slightly weaker than CCA (the so-called
cNM-CCA1 security). Plaintext awareness was first introduced by Bellare and
Rogaway [7] as a useful notion for showing CCA security of a PKE scheme in
the random oracle model [6], and was used in a number of random-oracle-model
constructions (e.g. [7,24,25,47]). Bellare and Palacio [5] defined the standard
model versions of plaintext awareness.1 The plaintext awareness notions were
further studied by subsequent works (e.g. [20]). The most works on plaintext
awareness studied the notions for the single key setting. The extension to the
multiple keys setting was first introduced by Myers et al. [43].

We note that it is not well-known or well-studied if plaintext awareness for
the multiple keys setting is equivalent to the more familiar notion of plaintext
1 [5] defined several versions (PA0, PA1, and PA2, with their computa-

tional/statistical/perfect variants) for standard model plaintext awareness. As in
the previous works [18,43], we focus on the statistical PA1 notion in the multiple
keys setting (denoted by “sPA1�”, where � denotes the number of public keys).

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 5

awareness in the single key setting, and it is typically considered that plaintext
awareness is a strong security assumption (because to achieve it we have to rely
on a “knowledge”-type assumption). In the construction of [18], the underlying
PKE scheme needs to be plaintext aware in the presence of 2k + 2 public keys.
Our motivation in this work is to clarify whether we can weaken the assumption
of plaintext awareness in Dachman-Soled’s construction [18]. As mentioned in
[18], a plaintext aware (sPA1) PKE scheme seems almost like a CCA1 secure
PKE scheme [46], but it seems not possible to replace the building block PKE
scheme in [18] with a CCA1 secure scheme to remove the plaintext awareness.
It is currently not known if we can construct a CCA secure PKE scheme only
from a CPA secure scheme or even from a CCA1 secure scheme. We believe
that studying the possibility of weakening the assumption of plaintext awareness
from [18] thus is expected to lead to deepening our knowledge on this topic, and
generally contribute to the long line of research on clarifying the minimal general
assumption that implies CCA secure PKE.

1.2 Our Contributions

Based on the motivation mentioned above, we study the possibility of weakening
the requirements of plaintext awareness used in Dachman-Soled’s construction
[18], and come up with new results that show that the strength of plaintext
awareness required in [18] can be somehow “traded” with the strength of a
“simulatability” property of other building blocks. Furthermore, we also show
that we can “separate” the requirement that a single PKE scheme needs to be
simultaneously weakly simulatable and plaintext aware, in her construction.

Specifically, in this paper we show two new constructions of CCA secure
KEMs (which are given in Sect. 4), based on the assumptions that are incompa-
rable to those used in [18]:

– Our first construction (Sect. 4.1) is based on a KEM which is chosen plaintext
(CPA) secure and plaintext aware only under the 2 keys setting2, and a PKE
scheme satisfying a “slightly stronger” simulatability than weak simulatability,
called “trapdoor simulatability” (introduced by Choi et al. [14]). Actually,
although we write that it is “slightly stronger”, it is formally incomparable to
weak simulatability. For more details, see Sect. 1.3.

– Our second construction (Sect. 4.2) is based on a KEM which is 1-bounded
CCA secure [15] and plaintext aware only in the single key setting, and a trap-
door simulatable PKE scheme. We can in fact slightly weaken the requirement
of 1-bounded CCA security to CPA security in the presence of one “plaintext-
checking” query [1,47]. We will also show that we can construct a KEM satis-
fying simultaneously 1-bounded CCA security and plaintext awareness under
the single key setting, based on a KEM satisfying CPA security and plaintext
awareness under the 2k keys setting, via the recent result by Dodis and Fiore
[21, Appendix C].

2 Plaintext awareness for KEMs is defined analogously to that for PKE. See Sect. 2.1.

6 T. Matsuda and G. Hanaoka

One may wonder the meaning of the second construction, because if we use
a KEM that is plaintext aware under O(k) keys setting, there is no merit
compared to our first construction. We are however considering it to be still
meaningful in several aspects, and we refer the reader to Sect. 4.2 for more
discussions regarding the second construction.

Note that from CCA secure KEMs, we can immediately obtain full-fledged PKE
schemes by using CCA secure SKE [16].

We emphasize that we do not require plaintext awareness and the trapdoor
simulatability property to be satisfied by a single building block. This “separa-
tion” of the requirements should be contrasted with Dachman-Soled’s construc-
tion [18], the building block PKE scheme of which is required to satisfy plaintext
awareness and the weak simulatability property simultaneously. We also again
emphasize that the assumptions on which both of our constructions are based,
are incomparable to those used in [18]. Thus, our results add new recipes for
constructing CCA secure PKE/KEM from general assumptions (and thus the
assumptions that we use could be new targets that are worth pursuing), and
also show interesting trade-offs regarding assumptions with Dachman-Soled’s
construction.

1.3 Technical Overview

Assumptions on the Building Blocks. Trapdoor simulatable PKE (TSPKE) [14]
is the key building block for our constructions. TSPKE is a weaker (relaxed) ver-
sion of simulatable PKE that was originally formalized by Damg̊ard and Nielsen
[19]. Simulatable PKE admits “oblivious sampling” of both public keys and
ciphertexts (i.e. sampling them without knowing the randomness or plaintext)
in such a way that honestly generated public keys and ciphertexts can be later
convincingly explained that they were generated obliviously. These properties
are realized by requiring that the key generation algorithm and the encryption
algorithm have their own “oblivious sampling” algorithm and its corresponding
“inverting” algorithm (where the inverting algorithm corresponds to the algo-
rithm that “explains” that an honest generated public key (or a ciphertext) is
sampled obliviously). The difference between TSPKE and simulatable PKE is
whether we allow the “inverting” algorithm to take the randomness (and the
plaintext) used by the ordinary algorithms (key generation and encryption algo-
rithms) as input. TSPKE allows to take these inputs, while ordinary simulatable
PKE does not, which makes the security property of TSPKE weaker but easier to
achieve. For our purpose, we only need even a simplified version of TSPKE than
the formalization in [14]: we only require a pair (pk, c) of public key/ciphertext
(or, a “transcript”) can be obliviously sampled, but not each of pk and c can be
so (which is the formalization in [14]). It was shown [14,19] that we can real-
ize TSPKE from a number of standard cryptographic assumptions, such as the
computational and decisional Diffie-Hellman assumptions, RSA, Factoring, and
lattice based assumptions. (For more details, see Sect. 2.2).

On the other hand, a weakly simulatable PKE scheme (used in the construc-
tions in [18,43]) considers oblivious sampling only for the encryption algorithm.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 7

However, the definition of weakly simulatable PKE used in [18,43] does not allow
the inverting algorithms to take the randomness and the plaintext used by the
ordinary encryption algorithm. Therefore, strictly speaking, the “strength” of
these primitives as “general cryptographic assumptions” are actually incompa-
rable. Nonetheless, the reason why we still think that weakly simulatable PKE
could be viewed as a weaker primitive, is that it does not require the key gen-
eration algorithm to be obliviously samplable. In fact, this difference is very
important for our work. It is this simple difference between TSPKE and weakly
simulatable PKE that enables us to weaken the plaintext awareness required
in [18], from plaintext awareness in the presence of O(k) keys in [18] into that
under only O(1) keys in our constructions.

Ideas for the Constructions. Other than employing TSPKE instead of weakly
simulatable PKE, the ideas for our constructions and their security analyses are
similar to those in [18]. In particular, the construction of [18] and our construc-
tions are based on the Dolev-Dwork-Naor (DDN) construction [23], but we do
not require a non-interactive zero-knowledge proof to ensure the validity of a
ciphertext. Instead, the approach of the “double-layered” construction of Myers
and Shelat [44] (and its simplifications [31,37,40] and variants [38,39,41]) is
employed, in which a ciphertext consists of the “inner”-layer and “outer”-layer,
and the randomness used for generating an outer ciphertext is somehow embed-
ded into an inner ciphertext, so that in the decryption, the validity of the outer
ciphertext can be checked by “re-encryption” using the randomness recovered
from the inner ciphertext. (In our constructions, the inner-layer encryption is
done by a KEM). In fact, we do a simplification to [18] by removing a one-time
signature scheme in [18], by using a commitment scheme, based on the ideas
employed in the recent constructions [38,39,41].

Recently, Matsuda and Hanaoka [39] introduced the notion of puncturable
tag-based encryption (PTBE) which abstracts and formalizes the “core” struc-
ture of the DDN construction [23]. We define the trapdoor simulatability prop-
erty for PTBE (and call the primitive trapdoor simulatable PTBE) in Sect. 3,
and use this primitive as an “intermediate” building block in our constructions.
(This primitive could have other applications than constructing CCA secure
PKE, and may be of independent interest). We also show (in the full version)
how to construct a trapdoor simulatable PTBE scheme from a TSPKE scheme.
This construction is exactly the same as the construction of a PTBE scheme
from a CPA secure PKE scheme used in [39], which is in turn based on the
original DDN construction.

Ideas for the Security Proofs. We briefly recall the construction and the security
proof in [18], and explain the difference in our proofs and that in [18]. As men-
tioned above, the construction of [18] is double-layered, where the outer encryp-
tion is like the “DDN-lite” construction (i.e. the DDN construction without a
non-interactive zero-knowledge proof), and the inner encryption is a multiple-
encryption by two PKE schemes. Both the inner and outer encryption schemes
use the same building block, with independently generated public keys: 2k keys

8 T. Matsuda and G. Hanaoka

for the outer-layer encryption (that does DDN-lite-encryption) and 2 keys for
the inner-layer encryption (that does multiple-encryption by two encryptions).
Roughly speaking, in the security proof, [18] constructs a CPA adversary (reduc-
tion algorithm) for the inner-layer encryption, from a CCA adversary A against
the entire construction. The reduction algorithm of course has to somehow
answer A’s decryption queries, and this is the place where plaintext awareness
comes into play. Plaintext awareness in the � keys setting (sPA1� security) ensures
that for any algorithm C (called “ciphertext creator”) that receives a set of public
keys (pki)i∈{1,...,�} and a randomness rC as input and makes decryption queries,
there exists an extractor E that also receives (pki)i∈{1,...,�} and rC as input, and
can “extract” the plaintext from a ciphertext queried by C. (In our actual secu-
rity proofs, we denote the “ciphertext creator” by “A′”, but for the explanation
here we continue to use C for clarity). The idea in the proof in [18] is to use an
extractor guaranteed by plaintext awareness to answer the CCA adversary A’s
decryption queries. The problem that arises here is: how do we design the algo-
rithm C with which the extractor E is considered? Since the extractor E needs to
be given the randomness rC used by C, if we naively design C, the reduction algo-
rithm cannot use the extractor E while embedding its instances (the public key
and the challenge ciphertext) in the reduction algorithm’s CPA security experi-
ment into A’s view. The approach in [18] is to consider a modified version of the
CCA security experiment in which all component ciphertexts (i.e. ciphertexts
for the outer-layer encryption) are generated obliviously using some randomness
r (which can be performed due to the weak simulatability property of the under-
lying PKE scheme), and view this modified experiment as a ciphertext creator
C that takes as input � = 2k +2 public keys (for both inner-/outer-layer encryp-
tions) and a randomness rC consisting of the randomness rA used by A and
the randomness r used for oblivious generation of the component ciphertexts
in A’s challenge ciphertext. (rC actually also contains some additional random-
ness used for generating the remaining parts of A’s challenge ciphertext, but we
ignore it here for simplicity). Designing the algorithm C in this way, the extrac-
tor E corresponding to C can be used to answer A’s decryption queries while the
reduction algorithm (attacking the CPA security of the inner-layer encryption)
can perform the reduction.

Our main idea for weakening the requirement of plaintext awareness for the
building blocks, from 2k + 2 keys in [18] to O(1) keys, is due to the observa-
tion that by relying on the trapdoor simulatability property for the outer-layer
encryption, we can “push” the public keys for the outer-layer encryption, into
the “randomness” rC for the ciphertext creator C (with which the extractor E is
considered), by generating the public keys regarding the outer-layer encryption
also obliviously. In order to make this idea work, we thus consider a different
design strategy for the ciphertext creator C. This also enables us to “separate”
the requirement that a single building block PKE scheme needs to be simultane-
ously plaintext aware and simulatable, because we need the simulatability only
for the outer-layer encryption.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 9

Actually, like the security proof of the construction in [18], we need to deal
with a “bad” decryption query, which is a ciphertext such that its actual decryp-
tion result (by the normal decryption algorithm with a secret key) differs from
the decryption result obtained by using the extractor E . (Such a decryption
query makes the simulation of the decryption oracle by the reduction algorithm
fail). Our first construction uses the clever trick of Dachman-Soled [18] of using
two CPA secure PKE schemes (that each encrypts a “share” of 2-out-of-2 secret
sharing) and their plaintext awareness under 2 keys setting. (As mentioned ear-
lier, in fact, we use a KEM instead of a PKE scheme for the inner encryption).
Dachman-Soled’s approach enables us to use the CPA security and the ability of
“detecting” bad queries at the same time. Our second construction is a simplifi-
cation of our first construction, where we employ a “single” KEM for the inner
layer, as opposed to multiple-encryption by two KEMs in our first construction.
To detect “bad” decryption queries by an adversary, we employ the ideas and
techniques from [31,37,40,44] of using “1-bounded CCA” security [15]. (As men-
tioned earlier, in fact, CPA security in the presence of one “plaintext-checking”
query [1,47] is sufficient for our purpose). For more details on these, see Sect. 4.

1.4 Related Work

The notion of CCA security for PKE was formalized by Naor and Yung [46] and
Rackoff and Simon [49]. Since the introduction of the notion, CCA secure PKE
schemes have been studied in a number of papers, and thus we only briefly review
constructions from general cryptographic assumptions. Dolev et al. [23] showed
the first construction of a CCA secure PKE scheme, from a CPA secure scheme
and a NIZK proof system, based on the construction by Naor and Yung [46]
that achieves weaker non-adaptive CCA (CCA1) security. These NIZK-based
constructions were further improved in [35,51,53]. Canetti et al. [12] showed
how to transform an identity-based encryption scheme into a CCA secure PKE
scheme. Kiltz [32] showed that the transform of [12] is applicable to a weaker
primitive of tag-based encryption (TBE). Peikert and Waters [48] showed how
to construct a CCA secure PKE scheme from a lossy trapdoor function (TDF).
Subsequent works showed that TDFs with weaker security/functionality prop-
erties are sufficient for obtaining CCA secure PKE schemes [13,33,42,50,54].
Hemenway and Ostrovsky [29] showed how to construct a CCA secure scheme
in several ways from homomorphic encryption that has some appropriate prop-
erties, and the same authors [30] showed that one can construct a CCA secure
PKE scheme from a lossy encryption scheme [4] if it can encrypt a plaintext
longer than the length of randomness consumed by the encryption algorithm.
Myers and Shelat [44] showed that a CCA secure PKE scheme for 1-bit messages
can be turned into one with an arbitrarily large plaintext space. Hohenberger
et al. [31] showed that CCA secure PKE can be constructed from a PKE with a
weaker security notion called detectable CCA security, from which we can obtain
a 1-bit-to-multi-bit transformation for CCA security in a simpler manner than
[44]. The simplicity and efficiency of [44] were further improved by Matsuda and
Hanaoka [37,40]. Lin and Tessaro [34] showed how to amplify weak CCA security

10 T. Matsuda and G. Hanaoka

into strong (ordinary) CCA secure one. Matsuda and Hanaoka [38] showed how
to construct a CCA secure PKE scheme by using a CPA secure PKE scheme and
point obfuscation [9,36], and the same authors [39] showed a CCA secure PKE
scheme from a CPA secure PKE scheme and a family of hash functions satis-
fying the very strong security notion called universal computational extractors
(UCE) [3]. The same authors [41] recently also showed that a CCA secure PKE
scheme can be built from the combination of a sender non-committing encryp-
tion scheme and a key-dependent-message secure SKE scheme. More recently,
Hajiabadi and Kapron [28] showed how to construct a CCA secure PKE scheme,
from a 1-bit PKE scheme that satisfies circular security and has the structural
property called reproducibility.

As has been stated several times, Dachman-Soled [18] showed how to con-
struct a CCA secure PKE scheme from a PKE scheme which simultaneously
satisfies weak simulatability [43] and the (standard model) plaintext awareness
under the multiple keys setting, which is built based on the result by Myers
et al. [43] who showed a PKE scheme satisfying the so-called cNM-CCA1 secu-
rity, from the same building blocks as [18]. Sahai and Waters [52] showed (among
other cryptographic primitives) how CCA secure PKE and KEMs can be con-
structed using an indistinguishability obfuscation [2,26].

1.5 Paper Organization

In Sect. 2 (and in AppendixA), we review definitions of primitives and security
notions that are necessary for explaining our results. In Sect. 3, we introduce
the notion of trapdoor simulatable PTBE, which is an extension of PTBE intro-
duced in [39], and works as one of main building blocks of our proposed KEMs
in the next section. Finally, in Sect. 4, we show our main results: two construc-
tions of KEMs that show the “trade-off” between “simulatability” property and
“plaintext awareness” in Dachman-Soled’s construction [18].

2 Preliminaries

In this section, we review the basic notation and the definitions for plaintext
awareness (sPA1� security) [5,18,43] of a KEM, trapdoor simulatability prop-
erties of a PKE scheme and a commitment scheme, and the syntax of a punc-
turable tag-based encryption (PTBE) scheme. The definitions for standard cryp-
tographic primitives with standard security definitions that are not reviewed in
this section are given in AppendixA, which include PKE, KEMs, and commit-
ment schemes.

Basic Notation. N denotes the set of all natural numbers, and for n ∈ N, we
define [n] := {1, . . . , n}. “x ← y” denotes that x is chosen uniformly at random
from y if y is a finite set, x is output from y if y is a function or an algorithm,
or y is assigned to x otherwise. If x and y are strings, then “|x|” denotes the
bit-length of x, “x‖y” denotes the concatenation x and y, and “(x ?= y)” is

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 11

the operation which returns 1 if x = y and 0 otherwise. “(P)PTA” stands for a
(probabilistic) polynomial time algorithm. For a finite set S, “|S|” denotes its size.
If A is a probabilistic algorithm ,then “y ← A(x; r)” denotes that A computes
y as output by taking x as input and using r as randomness, and we just write
“y ← A(x)” if we do not need to make the randomness used by A explicit.
If furthermore O is a function or an algorithm, then “AO” means that A has
oracle access to O. A function ε(k) : N → [0, 1] is said to be negligible if for all
positive polynomials p(k) and all sufficiently large k ∈ N, we have ε(k) < 1/p(k).
Throughout this paper, we use the character “k” to denote a security parameter.

2.1 Plaintext Awareness for Multiple Keys Setup (sPA1� Security)

Here, we review the definition of (statistical) plaintext awareness for multiple
keys setup [18,43] (denoted by sPA1� security, where � denotes the number of
keys). Unlike these previous works, we define it for a KEM, rather than a PKE
scheme, but we can define plaintext awareness for a KEM in essentially the same
way as that for a PKE scheme.

Let Γ = (KKG,Encap,Decap) be a KEM (where we review the definition of a
KEM in AppendixA), and � = �(k) > 0 be a polynomial. Let A be an algorithm
(called a “ciphertext creator”) that takes a set of public keys (pki)i∈[�] as input,
and makes decapsulation queries of the form (j ∈ [�], c) which is supposed to
be answered with K = Decap(skj , c). For this A, we consider the corresponding
“(plaintext) extractor” E : It is a stateful algorithm that initially takes a set of
public keys (pki)i∈[�] and the randomness rA consumed by A, and expects to
receive “decapsulation” queries of the form q = (j ∈ [�], c); Upon a query, it
tries to extract a session-key K corresponding to c so that K = Decap(skj , c),
where skj is the secret key corresponding to pkj . After E extracts a session-key,
it may update its internal state to prepare for the next call. Informally, a KEM
Γ is said to be sPA1� secure if for all PPTA ciphertext creators A, there exists
a corresponding PPTA extractor E that can work as A’s decapsulation oracle in
the experiment above.

More formally, for A that makes Q = Q(k) decapsulation queries, E , and �,
consider the following experiment ExptsPA1Γ,A,E,�(k):

ExptsPA1Γ,A,E,�(k) : [∀i ∈ [�] : (pki, ski) ← KKG(1k); rA ← {0, 1}∗;

stE ← ((pki)i∈[�], rA); Run AE(stE ,·)((pki)i∈[�]; rA) until it terminates;
If ∃i ∈ [Q] : Decap(skji , ci) �= Ki then return 1 else return 0.],

where (ji, ci) represents A’s i-th decapsulation query (which A expects to be
decapsulated as a ciphertext under pkji), and Ki represents the answer (i.e.
“decapsulation result” of ci) computed by the algorithm E . In the experiment,
E is the (possibly stateful) extractor which initially takes stE = ((pki)i∈[�], rA)
as input, and works like A’s decapsulation oracle, as explained above.

Definition 1. Let � = �(k) > 0 be a polynomial. We say that a KEM Γ is sPA1�

secure if for all PPTAs (ciphertext creator) A, there exists a stateful PPTA
(extractor) E such that AdvsPA1Γ,A,E,�(k) := Pr[ExptsPA1Γ,A,E,�(k) = 1] is negligible.

12 T. Matsuda and G. Hanaoka

If � = 1, then sPA1� security is equivalent to statistical PA1 security defined
by Bellare and Palacio [5]. By definition, trivially, sPA1x implies sPA1y for x > y.
However, to the best of our knowledge, whether there is an implication (or
separation) for the opposite direction, is not known.

2.2 (Simplified) Trapdoor Simulatable Public Key Encryption

Trapdoor simulatable PKE (TSPKE) [14] is a relaxed version of simulatable
PKE [19]. Simulatable PKE admits “oblivious sampling” of both public keys
and ciphertexts (i.e. sampling them without knowing the randomness or plain-
text) in such a way that honestly generated public keys and ciphertexts can
be later convincingly explained that they were generated obliviously.3 These
properties are realized by requiring that the key generation algorithm and the
encryption algorithm have their own “oblivious sampling” algorithm and its cor-
responding “inverting” algorithm (where the inverting algorithm corresponds to
the algorithm that explains that an honest generated public key (or a ciphertext)
is sampled obviously). The difference between TSPKE and simulatable PKE, is
whether we allow for the “inverting” algorithm to take the randomness (and
the plaintext) used by the ordinary algorithms PKG and Enc as input. Since
the “inverting” algorithm in TSPKE is allowed to see more information than
that in simulatable PKE, the former primitive is strictly weaker (and easier to
construct) than the latter.

For our purpose, we only need even a simplified version of TSPKE of [14]:
we only require a pair (pk, c) of public key/ciphertext (or, “transcript) can be
obliviously sampled [14], but not each of pk and c can be so. A TSPKE scheme
with such a simplified syntax may not be useful for constructing non-committing
encryption (as done in [14,19]), but sufficient for our purpose in this paper.

Definition 2. We say that a PKE scheme4 Π = (PKG,Enc,Dec) is trapdoor
simulatable (and say that Π is a trapdoor simulatable PKE (TSPKE) scheme) if
Π has two additional PPTAs (oSampΠ , rSampΠ) with the following properties:

– oSampΠ is the oblivious-sampling algorithm which takes 1k as input, and out-
puts an “obliviously generated” public key/ciphertext pair (pk, c).

– rSampΠ is the inverting algorithm (corresponding to oSampΠ) that takes ran-
domness rg and re, and a plaintext m (which are supposed to be used as
(pk, sk) ← PKG(1k; rg) and c ← Enc(pk,m; re)) as input, and outputs a string
r̂ (that looks like a randomness used by oSampΠ).

– (Trapdoor Simulatability). For all PPTAs A = (A1,A2), AdvTSPKEΠ,A (k) :=
|Pr[ExptTSPKE-RealΠ,A (k) = 1] − Pr[ExptTSPKE-SimΠ,A (k) = 1]| is negligible, where
the experiments ExptTSPKE-RealΠ,A (k) and ExptTSPKE-SimΠ,A (k) are defined as in Fig. 1
(upper-left and upper-right, respectively).

3 (Trapdoor) simulatable PKE scheme was introduced as a building block for con-
structing non-committing encryption [11].

4 The syntax of PKE is reviewed in Appendix A.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 13

ExptTSPKE-RealΠ,A (k) :

(m, st) ← A1(1
k)

rg, re ← {0, 1}∗

(pk, sk) ← PKG(1k; rg)
c ← Enc(pk, m; re)
r ← rSampΠ(rg, re, m)
b ← A2(st, pk, c, r)
Return b .

ExptTSPKE-SimT ,A (k) :

(m, st) ← A1(1
k)

r ← {0, 1}∗

(pk, c) ← oSampΠ(1k; r)
b ← A2(st, pk, c, r)
Return b .

ExptTSPTBE-RealT ,A (k) :

(tag∗, m, st) ← A1(1
k)

rg, re ← {0, 1}∗

(pk, sk) ← TKG(1k; rg)
c ← TEnc(pk, tag∗, m; re)

sktag∗ ← Punc(sk, tag∗)
r ← rSampT (rg, re, tag

∗, m)

b ← A2(st, pk, c, sktag∗ , r)
Return b .

ExptTSPTBE-SimT ,A (k) :

(tag∗, m, st) ← A1(1
k)

r ← {0, 1}∗

(pk, c, sktag∗) ← oSampT (tag∗; r)

b ← A2(st, pk, c, sktag∗ , r)
Return b .

Fig. 1. Security experiments for defining security of TSPKE (upper-left and upper-
right) and those for defining security of TSPTBE (bottom-left and bottom-right)

Concrete Instantiations of TSPKE. Since our definition of TSPKE is a simplified
(and hence weaker) version of the definition by Choi et al. [14], and TSPKE is a
weaker primitive than a simulatable PKE scheme in the sense of Damg̊ard and
Nielsen [19], we can use any of (trapdoor) simulatable PKE schemes shown in
these works. In particular, we can construct a TSPKE scheme from most of the
standard cryptographic assumptions such as the computational and decisional
Diffie-Hellman, RSA, factoring, and learning-with-errors assumptions [14,19].
(For example, the ElGamal encryption, Damg̊ard’s ElGamal encryption, and
Cramer-Shoup-Lite encryption schemes can be shown to be a TSPKE scheme
if they are implemented in a simulatable group [20]). In terms of “general”
cryptographic assumptions, Damg̊ard and Nielsen [19] showed that a simulatable
PKE scheme can be constructed from a family of trapdoor permutations with the
simulatability property, in which the key generation and the domain-sampling
algorithms have the oblivious sampling property (which is defined analogously
to simulatable PKE). Hence, we can also construct a TSPKE from it.

2.3 Trapdoor Simulatable Commitment Schemes

Let C = (CKG,Com) be a commitment scheme. (We review the syntax of a
commitment scheme and its “target-binding” property in AppendixA).

We define the trapdoor simulatability property of a commitment scheme C in
exactly the same way as the trapdoor simulatability of a PKE scheme. Namely,
we require that there be the oblivious sampling algorithm oSampC (for sam-
pling a key/commitment pair (ck, c)) and the corresponding inverting algorithm
rSampC , whose interfaces are exactly the same as oSampΠ and rSampΠ of a

14 T. Matsuda and G. Hanaoka

TSPKE scheme, respectively. We say that a commitment scheme C is trapdoor
simulatable (and say that C is a trapdoor simulatable commitment scheme) if for
all PPTA adversaries A, the advantage AdvTSComC,A (k) := | Pr[ExptTSCom-RealC,A (k) =
1]−Pr[ExptTSCom-SimC,A (k) = 1]| is negligible, where the experiments ExptTSCom-RealC,A (k)
and ExptTSCom-SimC,A (k) are defined in exactly the same way as ExptTSPKE-RealΠ,A (k) and
ExptTSPKE-SimC,A (k) for a TSPKE scheme, respectively (and thus we do not write
down them).

We can achieve a commitment scheme which satisfies target-binding, trap-
door simulatability, and the requirement of the size of commitments (namely
we require the size of commitments to be k-bit for k-bit security), only from a
TSPKE scheme and a universal one-way hash function (UOWHF) [45], just by
hashing a ciphertext of the TSPKE scheme by the UOWHF. This construction
is given in the full version.

2.4 Puncturable Tag-Based Encryption

Here, we recall the syntax of puncturable tag-based encryption (PTBE), which
was introduced by Matsuda and Hanaoka [39] as an abstraction of the “core”
structure of the Dolev-Dwork-Naor (DDN) construction [23]. Similarly to [39], we
use PTBE as an intermediate building block to reduce the description complexity
of our proposed constructions in Sect. 4.

Intuitively, a PTBE scheme is a TBE scheme that has a mechanism for
generating a “punctured” secret key ̂sktag∗ , according to a “punctured point” tag
tag∗. The punctured secret key can be used to decrypt all “honestly generated”
ciphertexts that are generated under tags that are different from tag∗, while the
punctured secret key is useless for decrypting ciphertexts generated under tag∗.

Formally, a PTBE scheme consists of the five PPTAs (TKG,TEnc,TDec,

Punc, T̂Dec) among which the latter three algorithms are deterministic, with the
following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← TKG(1k) c ← TEnc(pk, tag,m) m (or ⊥) ← TDec(sk, tag, c)

Puncturing: Punctured Decryption:
̂sktag∗ ← Punc(sk, tag∗) m (or ⊥) ← T̂Dec(̂sktag∗ , tag, c)

where (pk, sk) is a public/secret key pair, c is a ciphertext of a plaintext m under
pk and a tag tag ∈ {0, 1}k, and ̂sktag∗ is a “punctured” secret key corresponding
to a tag tag∗ ∈ {0, 1}k.

We require for all k ∈ N, all tags tag∗, tag ∈ {0, 1}k such that tag∗ �= tag,
all (pk, sk) output from TKG(1k), all plaintexts m, and all ciphertexts c output
from TEnc(pk, tag,m), it holds that TDec(sk, tag, c) = T̂Dec(Punc(sk, tag∗), tag,
c) = m.

In [39], the security notion called “extended CPA security” was defined as a
security notion of PTBE. In our proposed KEMs, we need a stronger security
property for PTBE, which is an analogue of TSPKE, and we will introduce it in
the next section.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 15

3 Trapdoor Simulatable PTBE

In this section, we define trapdoor simulatability of a PTBE scheme, in the
same way as that of a PKE scheme and a commitment scheme. However, for
the oblivious sampling algorithm, we let it take a “punctured point” tag tag∗ as
input, and require that it output the punctured secret key ̂sktag∗ (corresponding
to tag∗) in addition to a public key/ciphertext pair (pk, c).

Formally, we define a trapdoor simulatable PTBE (TSPTBE) as follows:

Definition 3. We say that a PTBE scheme T = (TKG,TEnc,TDec,Punc,

T̂Dec) is trapdoor simulatable (and say that T is a trapdoor simulatable PTBE
(TSPTBE) scheme) if T has two additional PPTAs (oSampT , rSampT) with the
following properties:

– oSampT is the oblivious sampling algorithm which takes a “punctured point”
tag tag∗ as input, and outputs an “obliviously generated” public key/ciphertext
pair (pk, c) and a punctured secret key ̂sktag∗ .

– rSampT is the inverting algorithm (corresponding to oSampT) that takes
1k, randomness rg and re, a “punctured point” tag tag∗, and a plaintext
m (which are supposed to be used as (pk, sk) ← TKG(1k; rg) and c ←
TEnc(pk, tag∗,m; re)) as input, and outputs a string r̂ (that looks like a ran-
domness used by oSampT).

– (Trapdoor Simulatability) For all PPTAs A = (A1,A2), AdvTSPTBET ,A (k) :=
|Pr[ExptTSPTBE-RealT ,A (k) = 1] − Pr[ExptTSPTBE-SimT ,A (k) = 1]| is negligible, where the
experiments ExptTSPTBE-RealT ,A (k) and ExptTSPTBE-SimT ,A (k) are defined as in Fig. 1
(bottom-left and bottom-right, respectively).

On the Existence of TSPTBE. Though it might look complicated, we can con-
struct a TSPTBE scheme from a TSPKE scheme, by a Dolev-Dwork-Naor-style
approach [23]. The construction is exactly the same as the construction of a
PTBE scheme from any CPA secure PKE shown in [39], which is the “core”
structure of the DDN construction, namely, the DDN construction without a
NIZK proof and without its one-time signature. (For this construction, we can
straightforwardly consider the oblivious sampling algorithm and the correspond-
ing inverting algorithm). We prove the following lemma in the full version.

Lemma 1. If a TSPKE scheme exists, then so does a TSPTBE scheme.

Useful Fact. For the security proofs of our constructions in Sect. 4, we will use
the fact that the straightforward concatenation of a “transcript” of a trapdoor
simulatable commitment and that of a TSPTBE scheme, also admits the trap-
door simulatable property.

More formally, for a TSPTBE scheme T = (TKG,TEnc,TDec,Punc, T̂Dec,
oSampT , rSampT) and a trapdoor simulatable commitment scheme C = (CKG,
Com, oSampC , rSampC) such that the plaintext space of T and that of C are iden-
tical, and for an adversary A = (A1,A2), consider the following “real” experi-
ment ExptTS-Real[C,T],A(k) and the “simulated” experiment ExptTS-Sim[C,T],A(k) as described
in Fig. 2 (left and right, respectively).

16 T. Matsuda and G. Hanaoka

ExptTS-Real[C,T],A(k) :

(m, st) ← A1(1
k)

rg, rg, rc, rt ← {0, 1}∗

ck ← CKG(1k; rg)
tag∗ ← Com(ck, m; rc)
rc ← rSampC(rg, rc, m)

(pk, sk) ← TKG(1k; rg)
c∗ ← TEnc(ck, tag∗, m; re)

sktag∗ ← Punc(sk, tag∗)
rt ← rSampT (rg, rt, tag

∗, m)

b ← A2(st, ck, tag∗, pk, c∗, sktag∗ , rc, rt)
Return b .

ExptTS-Sim[C,T],A(k) :

(m, st) ← A1(1
k)

rc, rt ← {0, 1}∗

(ck, tag∗) ← oSampC(1k; rc)

(pk, c∗, sktag∗) ← oSampT (tag∗; rt)

b ← A2(st, ck, tag∗, pk, c∗, sktag∗ , rc, rt)
Return b .

Fig. 2. Security experiments for defining the trapdoor simulatability of the concatena-
tion of a “transcript” of a commitment scheme and that of a TSPTBE scheme.

Then, we can prove the following lemma, whose proof is almost straightfor-
ward due to the trapdoor simulatability property of C and T . The proof is by a
standard hybrid argument, and is given in the full version.

Lemma 2. Assume that the commitment scheme C and the PTBE scheme
T are trapdoor simulatable. Then, for all PPTAs A, AdvTS[C,T],A(k) :=
|Pr[ExptTS-Real[C,T],A(k) = 1] − Pr[ExptTS-Sim[C,T],A(k) = 1]| is negligible.

4 Proposed KEMs

In this section, we show our main results: two KEMs that show the “trade-off”
between the strength of (standard model) plaintext awareness and the simulata-
bility property with those of the construction by Dachman-Soled [18].

In Sect. 4.1, we show our first construction, which is CCA secure based on
a KEM satisfying CPA security and sPA12 security, and a TSPKE scheme. In
Sect. 4.2, we show our second construction which is CCA secure based on a KEM
satisfying 1-CCA security and sPA11 security, and a TSPKE scheme.

4.1 First Construction

Let Γin = (KKGin,Encapin,Decapin) be a KEM whose ciphertext length is
n = n(k) and whose session-key space is {0, 1}3k for k-bit security.5 Let
T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE scheme and C = (CKG,Com)
be a commitment scheme. We require the plaintext space of TEnc and the
message space of Com to be {0, 1}2n, and the randomness space of TEnc and

5 Note that the session-key space of a KEM can be adjusted “for free” by applying
a pseudorandom generator to a session-key. Such a construction preserves CPA and
sPA1� security.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 17

that of Com to be {0, 1}k for k-bit security.6 Then, our first proposed KEM
Γ = (KKG,Encap,Decap) is constructed as in Fig. 3.

KKG(1k) :

(pkin0, skin0) ← KKGin(1
k)

(pkin1, skin1) ← KKGin(1
k)

(pk, sk) ← TKG(1k)

ck ← CKG(1k)
PK ← (pkin0, pkin1, pk, ck)
SK ← (skin0, skin1, sk, PK)
Return (PK, SK).

Encap(PK) :
(pkin0, pkin1, pk, ck) ← PK
(cin0, α0) ← Encapin(pkin0)
(cin1, α1) ← Encapin(pkin1)
α ← α0 ⊕ α1

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

tag ← Com(ck, (cin0 cin1); rc)
c ← TEnc(pk, tag, (cin0 cin1); rt)
C ← (tag, c).
Return (C, K).

Decap(SK, C) :
(skin0, skin1, sk, PK) ← SK
(pkin0, pkin1, pk, ck) ← PK
(tag, c) ← C
(cin0 cin1) ← TDec(sk, tag, c)
If TDec has returned ⊥ then return ⊥.
α0 ← Decapin(skin0, cin0)
α1 ← Decapin(skin1, cin1)
If α0 = ⊥ or α1 = ⊥ then return ⊥.
α ← α0 ⊕ α1

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

If Com(ck, (cin0 cin1); rc) = tag
and TEnc(pk, tag, (cin0 cin1); rt) = c

then return K else return ⊥.

Fig. 3. The first proposed construction: the KEM Γ based on a KEM Γin, a commit-
ment scheme C, and a PTBE scheme T .

Alternative Decapsulation Algorithm. Similarly to the constructions in
[37–39], to show the CCA security of the proposed KEM Γ , it is useful to con-
sider the following alternative decapsulation algorithm AltDecap. For a k-bit
string tag∗ ∈ {0, 1}k and a key pair (PK,SK) output by KKG(1k), where
PK = (pkin0, pkin1, pk, ck) and SK = (skin0, skin1, sk, PK), we define an “alter-
native” secret key ̂SKtag∗ associated with tag∗ ∈ {0, 1}k by ̂SKtag∗ = (skin0,
skin1, tag

∗, ̂sktag∗ , PK), where ̂sktag∗ = Punc(sk, tag∗). AltDecap takes an “alter-
native” secret key ̂SKtag∗ defined as above and a ciphertext C = (tag, c) as
input, and runs as follows:

AltDecap(̂SKtag∗ , C): First check if tag∗ = tag, and return ⊥ if this is the
case. Otherwise, run in exactly the same way as Decap(SK,C), except that
“(cin0‖cin1) ← T̂Dec(̂sktag∗ , tag, c)” is executed in the fourth step, instead of
“(cin0‖cin1) ← TDec(sk, tag, c).”

6 The requirements of the randomness space of TEnc and Com are without loss of gen-
erality, because we can adjust them using a pseudorandom generator. (The trapdoor
simulatability property is preserved even if we use a pseudorandom generator).

18 T. Matsuda and G. Hanaoka

Regarding AltDecap, the following lemma is easy to see due to the correctness
of the underlying PTBE scheme T and the validity check of c by re-encryption
performed at the last step. (The formal proof is given in the full version).

Lemma 3. Let tag∗ ∈ {0, 1}k be a string and let (PK,SK) be a key pair
output by KKG(1k). Furthermore, let ̂SKtag∗ be an alternative secret key as
defined above. Then, for any ciphertext C = (tag, c) (which could be outside
the range of Encap(PK)) satisfying tag �= tag∗, it holds that Decap(SK,C) =
AltDecap(̂SKtag∗ , C).

CCA Security. The security of Γ is guaranteed by the following theorem.

Theorem 1. Assume that the KEM Γin is CPA secure and sPA12 secure, the
commitment scheme C is target-binding and trapdoor simulatable, and the PTBE
scheme T is trapdoor simulatable. Then, the KEM Γ constructed as in Fig. 3 is
CCA secure.

Note that as mentioned in Sect. 2.3, a commitment scheme with trapdoor simu-
latability and target-binding can be constructed from any TSPKE scheme, and
thus the above theorem shows that we can indeed construct a CCA secure KEM
(and thus CCA secure PKE) from the combination of a KEM satisfying CPA and
sPA12 security and a TSPKE scheme.

We have provided ideas for the security proof in Sect. 1.3, and thus we directly
proceed to the proof.

Proof of Theorem 1. Let A be any PPTA adversary that attacks the CCA security
of the KEM Γ . Our security proof is via the sequence of games argument. To
describe the games, we will need an extractor E corresponding to some “cipher-
text creator” A′ that is guaranteed to exist by the sPA12 security of Γin. Specif-
ically, consider the following A′ (that internally runs A) that runs in the exper-
iment ExptsPA1Γin,A′,E,2(k), with a corresponding extractor E :

A′E(stE ,·)(pk1, pk2; rA′ = (rA, r̂c, r̂t,K
∗)): A′ firstly sets pkin0 ← pk1 and pkin1 ←

pk2 (which implicitly sets skin0 ← sk1 and skin1 ← sk2, where sk1 (resp.
sk2) is the secret key corresponding to pk1 (resp. pk2)), and runs (ck, tag∗) ←
oSampC(1k; r̂c) and (pk, c∗, ̂sktag∗) ← oSampT (tag∗; r̂t). Then A′ sets PK ←
(pkin0, pkin1, pk, ck) and C∗ ← (tag∗, c∗), and then runs A(PK,C∗,K∗; rA).
When A submits a decapsulation query C, A′ responds to it as if it runs
AltDecap(̂SKtag∗ , C), where the oracle calls (to the extractor E) of the form
(1, cin0) and (2, cin1) are used as substitutes for Decapin(skin0, cin0) and
Decapin(skin1, cin1), respectively. More precisely, A′ answers A’s decapsu-
lation query C = (tag, c) as follows:
1. If tag = tag∗, then return ⊥ to A.
2. Run (cin0‖cin1) ← T̂Dec(̂sktag∗ , tag, c), and return ⊥ to A if T̂Dec has

returned ⊥.
3. Submit queries (1, cin0) and (2, cin1) to the extractor E(stE , ·) and receive

the answers α0 and α1, respectively. (Here, the answers α0 and α1 are
expected to be α0 = Decapin(skin0, cin0) and α1 = Decapin(skin1, cin1),
respectively, and the extractor E may update its state upon each call).

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 19

4. If α0 = ⊥ or α1 = ⊥, then return ⊥ to A.
5. Let α ← α0 ⊕ α1 and parse α as (rc, rt,K) ∈ ({0, 1}k)3.
6. If Com(ck, (cin0‖cin1); rc) = tag and TEnc(pk, (cin0‖cin1); rt) = c, then

return K, otherwise return ⊥, to A.
When A terminates, A′ also terminates.

The above completes the description of the algorithm A′. The randomness rA′

consumed by A′ is of the form (rA, r̂c, r̂t,K
∗), where rA, r̂c, and r̂t are the

randomness used by A, oSampC , and oSampT , respectively, and K∗ is a k-bit
string. The corresponding extractor E thus receives (pk1, pk2) and rA′ as its
initial state stE . Note that since Γin is assumed to be sPA12 secure and A′ is a
PPTA, AdvsPA1Γin,A′,E,2(k) is negligible for this extractor E , which will be used later
in the proof. (Looking ahead, we will design the sequence of games so that A’s
view in the case A is internally run by A′ and A′ is run in ExptsPA1Γin,A′,E,2(k), is
identical to A’s view in Game 6).

For convenience, we refer to the procedure of using the extractor E as substi-
tutes for Decapin(skin0, ·) and Decapin(skin1, ·), as AltDecap′

E . Here, AltDecap′
E

is a stateful procedure that initially takes tag∗, ̂sktag∗ , and an initial state stE of
E (i.e. stE = ((pkin0, pkin1), rA′)) as input, and expects to receive a ciphertext
C = (tag, c) as an input. If it receives a ciphertext C = (tag, c), it calculates the
decapsulation result K (or ⊥) as A′ does for A, using ̂sktag∗ and the extractor
E , where E ’s internal state could be updated upon each execution.

Now, using the adversary A and the extractor E , consider the following
sequence of games: (Here, the values with asterisk (*) represent those related
to the challenge ciphertext for A).

Game 1: This is the experiment ExptCCAΓ,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queries C = (tag, c)

satisfying tag = tag∗ are answered with ⊥.
Game 3: Same as Game 2, except that all decapsulation queries C are answered

with AltDecap(̂SKtag∗ , C), where ̂SKtag∗ is the alternative secret key cor-
responding to (PK,SK) and tag∗. Furthermore, we pick a random bit
γ ∈ {0, 1} uniformly at random just before executing A, which will be used
to define the events in this game and the subsequent games. (γ does not
appear in A’s view in this and all subsequent games, and thus does not
affect its behavior at all).

Game 4: In this game, we use AltDecap′
E (defined as above) as A’s decapsulation

oracle, where the initial state of E (used internally by AltDecap′
E) is prepared

using the “inverting algorithms” rSampC of C and rSampT of T . Moreover,
we also change the ordering of the steps so that they do not affect A’s view.
More precisely, this game is defined as follows:

20 T. Matsuda and G. Hanaoka

Game 4:

(pkin0, skin0) ← KKGin(1
k);

(pkin1, skin1) ← KKGin(1
k);

(c∗
in0, α

∗
0) ← Encapin(pkin0);

(c∗
in1, α

∗
1) ← Encapin(pkin1);

α∗ ← (α∗
0 ⊕ α∗

1);

Parse α∗ as (r∗
c , r∗

t , K∗
1) ∈ ({0, 1}k)3;

rg ← {0, 1}∗;

ck ← CKG(1k; rg);
tag∗ ← Com(ck, (c∗

in0‖c∗
in1); r

∗
c);

r̂c ← rSampC(rg, r∗
c , (c∗

in0‖c∗
in1));

(Continue to the right column ↗)

r′
g ← {0, 1}∗;

(pk, sk) ← TKG(1k; r′
g);

̂sktag∗ ← Punc(sk, tag∗);
c∗ ← TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t);

r̂t ← rSampT (r′
g, r∗

t , tag∗, (c∗
in0‖c∗

in1));
PK ← (pkin0, pkin1, pk, ck);
C∗ ← (tag∗, c∗);

K∗
0 ← {0, 1}k;

b ← {0, 1};
rA ← {0, 1}∗;
rA′ ← (rA, r̂c, r̂t, K

∗
b);

stE ← ((pkin0, pkin1), rA′);
γ ← {0, 1};
b′ ← AO(PK, C∗, K∗

b ; rA)

where the decapsulation oracle O that A has access in Game 4 is AltDecap′
E

(which initially receives tag∗, ̂sktag∗ , stE = (pkin0, pkin1, rA′) as input). Note
that the extractor E used internally by AltDecap′

E may update its state stE
upon each execution.

Game 5: Same as Game 4, except that r∗
c , r∗

t ,K∗
1 ∈ {0, 1}k are picked uniformly

at random, independently of α∗ = α∗
0 ⊕ α∗

1. That is, the steps “α∗ ← α∗
0 ⊕

α∗
1; Parse α∗ as (r∗

c , r∗
t ,K∗

1) ∈ ({0, 1}k)3” in Game 4 are replaced with the
step “r∗

c , r∗
t ,K∗

1 ← {0, 1}k,” and we do not use α∗ anymore.
Game 6: Same as Game 5, except that the key/commitment pair (ck, tag∗)

and the key/ciphertext pair (pk, c∗) and a punctured secret key ̂sktag∗ are
sampled obliviously, and correspondingly the randomness r̂c and r̂t used for
oblivious sampling are used in rA′ .
More precisely, the steps “rg, r

∗
c ← {0, 1}∗; ck ← CKG(1k; rg); tag∗ ←

Com(ck, (c∗
in0‖c∗

in1); r
∗
c); r̂c ← rSampC(rg, r

∗
c , (c∗

in0‖c∗
in1))” in Game 5 are

replaced with the steps “r̂c ← {0, 1}∗; (ck, tag∗) ← oSampC(1k; r̂c)”.
Furthermore, the steps “r′

g, r
∗
t ← {0, 1}k; (pk, sk) ← TKG(1k; r′

g); c∗ ←
TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t); r̂t ← rSampT (r′

g, r
∗
t , tag∗, (c∗

in0‖c∗
in1))” in

Game 5 are replaced with the steps “r̂t ← {0, 1}∗; (pk, ̂sktag∗ , c∗) ←
oSampT (tag∗; r̂t)”.

The above completes the description of the games.
For i ∈ [5], let Succi denote the event that A succeeds in guessing the chal-

lenge bit (i.e. b′ = b occurs) in Game i. Furthermore, for i ∈ {3, . . . , 6}, we define
the following bad events in Game i:

Badi: A submits a decapsulation query C = (tag, c) satisfying the following condi-
tions simultaneously: (1) tag �= tag∗, (2) T̂Dec(̂sktag∗ , tag, c) = (cin0‖cin1) �=
⊥, and (3) Decapin(skin0, cin0) �= E(stE , (1, cin0)) or Decapin(skin1, cin1) �=
E(stE , (2, cin1)).

Bad
(σ)
i : (where σ ∈ {0, 1}) A submits a decapsulation query C = (tag, c) that

satisfies the same conditions as Badi, except that the condition (3) is replaced
with the condition: Decapin(skinσ, cinσ) �= E(stE , (σ + 1, cinσ)).

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 21

Bad∗
i : A submits a decapsulation query C = (tag, c) that satisfies the same con-
ditions as Badi, except that the condition (3) is replaced with the condition:
Decapin(skinγ , cinγ) �= E(stE , (γ + 1, cinγ)) (where γ is the random bit chosen
just before executing A).

Note that for all i ∈ {3, . . . , 6}, the events Bad(0)i , Bad(1)i , and Bad∗
i all imply the

event Badi, and thus we have Pr[Bad(0)i],Pr[Bad(1)i],Pr[Bad∗
i] ≤ Pr[Badi].

By the definitions of the games and events, we have

AdvCCAΓ,A(k) = 2 ·
∣

∣

∣Pr[Succ1] − 1
2

∣

∣

∣

≤ 2 ·
(

∑

i∈[4]

∣

∣

∣Pr[Succi] − Pr[Succi+1]
∣

∣

∣ +
∣

∣

∣Pr[Succ5] − 1
2

∣

∣

∣

)

. (1)

In the following, we will upperbound each term that appears in the right hand
side of the above inequality.

Claim 1. There exists a PPTA Bb such that AdvTBindC,Bb
(k) ≥ |Pr[Succ1] −

Pr[Succ2]|.

Proof of Claim 1. For i ∈ {1, 2}, let NoBindi be the event that in Game i, A
submits at least one decapsulation query C = (tag, c) satisfying tag = tag∗ and
Decap(SK,C) �= ⊥. Recall that A’s query C must satisfy C �= C∗ = (tag∗, c∗),
and thus tag = tag∗ implies c �= c∗. The difference between Game 1 and Game 2
is how A’s decapsulation query C = (tag, c) satisfying tag = tag∗ is answered.
Hence, these games proceed identically unless NoBind1 or NoBind2 occurs in the
corresponding games, and thus we have

∣

∣

∣Pr[Succ1] − Pr[Succ2]
∣

∣

∣ ≤ Pr[NoBind1] = Pr[NoBind2]. (2)

Thus, it is sufficient to upperbound Pr[NoBind2].
Observe that for a decapsulation query C = (tag∗, c) satisfying the condition

of NoBind2, it is guaranteed that TDec(sk, tag, c) = (cin0‖cin1) �= (c∗
in0‖c∗

in1).
Indeed, if TDec(sk, tag, c) = (c∗

in0‖c∗
in1) and Decap(SK,C) �= ⊥, then by the

validity check of c in Decap, we have c∗ = c, which is because c must sat-
isfy TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t) = c where r∗

t is the (k + 1)-to-2k-th bits
of α∗ = (α∗

0 ⊕ α∗
1) = (Decapin(skin0, c∗

in0) ⊕ Decapin(skin1, c∗
in1)). However,

TEnc(pk, tag∗, (c∗
in0‖c∗

in1); r
∗
t) = c∗ also holds due to how c∗ is generated, and

thus contradicting the condition c �= c∗ implied by NoBind2.
We use the above fact to show how to construct a PPTA adversary Bb that

attacks the target-binding property of the commitment scheme C with advantage
AdvTBindC,Bb

(k) = Pr[NoBind2]. The description of Bb = (Bb1,Bb2) is as follows:

Bb1(1k): Bb1 first runs (pkin0, skin0) ← KKGin(1k), (pkin1, skin1) ← KKGin(1k),
(c∗

in0, α
∗
0) ← Encapin(pkin0), and (c∗

in1, α
∗
1) ← Encapin(pkin1). Bb1 then sets

α∗ ← (α∗
0 ⊕ α∗

1), and parses α∗ as (r∗
c , r∗

t , α∗) ∈ ({0, 1}k)3. Finally, Bb1 sets
M ← (c∗

in0‖c∗
in1), R ← r∗

c , and stB ← (Bb1’s entire view), and terminates
with output (M,R, stB).

22 T. Matsuda and G. Hanaoka

Bb2(stB, ck): Bb2 first runs (pk, sk) ← TKG(1k), and then sets PK ← (pkin0,
pkin1, pk, ck) and SK ← (skin0, skin1, sk, PK). Bb2 next runs tag∗ ← Com(ck,
(c∗

in0‖c∗
in1); r

∗
c) and c∗ ← TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t), sets C∗ ← (tag∗, c∗),

and also chooses K∗
0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at random. Then,

Bb2 runs A, where the decapsulation queries from A are answered as Game 2
does, which is possible because Bb2 possesses SK.
When A terminates, Bb2 checks if A has made a decapsulation query C =
(tag, c) satisfying the conditions of NoBind2, namely, tag = tag∗, c �= c∗,
TDec(sk, tag, c) = (cin0‖cin1) /∈ {(c∗

in0‖c∗
in1),⊥}, Decapin(skin0, cin0) = α0 �=

⊥, Decapin(skin1, cin1) = α1 �= ⊥, (α0 ⊕ α1) = (rc‖rt‖K) ∈ {0, 1}3k, and
Com(ck, (cin0‖cin1); rc) = tag∗, and TEnc(pk, tag, (cin0‖cin1); rt) = c. (Actu-
ally, the last condition is redundant for Bb2’s purpose). If such a query is
found, then Bb2 terminates with output M ′ = (cin0‖cin1) and R′ = rc. Oth-
erwise, Bb2 gives up and aborts.

The above completes the description of Bb. It is easy to see that Bb does a
perfect simulation of Game 2 for A, and whenever A makes a query that causes
the event NoBind2, Bb2 can find such a query by using SK and output a pair
(M ′, R′) = ((cin0‖cin1), rc) satisfying Com(ck,M ;R) = Com(ck,M ′;R′) = tag∗

and M �= M ′, violating the target-binding property of the commitment scheme
C. Therefore, we have AdvTBindC,Bb

(k) = Pr[NoBind2]. Then, by Eq. (2), we have
AdvTBindC,Bb

(k) ≥ |Pr[Succ1] − Pr[Succ2]|, as required.
� (Claim 1)

Claim 2. Pr[Succ2] = Pr[Succ3].

Proof of Claim 2. It is sufficient to show that the behavior of the oracle given to A
in Game 2 and that in Game 3 are identical. Let C = (tag, c) be a decapsulation
query that A makes. If tag = tag∗, then the query is answered with ⊥ in Game 2
by definition, while the oracle AltDecap(̂SKtag∗ , C) that is given access to A in
Game 3 also returns ⊥ by definition. Otherwise (i.e. tag �= tag∗), by Lemma 3,
the result of Decap(SK,C) and that of AltDecap(̂SKtag∗ , C) always agree. This
completes the proof.
� (Claim 2)

Claim 3. There exist PPTAs Bg and Bd such that
∣

∣

∣Pr[Succ3] − Pr[Succ4]
∣

∣

∣ ≤ 2 ·
(

AdvCPAΓin,Bg
(k) + AdvTS[C,T],Bd

(k) + AdvsPA1Γin,A′,E,2(k)
)

.

We postpone the proof of this claim to the end of the proof of Theorem1.

Claim 4. There exists a PPTA B′
g such that AdvCPAΓin,B′

g
(k) = |Pr[Succ4] −

Pr[Succ5]|.

Proof of Claim 4. Using A and E as building blocks, we show how to construct
a PPTA CPA adversary B′

g with the claimed advantage. The description of B′
g is

as follows:

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 23

B′
g(pk′, c′∗, α′∗

β): (where β ∈ {0, 1} is B′
g’s challenge bit in its CPA experi-

ment) B′
g sets pkin0 ← pk′, c∗

in0 ← c′∗, and α∗
0 ← α′∗

β . Next, B′
g gen-

erates (pkin1, skin1) ← KKGin(1k) and (c∗
in1, α

∗
1) ← Encapin(pkin1), sets

α∗ ← (α∗
0 ⊕ α∗

1), and parses α∗ as (r∗
c , r∗

t ,K∗
1) ∈ ({0, 1}k)3. Then, B′

g

picks rg, r
′
g ← {0, 1}∗ uniformly at random, and runs ck ← CKG(1k; rg),

tag∗ ← Com(ck, (c∗
in0‖c∗

in1); r
∗
c), r̂c ← rSampC(rg, r

∗
c , (c∗

in0‖c∗
in1)), (pk, sk) ←

TKG(1k; r′
g), ̂sktag∗ ← Punc(sk, tag∗), c∗ ← TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t),

and r̂t ← rSampT (r′
g, r

∗
t , tag∗, (c∗

in0‖c∗
in1)). Then B′

g picks rA ∈ {0, 1}∗,
K∗

0 ∈ {0, 1}k, and b ∈ {0, 1} all uniformly at random, and sets PK ←
(pkin0, pkin1, pk, ck), C∗ ← (tag∗, c∗), rA′ ← (rA, r̂c, r̂t,K

∗
b), and stE ←

(pkin0, pkin1, rA′). Finally, B′
g runs A(PK,C∗,K∗

b ; rA).
B′
g answers A’s decapsulation queries as AltDecap′

E does, where the initial
state of AltDecap′

E is tag∗, ̂sktag∗ , and stE . (Note that stE is used by E , and
may be updated upon each call of AltDecap′

E).
When A terminates with output b′, B′

g sets β′ ← (b′ ?= b), and terminates
with output β′.

The above completes the description of B′
g. B′

g’s CPA advantage can be calculated
as follows:

AdvCPAΓin,B′
g
(k) = 2 ·

∣

∣

∣Pr[β′ = β] − 1
2

∣

∣

∣ =
∣

∣

∣Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]
∣

∣

∣

=
∣

∣

∣Pr[b′ = b|β = 1] − Pr[b′ = b|β = 0]
∣

∣

∣.

Consider the case when β = 1. It is easy to see that in this case, B′
g simulates

Game 4 perfectly for A. Specifically, the real session-key α′∗
β = α′∗

1 (corresponding
to c∗

in0 = c′∗) is used as α∗
0, and thus α∗ = (α∗

0 ⊕ α∗
1) = (r∗

c‖r∗
t ‖K∗

1) is generated
exactly as that in Game 4. All other values are distributed identically to those
in Game 4. Furthermore, B′

g uses AltDecap′
E for answering A’s decapsulation

queries, where the initial state of AltDecap′
E (and thus the initial state of E) is

appropriately generated as those in Game 4. Under this situation, the probability
that A succeeds in guessing b (i.e. b′ = b occurs) is exactly the same as the
probability that A does so in Game 4, i.e. Pr[b′ = b|β = 1] = Pr[Succ4].

On the other hand, when β = 0, then B′
g simulates Game 5 perfectly for

A. Specifically, in this case, a uniformly random value α′∗
β = α′∗

0 is used as α∗
0.

Therefore, α∗ = (α∗
0⊕α∗

1) is also a uniformly random 3k-bit string, and thus each
of r∗

c , r∗
t , and K∗

1 is a uniformly random k-bit string, which is exactly how these
values are chosen in Game 5. Since this is the only change from the case of β = 1,
with a similar argument to the above, we have Pr[b′ = b|β = 0] = Pr[Succ5].

In summary, we have AdvCPAΓin,B′
g
(k) = |Pr[Succ4] − Pr[Succ5]|, as required.

� (Claim 4)

Claim 5. Pr[Succ5] = 1/2.

Proof of Claim 5. This is obvious because in Game 5, the real session-key K∗
1

is made independent of the challenge ciphertext C∗. Since both K∗
1 and K∗

0 are

24 T. Matsuda and G. Hanaoka

now uniformly random, the view of A does not contain any information on b.
This means that the probability that A succeeds in guessing the challenge bit is
exactly 1/2.
� (Claim 5)

Claims 1, 2, 3, 4 and 5 and Eq. (1) guarantee that there exist PPTAs Bb, Bg,
Bd, and B′

g such that

AdvCCAΓ,A(k) ≤ 2 · AdvTBindC,Bb
(k) + 4 · AdvCPAΓin,Bg

(k) + 4 · AdvTS[C,T],Bd
(k)

+ 4 · AdvsPA1Γin,A′,E,2(k) + 2 · AdvCPAΓin,B′
g
(k),

which, due to our assumptions on the building blocks and Lemma2, implies that
AdvCCAΓ,A(k) is negligible. Recall that the choice of the PPTA CCA adversary A was
arbitrarily, and thus for any PPTA CCA adversary A we can show a negligible
upperbound for AdvCCAΓ,A(k) as above.

In order to finish the proof of Theorem1, it remains to prove Claim 3.

Proof of Claim 3. Note that the difference between Game 3 and Game 4 is how
a query C = (tag, c) satisfying the conditions of Bad3 (or Bad4) is answered,
and Game 3 and Game 4 proceed identically unless Bad3 or Bad4 occurs in the
corresponding games. This means that we have

∣

∣

∣Pr[Succ3] − Pr[Succ4]
∣

∣

∣ ≤ Pr[Bad3] = Pr[Bad4]. (3)

We claim the following:

Subclaim 1. Pr[Bad4] ≤ 2 · Pr[Bad∗
4].

Proof of Subclaim 1. The argument here is essentially the same as the one used
in the proof of Claim 4.13 in [17].

Note that the event Bad4, Bad
(0)
4 , Bad

(1)
4 , and Bad∗

4 are triggered once A
makes a query C = (tag, c) satisfying the conditions that cause these events.
Moreover, by definition, if any of the latter three events occurs, then Bad4
occurs. Furthermore, the bit γ is information-theoretically hidden from A’s view
in Game 4. This means that the probability of Bad∗

4 occurring is identical to the
probability of the event (in Game 4) that is triggered when (1) A first makes a
query satisfying the conditions of Bad4, (2) γ is picked “on-the-fly” at this point,
and then (3) Decapin(skinγ , cinγ) �= E(stE , (γ + 1, cinγ)) holds. The probability
of this event occurring is Prγ←{0,1}[Bad4 ∧ Bad

(γ)
4] = Prγ←{0,1}[Bad

(γ)
4] (where

the probability is also over Game 4 except the choice of γ). This can be further
estimated as follows:

Pr
γ←{0,1}

[Bad(γ)4] =
1
2

(

Pr[Bad(0)4] + Pr[Bad(1)4]
)

≥ 1
2

Pr[Bad(0)4 ∨ Bad
(1)
4] =

1
2

Pr[Bad4],

where we used Pr[Bad(0)4 ∨ Bad
(1)
4] = Pr[Bad4], which is by definition.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 25

In summary, we have Pr[Bad∗
4] ≥ 1

2 Pr[Bad4], as required.
� (Subclaim 1)

Using Subclaim 1, we can further estimate Pr[Bad4] as follows:

Pr[Bad4] ≤ 2 · Pr[Bad∗
4]

≤ 2 ·
(∣

∣

∣Pr[Bad∗
4] − Pr[Bad∗

5]
∣

∣

∣ + Pr[Bad∗
5]

)

≤ 2 ·
(∣

∣

∣Pr[Bad∗
4] − Pr[Bad∗

5]
∣

∣

∣ + Pr[Bad5]
)

≤ 2 ·
(∣

∣

∣Pr[Bad∗
4] − Pr[Bad∗

5]
∣

∣

∣ +
∣

∣

∣Pr[Bad5] − Pr[Bad6]
∣

∣

∣ + Pr[Bad6]
)

,

(4)

where we used Pr[Bad∗
5] ≤ Pr[Bad5] in the third inequality, which is again by

definition. It remains to upperbound the right hand side of the above inequality.

Subclaim 2. There exists a PPTA Bg such that AdvCPAΓin,Bg
(k) = | Pr[Bad∗

4] −
Pr[Bad∗

5]|.

Proof of Subclaim 2. Using A and E as building blocks, we show how to construct
a PPTA CPA adversary Bg with the claimed advantage. The description of Bg is
as follows:

Bg(pk′, c′∗, α′∗
β): (where β ∈ {0, 1} is Bg’s challenge bit in its CPA experiment) Bg

picks γ ∈ {0, 1} uniformly at random, then sets pkin(1−γ) ← pk′, c∗
in(1−γ) ←

c′∗, and α∗
1−γ ← α′∗

β . Next, Bg generates (pkinγ , skinγ) ← KKGin(1k) and
(c∗

inγ , α∗
γ) ← Encapin(pkinγ), sets α∗ ← (α∗

0 ⊕ α∗
1), and parses α∗ as (r∗

c , r∗
t ,

K∗
1) ∈ ({0, 1}k)3. Then, Bg prepares K∗

1 ,K∗
0 ∈ {0, 1}k, b ∈ {0, 1}, PK =

(pkin0, pkin1, pk, c), C∗ = (tag∗, c∗), ̂sktag∗ , and stE = (pkin0, pkin1, rA′ = (rA,
r̂c, r̂t,K

∗
b)), exactly as B′

g in the proof of Claim 4 does. Finally, Bg runs A(PK,
C∗,K∗

b ; rA) until it terminates, where Bg answers A’s queries in exactly the
same way as B′

g does.
When A terminates, Bg checks whether A has submitted a decapsulation
query C = (tag, c) that satisfies the conditions of Bad∗

4 (i.e. (1) tag �= tag∗,
(2) T̂Dec(̂sktag∗ , tag, c) = (cin0‖cin1) �= ⊥, and (3) Decapin(skinγ , cinγ) �=
E(stE , cinγ) hold), which can be checked by using skinγ . If such a query is
found, the Bg sets β′ ← 1, otherwise sets β′ ← 0, and terminates with out-
put β′.

The above completes the description of Bg. Let Bad∗
B be the event that A submits

a decapsulation query that satisfies the conditions (1), (2), and (3) of Bad∗
4, in

the experiment simulated by Bg. Note that Bg outputs β′ = 1 only when Bad∗
B

occurs. Therefore, Bg’s CPA advantage can be calculated as follows:

AdvCPAΓin,Bg
(k) = 2 ·

∣

∣

∣Pr[β′ = β] − 1
2

∣

∣

∣ =
∣

∣

∣Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]
∣

∣

∣

=
∣

∣

∣Pr[Bad∗
B|β = 1] − Pr[Bad∗

B|β = 0]
∣

∣

∣.

26 T. Matsuda and G. Hanaoka

With essentially the same arguments as in the proof of Claim 4, we can
see that Bg does a perfect simulation of Game 4 for A if β = 1, and does a
perfect simulation of Game 5 for A if β = 0. In particular, the only differ-
ence from the proof of Claim 4 is in which of the positions (pkin0, c

∗
in0, α

∗
0) or

(pkin1, c
∗
in1, α

∗
1) Bg embeds Bg’s instance of the CPA experiment. In the proof of

Claim 4, the reduction algorithm B′
g embeds its challenge into (pkin0, c

∗
in0, α

∗
0),

while in the current proof, the reduction algorithm Bg embeds its challenge into
(pkin(1−γ), c

∗
in(1−γ), α

∗
1−γ) for a random γ ∈ {0, 1}. It is easy to see that even

after this change, if β = 1, then the view of A is identical to that in Game 4,
and if β = 0, then the view of A is identical to that in Game 5.

Under the situation, the probability that Bad∗
B occurs in the experiment

simulated by Bg in case β = 1 (resp. β = 0) is identical to the probability
that Bad∗

4 (resp. Bad∗
5) occurs in Game 4 (resp. Game 5), namely, we have

Pr[Bad∗
B|β = 1] = Pr[Bad∗

4] and Pr[Bad∗
B|β = 0] = Pr[Bad∗

5].
In summary, we have AdvCPAΓin,Bg

(k) = |Pr[Bad∗
4] − Pr[Bad∗

5]|, as required.

� (Subclaim 2)

Subclaim 3. There exists a PPTA Bd such that AdvTS[C,T],Bd
(k) = | Pr[Bad5] −

Pr[Bad6]|.

Proof of Subclaim 3. Using A and E as building blocks, we show how to construct
a PPTA B that has the claimed advantage in distinguishing the distributions
considered in Lemma 2. The description of Bd = (Bd1,Bd2) as follows:

Bd1(1k): Bd1 runs (pkin0, skin0) ← KKGin(1k), (pkin1, skin1) ← KKGin(1k),
(c∗

in0, α
∗
0) ← Encapin(pkin0), (c∗

in1, α
∗
1) ← Encapin(pkin1). Then Bd1 sets

M ← (c∗
in0‖c∗

in1) and stB ← (Bd1’s entire view), and terminates with out-
put (M, stB).

Bd2(stB, ck, tag∗, pk, c∗, ̂sktag∗ , r̂c, r̂t): Bd2 sets PK ← (pkin0, pkin1, pk, ck) and
C∗ ← (tag∗, c∗), picks K∗ ∈ {0, 1}∗ and rA ∈ {0, 1}∗ uniformly at random,
and then sets rA′ ← (rA, r̂c, r̂t,K

∗) and stE ← (pkin0, pkin1, rA′). (Recall
that K∗

0 and K∗
1 in Games 5 and 6 are distributed identically, and thus it is

sufficient to choose just a single value K∗ and pretend as if K∗ is K∗
b). Then

Bd2 runs A(PK,C∗,K∗; rA).
Bd2 answers A’s queries as Game 5 does, which is possible because Bd2 pos-
sesses ̂sktag∗ and stE , and thus Bd2 can run AltDecap′

E (which internally runs
the extractor E(stE , ·)).
When A terminates, Bd2 checks whether A has submitted a query that sat-
isfies the conditions of Bad5, which can be checked by using skin0 and skin1
that Bd2 possesses. If such a query is found, then Bd2 outputs 1, otherwise
outputs 0, and terminates.

The above completes the description of Bd. Let BadB be the event that A sub-
mits a decapsulation query C = (tag, c) that satisfies the conditions of Bad5 in
the experiment simulated by Bd (i.e. the query satisfying (1) tag �= tag∗, (2)
T̂Dec(̂sktag∗ , tag, c) = (cin0‖cin1) �= ⊥, and (3) Decapin(skin0, cin0) �= E(stE , cin0)

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 27

or Decapin(skin1, cin1) �= E(stE , cin1)). Note that Bd submits 1 only when BadB
occurs. Therefore, Bd’s advantage AdvTS[C,T],Bd

(k) can be calculated as follows:

AdvTS[C,T],Bd
(k) =

∣

∣

∣Pr[ExptTS-Real[C,T],Bd
(k) = 1] − Pr[ExptTS-Sim[C,T],Bd

(k) = 1]
∣

∣

∣

=
∣

∣

∣Pr[ExptTS-Real[C,T],Bd
: BadB] − Pr[ExptTS-Sim[C,T],Bd

(k) : BadB]
∣

∣

∣.

Consider the case when Bd is run in the “real” experiment ExptTS-Real[C,T],Bd
(k). It

is easy to see that in this case, Bd simulates Game 5 perfectly for A. Specifically,
ck, pk, tag∗, c∗, and ̂sktag∗ are generated from CKG, TKG, Com, TEnc, and Punc,
respectively, in such a way that tag∗ is a commitment of (c∗

in0‖c∗
in1) and c∗ is

an encryption of (c∗
in0‖c∗

in1) under the tag tag∗. Furthermore, r̂c and r̂t are gen-
erated from rSampC and rSampT , respectively, which is how they are generated
in Game 5. Under the situation, the probability that A submits a decapsulation
query that causes the event BadB is exactly the same as the probability that A
does so in Game 5. That is, we have Pr[ExptTS-Real[C,T],Bd

(k) : BadB] = Pr[Bad5].
On the other hand, consider the case when Bd is run in the “simulated”

experiment ExptTS-Sim[C,T],Bd
(k). In this case, Bd simulates Game 6 perfectly for A.

Specifically, (ck, tag∗) and (pk, c∗, ̂sktag∗) are generated by oSampC(1k; r̂c) and
oSampT (tag∗; r̂t) with uniformly chosen randomness r̂c and r̂t, respectively, and
this is exactly how these values are generated in Game 6. Since this is the only
change from the above case, with a similar argument we have Pr[ExptTS-Sim[C,T],Bd

(k) :
BadB] = Pr[Bad6].

In summary, we have AdvTS[C,T],Bd
(k) = |Pr[Bad5] − Pr[Bad6]|, as required.

� (Subclaim 3)

Subclaim 4. AdvsPA1Γin,A′,E,2(k) = Pr[Bad6].

Proof of Subclaim 4. Note that the view of A in Game 6 is exactly the same
as the view of A when it is internally run by A′ in the situation where A′

is run in the experiment ExptsPA1Γin,A′,E,2(k) with the extractor E . Therefore, the
probability that A submits a query that causes the event Bad6 in Game 6, is
exactly the same as the probability that A′ submits a query to E that makes the
experiment ExptsPA1Γin,A′,E,2(k) outputs 1 (i.e. A′ submits a query of the form (j +
1, cinj) such that Decapin(skinj , cinj) �= E(stE , (j + 1, cinj)) for some j ∈ {0, 1}).

� (Subclaim 4)

Equations (3) and (4), and Subclaims 2, 3 and 4 imply Claim 3.
� (Claim 3)

This concludes the proof of Theorem1.
� (Theorem 1)

4.2 Second Construction

Let Γin = (KKGin,Encapin,Decapin) be a KEM whose ciphertext length is
n = n(k) and whose session-key space is {0, 1}3k for k-bit security. Let
T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE scheme and C = (CKG,Com)

28 T. Matsuda and G. Hanaoka

be a commitment scheme. We require the plaintext space of TEnc and the
message space of Com to be {0, 1}n, and the randomness space of TEnc and
that of Com to be {0, 1}k for k-bit security. Then, our second proposed KEM
Γ = (KKG,Encap,Decap) is constructed as in Fig. 4.

KKG(1k) :

(pkin, skin) ← KKGin(1
k)

(pk, sk) ← TKG(1k)

ck ← CKG(1k)
PK ← (pkin, pk, ck)
SK ← (skin, sk, PK)
Return (PK, SK).

Encap(PK) :
(pkin, pk, ck) ← PK
(cin, α) ← Encapin(pkin)

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

tag ← Com(ck, cin; rc)
c ← TEnc(pk, tag, cin; rt)
C ← (tag, c).
Return (C, K).

Decap(SK, C) :
(skin, sk, PK) ← SK
(pkin, pk, ck) ← PK
(tag, c) ← C
cin ← TDec(sk, tag, c)
If cin = ⊥ then return ⊥.
α ← Decapin(skin, cin)
If α = ⊥ then return ⊥.

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

If Com(ck, cin; rc) = tag
and TEnc(pk, tag, cin; rt) = c

then return K else return ⊥

Fig. 4. The second proposed construction: the KEM Γ based on a KEM Γin, a com-
mitment scheme C, and a PTBE scheme T .

The security of Γ is guaranteed by the following theorem.

Theorem 2. Assume that the KEM Γin is 1-CCA secure and sPA11 secure, the
commitment scheme C is target-binding and trapdoor simulatable, and the PTBE
scheme T is trapdoor simulatable. Then, the KEM Γ constructed as in Fig. 4 is
CCA secure.

The proof of this theorem proceeds very similarly to the proof of Theorem1, and
thus we only explain the difference here, and will give the formal proof in the
full version.

Recall that in the proof of Theorem 1, the “bad” queries (for which the
extractor fails to extract correct decapsulation results) are dealt with due to
the property of “multiple encryption” of two instances of the KEM Γin with
public keys (pkin0, pkin1). In particular, the reduction algorithm in the proof of
Subclaim 2 that attacks the CPA security of the underlying KEM Γin, uses one
of secret keys skinγ (corresponding to pkinγ) to detect whether the bad event
occurs, while embedding its CPA instance regarding Γin into the other position,
i.e. into (pkin(1−γ), cin(1−γ)). This strategy works thanks to the argument regard-
ing the probabilities given in the proof of Subclaim1 (which is in turn based on
the proof of [17, Claim 4.13]). However, for this argument to work, it seems to
us that we inherently have to rely on the sPA12 security of Γin, in order for the
reduction algorithms (especially, the reduction algorithms attacking the CPA of
Γin) to simulate the decapsulation oracle for an adversary A.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 29

The simple idea employed in our second construction is to change the mech-
anism of detecting the bad queries by relying on the 1-CCA security of Γin, so
that a reduction algorithm can check (by its access to the decapsulation oracle)
whether A has submitted a bad decapsulation query. This allows us to use Γin

only in the “single” key setting, leading to only requiring it to be sPA11 secure.
By employing this idea, a security analysis similar to the recent constructions
[31,37,40,44] works, and for the other parts of the security proof (other than the
analysis regarding dealing with the bad decapsulation queries) are essentially the
same as those in the proof of Theorem1. For more details, see the full version.

On the Merits of the Second Construction. Since we need to use a KEM which
simultaneously satisfies 1-CCA and sPA11 security for our second construction,
a natural question would be whether we can construct such a scheme. We note
that we can achieve such a KEM from a CPA secure PKE (or a KEM) which is
also sPA12k secure. Specifically, Dodis and Fiore [21, Appendix C] showed how
to construct a 1-CCA secure PKE scheme from the combination of a CPA secure
PKE scheme and a one-time secure signature scheme (in which 2k independently
generated public keys are arranged as in the “DDN-lite” construction, but a
message is encoded and encrypted in a k-out-of-k fashion, rather than encrypting
the same message under k public keys). It is straightforward to see that their
construction is sPA11 secure if the underlying PKE scheme is sPA12k secure. We
note that we can slightly optimize their construction by using a CPA secure KEM,
instead of a PKE scheme, as a building block. We provide the construction and
its security proof in the full version.

However, if we implement a 1-CCA and sPA11 secure KEM from a CPA and
sPA12k secure KEM, there is no merit compared to our first construction (that
only requires a CPA and sPA12 secure KEM), both in terms of the assumptions
and the efficiency. So far, we do not know a better way to construct a 1-CCA
and sPA11 secure scheme than the approach that relies on [21, Appendix C]. We
would like to however emphasize that the point of our second construction is
that it may in the future be possible to come up with a direct construction of a
KEM (or a PKE scheme) satisfying the requirements for the second construction,
from assumptions weaker than those required in our first construction or the
combination of our second construction and the Dodis-Fiore construction. We
believe that such a possibility of the existence of better constructions can be
a raison d’etre of our second construction. In particular, we actually do not
need the “full” power of 1-CCA security, but a (seemingly) much weaker security
notion such that CPA security holds in the presence of one “plaintext-checking”
query [1,47]. More specifically, a plaintext-checking query (for a KEM it could
be called a session-key-checking query, but we stick to the terminology in [47])
is a query of the form (c,K), and its reply is the one-bit (Decap(sk, c) ?= K).
This could be a hint for the next step.

We would also like to note that even if using the result based on [21], we still
achieve the property of “separating” the requirement that a single PKE scheme
(or a KEM) needs to satisfy “plaintext awareness” and a “simulatability prop-
erty” simultaneously in [18]. This is another merit of our second construction.

30 T. Matsuda and G. Hanaoka

Acknowledgement. The authors would like to thank the members of the study
group “Shin-Akarui-Angou-Benkyou-Kai,” and the anonymous reviewers for their help-
ful comments and suggestions.

A Standard Cryptographic Primitives

Public Key Encryption. A public key encryption (PKE) scheme Π consists of
the three PPTAs (PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← PKG(1k) c ← Enc(pk,m) m (or ⊥) ← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and
c is a ciphertext of a plaintext m under pk. We say that a PKE scheme satisfies
correctness if for all k ∈ N, all keys (pk, sk) output from PKG(1k), and all
plaintexts m, it holds that Dec(sk,Enc(pk,m)) = m.

Since we do not directly use the ordinary security notions for PKE in this
paper, we do not introduce them. In Sect. 2.2, we review the (simplified version
of) trapdoor simulatability property [14] of a PKE scheme.

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) Γ con-
sists of the three PPTAs (KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk) ← KKG(1k) (c,K) ← Encap(pk) K (or ⊥) ← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair
that defines a session-key space K, and c is a ciphertext of a session-key K ∈ K
under pk. We say that a KEM satisfies correctness if for all k ∈ N, all keys
(pk, sk) output from KKG(1k) and all ciphertext/session-key pairs (c,K) output
from Encap(pk), it holds that Decap(sk, c) = K.

Let ATK ∈ {CPA, 1-CCA, CCA}. We say that a KEM Γ is ATK secure if for all
PPTAs A, the advantage AdvATKΓ,A(k) := 2·|Pr[ExptATKΓ,A(k) = 1]−1/2| is negligible,
where the CCA experiment ExptCCAΓ,A(k) is defined as follows:

ExptCCAΓ,A(k) : [(pk, sk) ← KKG(1k); (c∗,K∗
1) ← Encap(pk); K∗

0 ← {0, 1}k;

b ← {0, 1}; b′ ← ADecap(sk,·)(pk, c∗,K∗
b); Return (b′ ?= b)],

where in the experiment, A is not allowed to submit c∗ to the oracle. The 1-CCA
(1-bounded CCA) experiment Expt1-CCAΓ,A (k) is defined in the same way as the CCA
experiment, except that A is allowed to submit a decapsulation query only once.
Furthermore, the CPA experiment ExptCPAΓ,A(k) is also defined similarly to the CCA
experiment, except that A is not allowed to submit any query.

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 31

Commitment. A commitment scheme C consists of the two PPTAs (CKG,Com)
with the following interface:

Key Generation: Commitment Generation:
ck ← CKG(1k) c ← Com(ck,m)

where ck is a commitment key, and c is a commitment of the message m under ck.
As a (non-standard) requirement, we require the size of a commitment to be

k-bit for k-bit security, no matter how long a committed message is.7

We say that a commitment scheme C is target-binding8 if for all PPTAs
A = (A1,A2), the advantage function AdvTBindC,A (k) := Pr[ExptTBindC,A (k) = 1] is
negligible, where the experiment ExptTBindC,A (k) is defined as follows:

ExptTBindC,A (k) : [(m, r, st) ← A1(1k); ck ← CKG(1k); (m′, r′) ← A2(st, ck);

Return 1 iff Com(ck,m′; r′) = Com(ck,m; r) ∧ m′ �= m.].

Since we do not directly use the hiding property, we do not introduce its
formal definition. In Section 2.3, we define the trapdoor simulatability property
for a commitment scheme, which is defined in essentially the same way as that
for a TSPKE scheme.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (2015)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

5. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004)

7 This requirement (together with the following binding property and the “trapdoor
simulatability property”) can be easily realized if we are given a TSPKE scheme and
a UOWHF. We give the construction in the full version.

8 Note that the target-binding property is slightly weaker than the ordinary binding
notion in the sense that an adversary has to choose its first message before seeing
a key ck. The relation between the ordinary binding and target-binding is similar
to the relation between collision resistance and target collision resistance of a hash
function family. The target-binding was also used in [39].

32 T. Matsuda and G. Hanaoka

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73 (1993)

7. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

8. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998)

9. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

11. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC 1996, pp. 639–648 (1996)

12. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

13. Chen, Y., Zhang, Z.: Publicly evaluable pseudorandom functions and their appli-
cations. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
115–134. Springer, Heidelberg (2014)

14. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

15. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

16. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

17. Dachman-Soled, D.: A black-box construction of a CCA2 encryption scheme
from a plaintext aware (sPA1) encryption scheme (2013). Full version of [18].
http://eprint.iacr.org/2013/680

18. Dachman-Soled, D.: A black-box construction of a CCA2 encryption scheme
from a plaintext aware (sPA1) encryption scheme. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 37–55. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0 3

19. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

20. Dent, A.W.: The Cramer-Shoup encryption scheme is plaintext aware in the stan-
dard model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
289–307. Springer, Heidelberg (2006)

21. Dodis, Y., Fiore, D.: Interactive Encryption and Message Authentication (2013).
Full version in [22]. http://eprint.iacr.org/2013/817

22. Dodis, Y., Fiore, D.: Interactive Encryption and Message Authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10879-7 28

23. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp.
542–552 (1991)

http://eprint.iacr.org/2013/680
http://dx.doi.org/10.1007/978-3-642-54631-0_3
http://dx.doi.org/10.1007/978-3-642-54631-0_3
http://eprint.iacr.org/2013/817
http://dx.doi.org/10.1007/978-3-319-10879-7_28

Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 33

24. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

25. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all curcuits.
In: FOCS 2013, pp. 40–49 (2013)

27. Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations. J. Crypt.
26(3), 484–512 (2013)

28. Hajiabadi, M., Kapron, B.M.: Reproducible circularly-secure bit encryption: appli-
cations and realizations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 224–243. Springer, Heidelberg (2015)

29. Hemenway, B., Ostrovsky, R.: On homomorphic encryption and chosen-ciphertext
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 52–65. Springer, Heidelberg (2012)

30. Hemenway, B., Ostrovsky, R.: Building lossy trapdoor functions from lossy encryp-
tion. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 241–260. Springer, Heidelberg (2013)

31. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

32. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

33. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

34. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer,
Heidelberg (2013)

35. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

36. Lynn, B.Y.S., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

37. Matsuda, T., Hanaoka, G.: Achieving chosen ciphertext security from detectable
public key encryption efficiently via hybrid encryption. In: Sakiyama, K., Terada,
M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 226–243. Springer, Heidelberg (2013)

38. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via point obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 95–120. Springer, Heidelberg
(2014)

39. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 56–76. Springer, Heidelberg (2014)

40. Matsuda, T., Hanaoka, G.: An asymptotically optimal method for converting bit
encryption to multi-bit encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 415–442. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 18

http://dx.doi.org/10.1007/978-3-662-48797-6_18
http://dx.doi.org/10.1007/978-3-662-48797-6_18

34 T. Matsuda and G. Hanaoka

41. Matsuda, T., Hanaoka, G.: Constructing and understanding chosen ciphertext
security via puncturable key encapsulation mechanisms. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 561–590. Springer, Heidelberg
(2015)

42. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor func-
tions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
296–311. Springer, Heidelberg (2010)

43. Myers, S., Sergi, M., Shelat, A.: Blackbox construction of a more than non-
malleable CCA1 encryption scheme from plaintext awareness. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 149–165. Springer, Heidelberg
(2012)

44. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS 2009, pp. 607–616
(2009)

45. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC 1989, pp. 33–43 (1989)

46. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437 (1990)

47. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2001)

48. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008, pp. 187–196 (2008)

49. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

50. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

51. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553 (1999)

52. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484 (2014)

53. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 566–598. Springer, Heidelberg (2001)

54. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

	Trading Plaintext-Awareness for Simulatability to Achieve Chosen Ciphertext Security
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Related Work
	1.5 Paper Organization

	2 Preliminaries
	2.1 Plaintext Awareness for Multiple Keys Setup (sPA1 Security)
	2.2 (Simplified) Trapdoor Simulatable Public Key Encryption
	2.3 Trapdoor Simulatable Commitment Schemes
	2.4 Puncturable Tag-Based Encryption

	3 Trapdoor Simulatable PTBE
	4 Proposed KEMs
	4.1 First Construction
	4.2 Second Construction

	A Standard Cryptographic Primitives
	References

