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In [18] Cramer, Damg̊ard and Schoenmakers (CDS) devise an OR-composition
technique for Σ-protocols that allows to construct highly-efficient proofs for com-
pound statements. Since then, such technique has found countless applications
as building block for designing efficient protocols.

Unfortunately, the CDS OR-composition technique works only if both state-
ments are fixed before the proof starts. This limitation restricts its usability in
those protocols where the theorems to be proved are defined at different stages
of the protocol, but, in order to save rounds of communication, the proof must
start even if not all theorems are available. Many round-optimal protocols ([21,
30,41,44]) crucially need such property to achieve round-optimality, and, due to
the inapplicability of CDS’s technique, are currently implemented using proof sys-
tems that requires expensive NP reductions, but that allow the proof to start even
if no statement is defined (a.k.a., LS proofs from Lapidot-Shamir [31]).

In this paper we show an improved OR-composition technique for Σ-protocols,
that requires only one statement to be fixed when the proof starts, while the other
statement can be defined in the last round. This seemingly weaker property is suf-
ficient for the applications, where typically one of the theorems is fixed before the
proof starts. Concretely, we show how our new OR-composition technique can
directly improve the round complexity of the efficient perfect quasi-polynomial
time simulatable argument system of Pass [38] (from four to three rounds) and
of efficient resettable WI arguments (from five to four rounds).

1 Introduction

Witness-Indistinguishable (WI) Proofs. WI1 proofs are fundamental for the
design of cryptographic protocols, particularly when they are also proofs of
knowledge (PoK). In a WIPoK the prover P proves knowledge of a witness
certifying the veracity of a statement x ∈ L to a verifier V. WIPoKs can be used
directly in some applications (e.g., in identification schemes) or can be a building
block for stronger security notions (e.g., for zero-knowledge proofs using the FLS
[24] paradigm or for round-optimal secure computation [30]).
1 We will use WI to mean both “witness indistinguishability” and “witness indistin-

guishable”.
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Round complexity of cryptographic protocols has been extensively studied
both for its practical relevance and for its natural and conceptual interest.
Regarding WIPoKs, we know from Blum’s protocol [5] that 3-round WIPoKs
exist for all NP languages under the sole assumptions that one-way permutations
exist. This result is obtained by designing a WIPoK for the language of Hamil-
tonian graphs and then by leveraging on the NP-completeness of the language
of Hamiltonian graphs. Under stronger cryptographic assumptions, 2-round WI
proofs, called ZAPs, and non-interactive WI (NIWI) proofs have been shown in
[4,23,28]. Neither ZAPs nor NIWI proofs are PoKs.

Since NPreductions are extremely expensive, several practical interactive
PoKs have been designed for languages that are used in real-world cryptographic
protocols (e.g., for proving knowledge of a discrete logarithm (DLog)). The study
of such ad-hoc protocols mainly concentrates on a standardized form of a 3-round
PoK referred to as Σ-protocol [19,42].

Σ-protocols. A Σ-protocol for an NPlanguage L with witness relation RL is
a 3-round proof system jointly run by a prover P and a verifier V in which P
proves knowledge of a witness w for x ∈ L. In a Σ-protocol the only message
sent by V is a random string. Such proof systems have two very useful proper-
ties: special soundness, which is a strong form of proof of knowledge, and spe-
cial honest-verifier zero knowledge (SHVZK). The latter property basically says
the following: if the challenge is known in advance, then by just knowing also
the theorem, it is possible to generate an accepting transcript without using the
witness. This is formalized through the existence of a special simulator, called
the SHVZK simulator that, on input a theorem x and a challenge c, will output
(a, z) such that (a, c, z) is an accepting 3-message transcript for x and is indistin-
guishable from the transcript produced by the honest prover when the challenge
is c. Blum’s protocol for Graph Hamiltonicity is an example of a Σ-protocol.
Another popular example of Σ-protocols is Schnorr’s protocol [42] for proving
knowledge of a discrete logarithm.

The security provided by the SHVZK property is clearly insufficient as it
gives no immediate guarantees against verifiers who deviates from the protocol.
Despite of this, the success of Σ-protocols and their impact in various con-
structions [1,2,6,9–12,14,15,20,22,25,27,32,33,36,37,40,41,43] is a fact. This
is due to a breakthrough of Cramer et al. [18] that adds WI to the security of
Σ-protocol.

OR Composition of Σ-Protocols. Let L be a language that admits a Σ-
protocol ΠL. In [18] it is shown how to use ΠL and its properties to construct a
new Σ-protocol, ΠOR

L , for proving the OR composition of theorems in L avoid-
ing the NPreduction by crucially exploiting the honest-verifier zero-knowledge
(HVZK2) property of ΠL. The rationale behind the transformation can be infor-
mally explained as follows. The prover wishes to prove a statement of the form
((x0 ∈ L) ∨ (x1 ∈ L)). The näıve idea of simply running ΠL twice in parallel

2 HVZK requires the existence of a simulator that by receiving in input the theorem
gives in output an accepting triple (a, c, z). Clearly HVZK is implied by SHVZK.
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would not work because the prover knows only one of the witnesses, say wb,
and cannot compute two accepting transcripts without knowing w1−b. However,
due to the HVZK property, the prover can generate an accepting transcript for
x1−b ∈ L even without knowing w1−b, by running the HVZK simulator Sim asso-
ciated with ΠL. Indeed, Sim “only” needs in input the theorem x1−b and will
output the entire transcript, challenge included. The trick is then to generate
the challenges for the two executions of ΠL, in such a way that the prover can
control the challenge of exactly one of them (but not both), and set it to the
value generated by Sim. Note that, if running the algorithm of Sim is as efficient
as running the algorithm of P, then the composed protocol is efficient. We stress
that this OR-composition technique preserves SHVZK and will refer to it as the
CDS-OR technique.

A very interesting property of this transformation, besides the fact that it
does not need NPreduction, is that if Sim is a simulator for perfect HVZK
then ΠOR

L is WI (this was shown in [18]). This result was further extended by
Garay et al. [25] that noted that the CDS-OR technique can be used also for
Σ-protocols that are computational HVZK. In this case the relation proved is
slightly different, namely, starting with a relation RL and instances x0 and x1,
the resulting ΠOR

L protocol is computational WI for the relation

ROR
L = {((x0, x1), w) : ((x0, w) ∈ RL ∧ (x1 ∈ L)) ∨ ((x1, w) ∈ RL ∧ (x0 ∈ L))}.

Input-Delayed Proofs. Often in cryptographic protocols there is a preamble
phase that has the purpose of establishing, at least in part, a statement to
be proven with a WI proof. In such cases, since one of the statements is fully
specified only when the preamble is completed, the WI proof can start only after
the preamble ends. Hence, the overall round complexity of protocols that follow
this paradigm amounts to the sum of the round complexity of the preamble and
of the WI proof.

In [31], Lapidot and Shamir (and later on Feige et al. in [24]) show a 3-round
proof of knowledge for Hamiltonian Graphs which has the special property that
a prover can compute the first round of the proof, without knowing the theorem
to be proved (that is, the graph) but only needs to know its size (that is, the
number of vertices). Such a 3-round protocol is a Σ-protocol (and thus satisfies
the SHVZK property) and is a WI proof. We will refer to this protocol as LS.
Also, we will call input delayed a Σ-protocol where the prover computes the first
message without knowledge of the statement to be proved.

The input-delayed property directly improves the round complexity of all the
cryptographic protocols that follow the paradigm described above. The reason
is that now the WI proof can start even if the preamble that generates the
statement is not completed yet. It is worthy to note that in many applications the
preamble serves as a mean to generate some trapdoor theorem, that is used only
in the security proof. The “honest” theorem instead is typically known already
at the beginning of the protocol. This technique has been used extensively and,
most notably, it led to the celebrated FLS paradigm that upgrades any WI proof
system into a zero-knowledge (ZK) proof system.
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The input-delayed property of LS has been instrumental to provide round-
efficient constructions from general assumptions, such as: 4-round (optimal)
secure 2PC where only one player gets the output (5 rounds when both players
get the output) [30], 4-round resettable WI arguments [41,44], 4-round (optimal)
resettable ZK for NP in the BPK model [41,44].

Despite being so influential to achieve round efficiency for cryptographic pro-
tocols, the power of LS unfortunately vanishes as soon as practical constructions
are desired. Indeed, similarly to Blum’s protocol, LS is crucially based on specific
properties of Hamiltonian graphs. Thus, when used to prove more natural lan-
guages, which is the case of most of the applications using WI proofs, it requires
to perform rather inefficient NP reductions.

Efficient Protocols and Limits of the CDS-OR Technique. A natural
question is what happens if we want to avoid the NP reduction and we try to
use the CDS-OR technique to construct input-delayed adaptive WI proofs. A bit
more specifically, we know that there exist Σ-protocols that are input delayed.
Schnorr’s protocol [42] for DLog is such an example since the first message can be
computed without knowing the instance, but only a group generator. Thus the
question is what happens if we apply the CDS-OR technique to an input-delayed
Σ-protocol. Do we obtain a WI Σ-protocol that is input delayed as well?

Unfortunately, the answer is negative. The CDS-OR technique does not
preserve the input-delayed property, not even when used to compose two Σ-
protocols that are both input delayed. To see why, recall that the CDS-OR
composition technique when applied to Σ-protocol ΠL for language L requires
the prover to compute two accepting transcripts, one of which is computed by
running the HVZK simulator Sim. Recall that Sim needs in input the theorem
to be proved. Hence, to prove knowledge of a witness for the compound theorem
(x0 ∈ L ∨ x1 ∈ L), the prover, who knows one witness, say wb, needs to know
also x1−b already at the first round to be able to run the simulator. Thus, in
the CDS-OR technique the prover can successfully complete the protocol if and
only if both3 instances are specified already at the first round.

Because of this missing feature, the CDS-OR technique has limited power
in allowing one to obtain round-efficient/optimal cryptographic protocols, com-
pared to the number of rounds obtained by using LS. As such, in some cases
when focusing on efficient constructions, the best round-complexity that we can
achieve using efficient Σ-protocols and avoiding NP reductions needs at least
one additional round, therefore requiring at least 5-round if one wants to match
the previously mentioned applications (e.g., 5-round resettable ZK for NP in the
BPK model [41,44] and 5-round resettable WI [41,44]) argument systems.

Additionally, we note that the CDS-OR technique is the bottleneck in
the round-complexity of the 4-round straight-line perfect simulatable in quasi-
polynomial time argument shown by Pass in [38]. This argument uses quasi-
polynomial time simulation and, potentially, it would only need three rounds
as any Σ-protocol. The additional first round is required precisely to define the
3 Note that the WI property requires that the prover would be able to prove any of

the two theorems, and thus potentially use the simulator on either x0 or x1.
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trapdoor theorem. Hence, the following natural question arises: Given a lan-
guage L with an input-delayed Σ-protocol ΠL, is it possible to design an efficient
Witness Indistinguishable Σ-protocol ΠL

OR for proving knowledge of a witness
certifying that (x0 ∈ L ∨ x1 ∈ L) that does not require knowledge of both x0 and
x1 to play the first round?

1.1 Our Contribution

In this paper we answer the above question positively for a large class of Σ-
protocols that includes all Σ-protocols used in efficient constructions. Specifi-
cally, we propose a new OR-composition technique for Σ-protocols that relaxes
the need of having both instances fixed before the Σ-protocol starts. Our tech-
nique allows the composition of Σ-protocols for different languages and leads
to improved round complexity in previous efficient constructions based on CDS-
OR technique. Namely, we describe the following two results that we obtain by
making use of our new OR-composition technique:

– Efficient 3-round straight-line perfect quasi-polynomial time simulatable argu-
ment system for a large class of useful languages. The previous construction
required four rounds [38].

– Efficient 4-round rWI argument system. Previous constructions required five
rounds [41,44].

Our new technique can also be used to replace LS towards obtaining efficient
round-optimal resettable zero-knowledge arguments in the BPK model (using the
constructions of [41,44]), round-optimal secure two-party computation (using
the construction of [30]) and 4-round non-malleable commitments (using the
construction of [26]).

Finally, we provide a precise classification of the Σ-protocols that can be
used in our new OR-composition technique. In the following paragraphs we first
provide a high-level description our OR-composition technique, then we discuss
the applications in more details.

1.2 Our Techniques

Overview. We start by defining the setting we are considering. Let L0 and L1 be
any pair of languages admitting Σ-protocols Π0 and Π1. We want to construct a
Σ-protocol ΠOR

L for the language L = L0∨L1. An instance of L is a pair (x0, x1)
and we want only x0 to be specified before ΠOR

L starts while x1 is specified
only upon the last round of the protocol4. We assume that Π1 is an input-
delayed Σ-protocol and thus the first prover message of Π1 can be computed
without knowing x1. As mentioned earlier this property is satisfied by popular
Σ-protocols such as the ones for Discrete Log, Diffie-Hellman triples, and of
course, LS itself.
4 Like LS, we will just need the size of x1 to be known when ΠOR

L starts.
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Now, recall that the problem with the CDS-OR technique was that a prover
needs to run Sim to compute the first round of the protocol, and this necessarily
requires knowledge of both theorems before the protocol starts. We want instead
that the prover uses only knowledge of x0.

We solve this problem by introducing a new OR-composition technique that
does not require the prover to run Sim on x1 already in the first round. Instead,
our technique allows the prover to wait and take action only in the third round
when x1 is finally defined.

Our starting point is the well known fact that given any Σ-protocol there
exists an instance-dependent trapdoor commitment (IDTC) scheme where the
witness for the membership of the instance in the language can be used as a
trapdoor to open a committed message as any desired message, as in [20]. Our
next observation is that, instead of having the prover send the first round for
protocol Π1 in the clear, we can have him send a commitment to it, and such
commitment can be computed using an instance-dependent trapdoor commit-
ment based on Π0 with respect to instance x0. Recall that this is possible, as in
our setting we assume that Π1 is an input-delayed Σ-protocol, so the prover can
honestly compute the first message of Π1 without knowing x1. Therefore, the
first round of our ΠOR

L protocol, is simply an IDTC of a honest Π1’s first round.
Later on, upon receiving the challenge c from the verifier, and after the

theorem x1 is defined, the prover computes the third round as follows. If she has
received a witness for x0, then she will run Sim on input (x1, c) to compute an
accepting transcript of Π1 for x1. Then, using the witness w0 she will equivocate
the commitment sent in the first round, according to the message output by
Sim. Otherwise, if she has received a witness for x1 then she does not need to
equivocate: she will honestly open the commitment, and honestly compute the
third message of Π1. Therefore, the third round of ΠOR

L , simply consists of an
opening of the IDTC together with the third message of Π1.

Now note that this idea works only if we have a special IDTC scheme that
has the following strong trapdoor property: a sender can equivocate even a com-
mitment that has been computed honestly. Unfortunately, this property is not
satisfied in general by any trapdoor commitment based on Σ-protocols, but only
for some. This would restrict the class of Σ-protocols that we can use as L0 in
our technique. For example, this class would not contain Blum’s protocol.

Our next contribution is the construction of IDTC schemes that satisfy this
strong trapdoor property, for a large class of Σ-protocols. Towards this goal, we
define the notion of a t-IDTC scheme which are IDTCs for which the ability to
open a commitment in t ways implies knowledge of a witness for the instance
associated with the commitment. Next, we construct 2-IDTC and 3-IDTC schemes
based on two different classes of Σ-protocols, the union of which includes all the
Σ-protocols that are commonly used in cryptographic protocols. Finally, we
provide a general OR-composition technique for any pair of languages L0 and
L1 such that L0 has a t-IDTC scheme and L1 has an input-delayed Σ-protocol.

t-Instance-Dependent Trapdoor Commitment Scheme. For integer t ≥ 2,
a t-IDTC scheme for a polynomial-time relation R admitting Σ-protocol ΠR
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is a triple (TCom,TDec,TFake) where TCom, TDec are the honest commit-
ment/decommitment procedures and TFake is the equivocation procedure that,
given a witness for an instance x, equivocates any commitment with respect to
x computed by TCom. The crucial differences between a t-IDTC scheme and a
regular trapdoor commitment scheme are: (a) the trapdoor property is strong
in the sense that knowledge of the trapdoor (that is, the witness of the instance
x) allows to equivocate even commitments that have been honestly computed;
(b) the binding property is relaxed: in a t-IDTC scheme, the sender can open
the same commitment in t − 1 different ways, even without the trapdoor. This
relaxation allows us to build an IDTC scheme from a wider class of Σ-protocols,
which will cover all the Σ-protocols that have been used in literature.

Constructing a 2-IDTC Scheme. A 2-IDTC scheme can be directly constructed
from any Σ-protocol Π0 that has the following property: even if the first message
a0 was computed by the SHVZK simulator Sim, an accepting z0 can be efficiently
computed, for every challenge c0, by using knowledge of the witness and of the
randomness used by Sim to produce a0. We call the Σ-protocols that satisfy
this property, chameleon Σ-protocols, and we denote by Psim the special prover
strategy that can answer any challenge even starting from a simulated a0.

More precisely, given a chameleon Σ-protocol Π0 for a language L0, one can
construct a 2-IDTC scheme as follows. Let x0 ∈ L0. To commit to a message m,
the sender runs Sim(x0,m; r0) and obtains a0, z0. The commitment is the value
a0. The opening is the pair m, z0. The commitment is accepted iff (x0, a0,m, z0)
is accepting. To equivocate a0, as a message m′, run the special prover algorithm
Psim((x0,m, r0), w0,m

′) and obtain an accepting z0.

Constructing a 3-IDTC Scheme. We now discuss a different committing strat-
egy that works for Σ-protocols in which the simulated first message a0 can only
be continued for the challenge specified by Sim, even if a witness is made avail-
able. Blum’s protocol for Hamiltonicity is an example of such Σ-protocol.

To commit to m, the sender sends a pair (a0, a
′
0) where, with probability

1/2, a0 is obtained by running Sim(x0,m) while a′
0 is computed by running the

prover of Π0, and with probability 1/2 the above order is inverted. One can think
of a commitment as composed of two threads: a simulated thread and a honest
thread. To open the commitment, the prover sends m and z∗, and the verifier
accepts the decommitment if m, z∗ are accepting for one of the threads; namely,
the verifier checks that either (a0,m, z∗) or (a′

0,m, z∗) is accepting for x0 ∈ L0.
To equivocate (a0, a

′
0) to a message m′, the sender simply continues the thread

of the honest prover, using m′ as challenge and computes z∗ using the witness.
Clearly, a malicious sender can open in two different ways even when x0 �∈ L.
Nevertheless, three openings allow the extraction of the witness for x0.

When our OR-composition technique is instantiated with a 3-IDTC scheme
we have that the resulting protocol is still WI since no power is added to the
verifier. However the protocol is not a Σ-protocol since the special-soundness
property is not guaranteed. The reason is that, in a 3-IDTC scheme the sender
can open the commitment in two different ways even without having the trapdoor
(i.e., the witness for x0 ∈ L0). Therefore, for any challenge c sent by V, the fact
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that the commitment of a1 can be opened in two ways gives a malicious prover
P∗ two chances (a1, c, z1) and (a′

1, c, z
′
1) to successfully complete the protocol for

a false statement x1. Nevertheless, this extra freedom does not hurt soundness
as both openings (i.e., a1 and a′

1) are fixed in advance, and thus when x1 is not
an instance of the language there exist only two challenges c′ and c′′ that would
allow P∗ to succeed. When the challenge is long enough the success probability
of P∗ is therefore negligible.

Our construction when starting from a 3-IDTC scheme is 3-special sound
(i.e., answering to 3 challenges allows one to compute a witness efficiently), and
therefore it is a proof of knowledge when the challenge is long enough.

1.3 Discussion

What Really Matters. Our new OR-composition technique works only when the
theorem that has not been defined yet (i.e., x1), admits an input-delayed Σ-
protocol). We stress that this is not a limitation for the applications that we
have in mind. In fact, in all efficient protocols that make use of input-delayed
proofs that we are aware of, the preamble has always the purpose of generating
the trapdoor theorem. In practical scenarios5 L1 usually corresponds to DLog or
DDH. The fact that we can not have Blum’s Σ-protocol for L1 when L1 is the
language of Hamiltonian graphs, is therefore not relevant as the actual language
of interest is L0.

Comparison with the CDS-OR Technique. We remark that even in the
extremely simplified case where:

1. the two instances x0 and x1 are for the same language L,
2. L admits an input-delayed Σ-protocol ΠL which is also special HVZK,
3. ΠL is chameleon and thus one can compute the first message using Sim and

then continue with the prover to answer to arbitrary challenges,
4. the prover knows in advance the witness w and instance xb for which she will

be able to honestly complete the protocol,

the CDS-OR technique fails in obtaining a Σ-protocol (or a WIPoK) for the OR
composition of instances of L if any one of the instances is not known when the
protocol starts.

Beyond Schnorr’s Protocol. The works of Cramer [16], Cramer and Damg̊ard
[17], and Maurer [34,35] showed that a protocol (referred to as the Pre-Image
Protocol) for proving knowledge of a pre-image of a group homomorphism unifies
and generalizes a large number of protocols in the literature. Classic Σ-protocols,
such as Schnorr’s protocol [42] and the Guillou-Quisquater protocol [29], are
particular cases of this abstraction. We show that the Pre-Image Protocol is a
chameleon Σ-protocol and can thus be used in our construction.
5 These are the only scenarios of interest for our work since if practicality is not desired

than one can just rely on the LS Σ-protocol and use NPreductions.
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What Is In and What Is Out. As mentioned previously, the Σ-protocol for
L1 can be any input-delayed Σ-protocol. We now discuss which Σ-protocols can
be used to instantiate L0 in our OR transform. For this purpose, we identify
four classes of Σ-protocols and we prove that any Σ-protocol that falls in any of
the first three classes can be used in our OR transform (by instantiating either
a 2-IDTC, or a 3-IDTC scheme).

We also identify a class of Σ-protocols that is not suitable for any of our
techniques. Luckily, we have no example of natural Σ-protocols that fall in this
class, and in order to prove the separation we had to construct a very contrived
scheme. The four classes are listed below.

– (Class 1) Σ-protocols that are Chameleon and do not require the witness to
compute the first round. This class of Σ-protocols can be used to construct
both 2-IDTC and 3-IDTC schemes.

– (Class 2) Σ-protocols that are Chameleonand require the prover to use the
witness already to compute the first round. This class of Σ-protocols can be
used to construct a 2-IDTC scheme.

– (Class 3) Σ-protocols that are not Chameleon but do not require the prover
to use the witness in the first round. This class of Σ-protocols can be used to
construct a 3-IDTC scheme.

– (Class 4) Σ-protocols that are not Chameleon and require the witness to be
used already in the first round. This class of Σ-protocols can not be used in
our techniques.

The Input-Delayed Features. We stress here that our techniques allow to
start and complete an efficient OR composition of two Σ-protocols (with the
discussed restrictions) provided that one instance is known and another one will
be known later. Having a witness for the first or the second instance always allows
P to convince V. This contrasts with the CDS-OR technique where knowing a
witness for x0 would block P immediately since P would need immediately x1

to continue, but x1 will not be available until the third round.

1.4 Applications

Our new OR-composition technique does not provide the full power of LS
because it needs one theorem to be known before the protocol starts. How-
ever, as we show below, this seemingly weaker property suffices to improve the
round-complexity of some of the previous constructions based on the CDS-OR
technique. Such constructions aim to efficiently6 transform a Σ-protocol for a
relation R into a round-efficient argument with more appealing features.

Efficient 3-Round Straight-Line Perfect Quasi-Polynomial Time Simu-
latable Argument System. We achieve this result directly, using the construc-
tion of Pass [38] and replacing the CDS-OR technique with our technique. As a
6 By efficiently we mean that no NPreduction is needed and only a constant number

of modular exponentiations are added. We do not discuss the practicality of the
resulting constructions.
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result the first round of the verifier of [38] can be postponed, therefore reducing
the round complexity from four to three rounds. Our construction works for all
languages admitting a perfect chameleon Σ-protocol.

Efficient 4-Round Resettable WI Arguments. It is well known [8] how to
transform a Σ-protocol into a resettable WI protocol: the verifier commits to
the challenge c using a perfectly hiding commitment scheme and sends it to the
prover in the first round; the prover then computes its messages with random-
ness derived by applying a pseudo-random function (PRF) on the commitment
received. Soundness follows directly from the soundness of the Σ-protocol due to
the perfect hiding of the commitment. WI follows from the fact that the protocol
is zero knowledge against a stand-alone verifier and thus concurrent WI. Then
the use of the PRF and the fact that all messages of the verifier are committed
in advance upgrades concurrent WI to resettable WI. This approach, however,
generates a 5-round protocol.

Achieving the same result efficiently, namely, avoiding NP reductions, in
only four rounds is non-trivial. The reason is that if we attempt to replace
the 2-round perfectly hiding commitment with a non-interactive commitment,
we lose the unconditional soundness property, and then it is not clear how to
argue about computational soundness. More specifically, black-box extraction
of the witness is not possible (black-box extraction and resettable WI can not
coexist) and the adversarial prover could try to maul the commitment of the
verifier and adaptively generate the first round of the Σ-protocol. In fact, even
allowing complexity-leveraging arguments (and thus, straight-line extraction),
constructing a 4-round WI argument system that avoids NP reductions and adds
only a few modular exponentiations to the underlying Σ-protocol has remained
so far an open problem.

We solve this problem by using our new OR-composition technique. We have
the verifier commit to the challenge in the first round, but then later, instead of
sending the decommitment, she will directly send the challenge and prove that
either the challenge is the correct opening of the commitment or she solved some
hard puzzle (in our construction, computing the Discrete Log of a random group
element chosen by the prover). The puzzle is sent by the prover in the second
round and it will be solved by the reduction in super-polynomial time in the
proof of soundness.

This trick has been proposed in literature in various forms [21,38] and we are
using the form used in [21] where the puzzle is sent only in the second round.
[21] must use the LS transform and therefore needs NP-reduction. As explained
earlier, going through LS was necessary as the CDS-OR transform can be applied
only if both statements are fixed at the beginning.

Our new OR transform solves precisely this problem, and it allows the ver-
ifier to start the proof before the puzzle is defined, and this proof can be done
efficiently without NP reductions.

Resettable WI follows from the CGGM transformation and the WI property
of the proof generated by the prover. The groups used for the commitment of the
challenge and for the puzzle sent by the prover, will be chosen appropriately so
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that the hardness of computing discrete logarithms are different and guarantee
that our reductions work (i.e., we make use of complexity leveraging).

Further Applications. Our new OR-composition technique can find various other
applications. Indeed, wherever there is a round-efficient (but otherwise ineffi-
cient) construction based on the use of LS without a corresponding efficient
construction with the same round complexity, then our technique constitutes
a powerful tool towards achieving computationally efficient and round-efficient
constructions. For instance, the 4-round (optimal) resettable ZK argument sys-
tems in the BPK model provided in [41,44], consists (roughly) of the parallel
execution of a (resettable) WI protocol from the prover to the verifier, where
the prover proves that either x ∈ L or he knows the secret key associated to
the public identity of the verifier, and a 3-round (resettably-sound) WI proto-
col from the verifier to the prover, where V proves knowledge of the secret key
associate to its public key, or knowledge of the solution of a puzzle computed
by the prover. When instantiated with efficient Σ-protocols, such construction
requires 5-rounds, where the additional round, from the prover to the verifier,
is used to send the puzzle necessary for the verifier to start a proof using the
CDS-OR technique. We observe that this setting closely resembles the setting of
the 4-round resettable WI (rWI) protocol that we provide in this paper. As such,
one could directly instantiate the proof provided by the prover of the BPK model,
with our 4-round rWI protocol, and have the verifier just prove knowledge of its
secret keys, thus avoiding the need of the additional first round.

Our OR-composition technique could also be useful in replacing the use of
LS in the 4-round non-malleable commitment scheme of [26], and in the round-
optimal secure two-party computation protocol of [30].

1.5 Open Problems

Our OR-composition technique relaxes the requirement of CDS-OR of requiring
knowledge of all instances already at the beginning of the protocol. However
still our result does not match the power of LS where no theorem is required for
the protocol to start. An immediate open question is whether one can improve
our OR transform so that the first round can be run without the knowledge of
any theorem. Perhaps a first step in this direction would be to answer a related
relaxed question, which is to design an OR transform for proving (still preserving
WI) knowledge of 1 out of n theorems and that requires knowledge of (at least
some) theorems only after the second round. It would also be interesting to
extend our technique in order to make it applicable to all Σ-protocols.

2 Definitions

In this section we set-up our notation and give some useful definitions. More
definitions can be found in the full version.
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We denote the security parameter by λ. If A is a probabilistic algorithm then
A(x) denotes the probability distribution of the output of A when it receives x as
input. By A(x;R) instead we denote the output of A on input x when coin tosses
R are used as randomness.

A polynomial-time relation R (or, simply, a relation) is a subset of {0, 1}� ×
{0, 1}� for which membership of (x,w) to R can be decided in time polynomial in
|x|. We define the NP-language LR as LR = {x|∃w : (x,w) ∈ R}. If (x,w) ∈ R,
we say that w is a witness for instance x. Following [25], we define L̂R to be
the input language that includes both LR and all well formed instances that do
not have a witness. More formally, LR ⊆ L̂R and membership in L̂R can be
tested in polynomial time. We implicitly assume that the verifier of a protocol
for relation R executes the protocol only if the common input x belongs to L̂R
and rejects immediately common inputs not in L̂R.

Number-Theoretic Assumptions. We define group generator algorithms to be
probabilistic polynomial-time algorithms that take as input security parameter
1λ and output (G, q, g), where G is (the description of) a cyclic group of order
q and g is a generator of G. We assume that membership in G and its group
operations can be performed in time polynomial in the length of q and that there
is an efficient procedure to randomly select elements from G. Moreover, with a
slight abuse of notation, we will use G to denote the group and its description.

We consider the sub-exponential versions of the DLog and of the DDH
assumptions that posit the hardness of the computation of discrete logarithms
and of breaking the Decisional Diffie-Hellman assumption with respect to the
group generator algorithm IG that, on input λ, randomly selects a λ-bit prime
q such that p = 2q + 1 is also prime and outputs the order q group G of the
quadratic residues modulo p along with a random generator g of G. The strong
versions of the two assumptions posit the hardness of the same problems even if
p (and q) and generator g are chosen adversarially.

3 Σ-Protocols

We consider 3-move protocols Π for a polynomial-time relation R. Protocol Π is
played by a prover P and a verifier V that receive a common input x. P receives
as an additional private input a witness w for x and the security parameter 1λ

in unary. The protocol Π has the following form:

1. P runs algorithm P1 on common input x, private input w, security parameter
1λ and randomness R obtaining a = P1(x,w, 1λ;R) and sends a to V.

2. V, after receiving a from P, chooses a random challenge c ← {0, 1}l and sends
c to P.

3. P runs algorithm P2 on input x,w,R, c and sends z ← P2(x,w,R, c) to V.
4. V outputs V(x, a, c, z) (i.e., V’s decision to accept (b = 1) or reject (b = 0)).

We call (P1,P2,V) the algorithms associated with Π and l the challenge
length such that, wlog, the challenge space {0, 1}l is composed of 2l different
challenges.
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The triple (a, c, z) of messages exchanged is called a 3-move transcript.
A 3-move transcript is honest if a, z correspond to the messages computed
running the honest algorithms, respectively, of P1 and P2, and c is a random
string, in {0, 1}l. A 3-move transcript (a, c, z) is accepting for x if and only if
V(x, a, c, z) = 1. Two accepting 3-move transcripts (a, c, z) and (a′, c′, z′) for an
instance x constitute a collision if a = a′ and c �= c′.

Definition 1 (Σ-protocol [18]). A 3-move protocol Π with challenge length l
is a Σ-protocol for a relation R if it enjoys the following properties:

1. Completeness. If (x,w) ∈ R then all honest 3-move transcripts for (x,w)
are accepting.

2. Special Soundness. There exists an efficient algorithm Extract that, on
input x and a collision for x, outputs a witness w such that (x,w) ∈ R.

3. Special Honest-Verifier Zero Knowledge (SHVZK). There exists a
PPT simulator algorithm Sim that takes as input x ∈ LR, security parameter
1λ and c ∈ {0, 1}l and outputs an accepting transcript for x where c is the
challenge. Moreover, for all l-bit strings c, the distribution of the output of the
simulator on input (x, c) is computationally indistinguishable from the distri-
bution of the 3-move honest transcript obtained when V sends c as challenge
and P runs on common input x and any private input w such that (x,w) ∈ R.
We say that Π is Perfect when the two distributions are identical.

Not to overburden the descriptions of protocols and simulators, we will omit the
specification of the security parameter when it is clear from the context.

In the rest of the paper, we will call a 3-move protocol that enjoys Com-
pleteness, Special Soundness and Honest-Verifier Zero Knowledge (HVZK7) a
Σ̃-protocol. The next theorem shows that SHVZK can be added to a 3-move
protocol with HVZK without any significant penalty in terms of efficiency.

Theorem 1 [19]. Suppose relation R admits a 3-move protocol Π ′ that is
HVZK (resp., perfect HVZK). Then R admits a 3-move protocol Π that is
SHVZK (resp., perfect SHVZK) and has the same efficiency.

Proof. Let l be the challenge length of Π ′, let (P′
1,P

′
2,V

′) be the algorithms
associated with Π ′ and let Sim′ be the simulator for Π ′. Consider the following
algorithms.

1. P1, on input (x,w) ∈ R, security parameter 1λ and randomness R1, parses
R1 as (r1, c′′) where |c′′| = l, computes a′ ← P′

1(x,w, 1λ; r1), and outputs
a = (a′, c′′).

2. P2, on input (x,w) ∈ R, R1 and randomness R2 parses R1 as (r1, c′′), c, sets
c′ = c ⊕ c′′, computes z′ ← P′

2(x,w, r1, c
′;R2), and sends it to V.

3. V, on input x, a = (a′, c′′), c and z′, returns the output of V′(x, a′, c ⊕ c′′, z′)
to decide whether to accept or not.

7 Recall that HVZK requires the existence of a simulator that generates a full tran-
script. This is a seemingly weaker requirement than SHVZK where the challenge is
an input for the simulator.
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Consider the following PPT simulator Sim that, on input an instance x and a
challenge c, runs Sim′ on input x and obtains (a′, c′, z′). Then Sim sets c′′ = c⊕c′

and a = (a′, c′′) and outputs (a, c, z′). It is easy to see that if Sim′ is a HVZK
(resp. perfect HVZK) simulator for Π ′ then Sim is a SHVZK (resp. perfect
SHVZK) simulator for Π.

We will use the definition of proof of knowledge given in [3,19].

Theorem 2 [19]. Let Π be a Σ-protocol for a relation R with challenge length l.
Then Π is a proof of knowledge with knowledge error 2−l.

Definition 2 (Input-Delayed Σ-protocol). A Σ-protocol Π = (P,V) with
P running PPT algorithms (P1,P2) is an input-delayed Σ-protocol if P1 takes as
input only the length of the common instance and P2 takes as input the common
instance x, the witness w, the randomness R1 used by P1 and the challenge c
received from the verifier.

Definition 3 (Witness-Delayed Σ-protocol). A Σ-protocol Π = (P,V) for
a relation R with associated algorithms (P1,P2,V) is a witness-delayed Σ-
protocol if P1 takes as input only the common instance x.

In a ChamelonΣ-protocol, the prover can compute the first message by
using the simulator and thus knowing only the input but not the witness. Once
the challenge has been received, the prover can compute the last message (thus
completing the interaction) by using the witness w (which is thus used only to
compute the last message) and the coin tosses used by the simulator to compute
the first message.

Definition 4 (Chameleon Σ-protocol). A Σ-protocol Π for polynomial-time
relation R is a Chameleon Σ-protocol if there exists an SHVZK simulator Sim
and an algorithm Psim satisfying the following property:

Delayed Indistinguishability: for all pairs of challenges c0 and c1 and for all
(x,w) ∈ R, the following two distributions

{
R ← {0, 1}|x|d ; (a, z0) ← Sim(x, c0;R); z1 ← Psim((x, c0, R), w, c1) :

(x, a, c1, z1)
}

and {
(a, z1) ← Sim(x, c1) : (x, a, c1, z1)

}

are indistinguishable, where Sim is the Special HVZK simulator and d is such
that Sim, on input an λ-bit instance, uses at most λd random coin tosses. If
the two distributions above are identical then we say that delayed indistin-
guishability is perfect, and Π is a Perfect Chameleon Σ-protocol.
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We remark that a chameleon Σ-protocol Π has two modes of operations:
the standard mode when P runs P1 and P2, and a delayed mode when P uses
Sim and Psim. Moreover, observe that since Sim is a simulator for Π, it follows
from the delayed-indistinguishability property that, for all challenges c and c̃
and common inputs x, distribution

{R ← {0, 1}|x|d ; (a, z̃) ← Sim(x, c̃;R); z ← Psim((x, c̃, R), w, c) : (a, c, z)}

is indistinguishable from

{R ← {0, 1}|x|d ; a ← P1(x,w;R); z ← P2(x,w,R, c) : (a, c, z)}.

That is, the two modes of operations of Π are indistinguishable. This property
make us able to claim that if Π is WI when a WI challenger interacts with an
adversary using (P1,P2), then Π is WI even when the pair (Sim,Psim) is used.
Finally, we observe that Chameleon Σ-protocols do exist and Schnorr’s protocol
[42] is one example. When considering the algorithms associated to a Chameleon
Σ-protocol, we will add Psim.

3.1 Σ-protocols and Witness Indistinguishability

Definition 5. A 3-move protocol Π = (P,V) is Witness Indistinguishable (WI)
for a relation R if, for every malicious verifier V�, there exists a negligible func-
tion ν such that for all x,w,w′ such that (x,w) ∈ RL and (x,w′) ∈ RL

∣∣∣Prob
[ 〈P(w, 1λ),V�〉(x) = 1

] − Prob
[ 〈P(w′, 1λ),V�〉(x) = 1

] ∣∣∣ ≤ ν(λ).

The notion of a perfect WI 3-move protocol is obtained by requiring the two
distributions to be identical. We start by recalling the following result.

Theorem 3 [18]. Every Perfect Σ̃-protocol8 is Perfect WI.

For completeness, in the full version we show a Σ̃-protocol that it is not WI.

3.2 Or Composition of Σ̃-protocols: the CDS-OR Transform

In this section we describe the CDS-OR [18] transform in details. Let Π be a
Σ̃-protocol for polynomial-time relation R with challenge length l, associated
algorithms (P1,P2,V) and HVZK simulator Sim. The CDS-OR transform con-
structs a Σ̃-protocol ΠOR with associated algorithms (POR

1 ,POR
2 ,VOR

Σ ) for the
relation

ROR =
{

((x0, x1), w) :
(
(x0, w) ∈ R ∧ x1 ∈ L̂R

)
OR

(
(x1, w) ∈ R ∧ x0 ∈ L̂R

)}
.

8 We remind the reader that we call a 3-move protocol that enjoys Completeness,
Special Soundness and Honest-Verifier Zero Knowledge (HVZK) a Σ̃-protocol.
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Protocol 1. CDS-OR Transform.
Common input: (x0, x1).
P ′s private input: (b, w) with b ∈ {0, 1} and (xb, w) ∈ R.

POR
1 ((x0, x1), (b, w);R1). Set ab = P1(xb, w;R1). Compute (a1−b, c1−b, z1−b) ←
Sim(x1−b). Output (a0, a1).

POR
2 ((x0, x1), (b, w), c, R1). Set cb = c ⊕ c1−b. Compute zb ← P2(xb, w, cb, R1).

Output ((c0, c1), (z0, z1)).
VOR

Σ ((x0, x1), (a0, a1), c, ((c0, c1), (z0, z1))). VOR
Σ accepts if and only if c = c0⊕c1

and V(x0, a0, c0, z0) = 1 and V(x1, a1, c1, z1) = 1.

Theorem 4 [18,25]. If Π is a Σ̃-protocolfor R then ΠOR is a Σ̃-protocol for
ROR and is WI for relation

R′
OR = {((x0, x1), w) : ((x0, w) ∈ R ∧ x1 ∈ LR)OR ((x1, w) ∈ R ∧ x0 ∈ LR)} .

Moreover, if Π is a Perfect Σ̃-protocol for R then ΠOR is WI for ROR.

It is possible to extend the above construction to handle two different rela-
tions R0 and R1 that admit Σ̃-protocols. Indeed we can assume, wlog, that R0

and R1 have Σ̃-protocols Π0 and Π1 with the same challenge length (details
are available in the full version). Hence, the construction outlined above can be
used to construct Σ̃-protocol ΠR0,R1

OR for relation

ROR =
{

((x0, x1), w) :
(
(x0, w) ∈ R0 ∧ x1 ∈ L̂R1

)
OR
(
(x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)}
.

Theorem 5. If Π0 and Π1 are Σ̃-protocols for R0 and R1, respectively, then
ΠR0,R1

OR is a Σ̃-protocol for relation ROR and is WI for relation

R′
OR = {((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ LR1)OR ((x1, w) ∈ R1 ∧ x0 ∈ LR0)} .

Moreover, if Π0 and Π1 are Perfect Σ̃-protocols for R0 and R1 then ΠOR is
WI for ROR.

We remark that if Π0 and Π1 are Σ-protocols then the CDS-OR transform
yields a Σ-protocol for ROR and Theorems 4 and 5 still hold.

4 t-Instance-Dependent Trapdoor Commitment Schemes

In this section, for integer t ≥ 2, we define the notion of a t-Instance-Dependent
Trapdoor Commitmentscheme associated with a polynomial-time relation R and
show constructions for t = 2 and t = 3.

Definition 6 (t-Instance-Dependent Trapdoor Commitment Scheme).
Let t ≥ 2 be an integer and let R be a polynomial-time relation. A
t-Instance-Dependent Trapdoor Commitment (a t-IDTC, in short) scheme for R
with message space M is a triple of PPT algorithms (TCom,TDec,TFake) where
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TCom is the randomized commitment algorithm that takes as input security para-
meter 1λ, an instance x ∈ L̂R (with |x| = poly(λ)) and a message m ∈ M and
outputs commitment com, decommitment dec, and auxiliary information rand;
TDec is the verification algorithm that takes as input (x, com, dec,m) and decides
whether m is the decommitment of com; TFake is the randomized equivocation
algorithm that takes as input (x,w) ∈ R, messages m1 and m2 in M , commit-
ment com of m1 with respect to instance x and associated auxiliary information
rand and produces decommitment information dec2 such that TDec, on input
(x, com, dec2,m2), outputs 1.

A t-Instance-Dependent Trapdoor Commitment enjoys:

– Correctness: for all x ∈ L̂R, all m ∈ M , it holds that

Prob
[

(com, dec, rand) ← TCom(1λ, x,m) : TDec(x, com, dec,m) = 1
]

= 1.

– t-Special Extract: there exists an efficient algorithm ExtractTCom that, on
input x, commitment com, pairs (deci,mi)t

i=1 of openings and messages such
that
• for 1 ≤ i < j ≤ t we have that mi �= mj;
• TDec(x, com, deci,mi) = 1, for i = 1, . . . , t;
outputs w such that (x,w) ∈ R.

– Hiding (resp., Perfect Hiding): for every PPT (resp., unbounded) adver-
sary A there exists a negligible function ν (resp., ν(·) = 0) such that, for all
x ∈ LR and all m0,m1 ∈ M , it holds that

Prob
[
b ← {0, 1}; (com, dec, rand) ← TCom(1λ, x,mb) :

b = A(x, com,m0,m1)
] ≤ 1

2
+ ν(λ).

– Trapdoorness: the following two families of probability distributions are
indistinguishable:

{(com, dec1, rand) ← TCom(1λ, x,m1);
dec2 ← TFake(x,w,m1,m2, com, rand) : (com, dec2)}

and {(com, dec2, rand) ← TCom(1λ, x,m2) : (com, dec2)} over all families
{(x,w,m1,m2)} such that (x,w) ∈ R and m1,m2 ∈ M .
The perfect trapdoorness property requires the two probability distributions to
coincide for all (x,w,m1,m2) such that (x,w) ∈ R and m1,m2 ∈ M .

Constructing a 2-IDTC scheme from a Chameleon Σ -protocol . Let Π = (P,V)
with associated algorithms (P1,P2,V,Psim) be a Chameleon Σ-protocol for
polynomial-time relation R with a security parameter 1λ. Let l be the chal-
lenge length of Π and let Sim be a SHVZK simulator associated to Π. We con-
struct a t-IDTC scheme (TComΠ ,TDecΠ ,TFakeΠ) for R with messages space
M = {0, 1}l for x ∈ L̂R as follows.
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Protocol 2. 2-IDTC scheme from Chameleon Σ-protocol Π.

– TComΠ(1λ, x,m1): On input x and m1 ∈ M , pick randomness R and compute
(a, z) ← Sim(x,m1;R). Output com = a, dec = z and rand = R;

– TDecΠ(x, com, dec,m1): On input x, com, dec and m1, run b = V(x, com,
m1, dec) and accept m1 as the decommitted message iff b = 1.

– TFakeΠ : On input (x,w) ∈ R, messages m1,m2 ∈ M , for m2 and rand for
com, output z = Psim((x,m1, rand), w,m2).

Theorem 6. If Π is a Chameleon Σ-protocol for R then Protocol 2 is a 2-IDTC
scheme for R. Moreover, if Π is Perfect then so is Protocol 2.

Proof. Correctness follows directly from the Completeness property of Π.

2-Special-Extract. Suppose com is a commitment with respect to instance x and
let dec1 and dec2 be two openings of com as messages m1 �= m2, respectively.
Then, triplets (com,m1, dec1) and (com,m2, dec2) are accepting transcripts for
Π on common input x with the same first round; that is, they constitute a
collision for Π. Therefore, we define algorithm ExtractTCom to be the algorithm
that runs algorithm Extract (that exists by the special soundness of Π) on input
the collision. ExtractTCom returns the witness for x computed by Extract.

(Perfect) Trapdoorness. It follows from the Perfect Delayed-Indistinguishability
property of Π as well as the (perfect) Hiding property.

Constructing a3-IDTC Scheme. Let R be a polynomial-time relation as above
admitting a witness-delayed Σ-protocol Π with associated algorithms (P1,P2,V)
and security parameter 1λ. Let l denote the challenge length of Π. We construct
a 3-IDTC scheme for message space M = {0, 1}l for x ∈ L̂R, as follows.

Protocol 3. 3-IDTC scheme.

– TComΠ : On input 1λ, x and m1 ∈ M , pick randomness R and compute
(a0, z) ← Sim(x,m1) and a1 ← P1(x;R). Let com0 = a0 and com1 = a1.
Output com = (comb, com1−b) for a randomly selected bit b, dec = z and
rand = R.

– TDecΠ : On input x, com = (com0, com1), dec and m1, accept m1 if and only if
either V(x, com0,m1, dec) = 1 or V(x, com1,m1, dec) = 1.

– TFakeΠ : On input (x,w) ∈ R, messages m1,m2 ∈ M , commitment com for
m1 and rand for com, output z ← P2(x,w, rand,m2).

Theorem 7. If Π is a witness-delayed Σ-protocol for R, with the associated
algorithms (P1,P2,V), then Protocol 3 is a 3-IDTC scheme for R. Moreover, if
Π is Perfect then so is Protocol 3.

Proof. Correctness follows from the completeness of Π.

3-Special Extract. It follows from the special soundness of Π. Assume that the
committer generates 3 accepting openings dec1, dec2 and dec3, for distinct
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messages m1, m2 and m3, for the same commitment com computed w.r.t. x.
In this case, we have three accepting transcript for Π and therefore at least two
of them must share the same first message, i.e., it is a collision. Thus we can run
the extractor Extract for Π on the collision and obtain a witness for x.

Trapdoorness. It follows from the SHVZK property of Π. We prove this property
via hybrid arguments.

The first hybrid, H1 is the real execution, where a honest prover commits
to a message following the honest commitment and decommitment procedure,
without using the trapdoor. More formally, in the hybrid H1 the prover performs
the following steps:

– On input x and m1,m2 ∈ M , the prover selects random coin tosses R and
computes (a0, z) ← Sim(x,m2), a1 ← P1(x;R). It picks b ← {0, 1} and sends
com = (ab, a1−b), dec = z, m2.

The second hybrid H2 is equal to H1 with the difference that a0 is computed
using the algorithm P1 and z using P2. Formally:

– On input x and m1,m2 ∈ M , the prover selects random coin tosses R =
(r1, r2) and computes a0 ← P1(x; r1), z ← P2(x,w, r1,m2) and a1 ←
P1(x; r2). It picks b ← {0, 1} and sends com = (ab, a1−b), dec = z, m2.

Due to the SHVZK property of Π, H1 is indistinguishable from H2. Now we
consider the hybrid H3 in which a1 is computed using Sim(x,m2). Formally:

– On input x and m1,m2 ∈ M , the prover selects random coin tosses R and
computes a0 ← P1(x;R), z ← P2(x,w,R,m2) and (a1, z) ← Sim(x,m1). It
picks b ← {0, 1} and sends com = (ab, a1−b), dec = z, m2.

Even in this case, we can claim that H3 is indistinguishable from H2 because of
the SHVZK of Π. The proof ends with the observation that H3 is the experiment
in which a sender commits to a message m1 and opens to m2 using the trapdoor.

If Π is a perfect SHVZK protocol, then the sequence of hybrids produces
identical distributions.

5 Our New OR-Composition Technique

In this section we formally describe our new OR transform. Let R0 be a relation
admitting a t-IDTC scheme, I = (TComΠ0 ,TDecΠ0 ,TFakeΠ0), with t = 2 or t =
3, and R1 a relation admitting an input-delayed Σ-protocol Π1 with associated
algorithms (P1

1,P
1
2,V

1) and simulator Sim1. We show a Σ-protocol ΠOR for the
OR relation:

ROR = {((x0, x1), w) : ((x0, w) ∈ R0∧x1 ∈ L̂R1) OR ((x1, w) ∈ R1∧x0 ∈ L̂R0)}.

We denote by (POR
1 ,POR

2 ,VOR) the algorithms associated with ΠOR. We
assume that the initial common input is x0. The other input x1 and the wit-
ness w for (x0, x1) are made available to the prover only after the challenge has
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been received. We let b ∈ {0, 1} be such that (xb, w) ∈ Rb and assume that the
message space of the t-IDTC scheme I includes all possible first-round messages
of Π1. Note that for the constructions of the t-IDTC scheme we provide, the
message space coincides with the set of challenges of the underlying Σ-protocol
and, in the full version we show that the challenge length of a Σ-protocol can
be easily expanded/reduced.

We remind that prover algorithm POR
2 receives as further input the random-

ness (R1, rand1) used by POR
1 to produce the first-round message.

Protocol 4. Protocol ΠOR for ROR.
Common input: (x0, 1λ), where 1λ is the security parameter.

1. POR
1 (x0, 1λ). Pick random R1 and compute a1 ← P1

1(1
λ;R1). Then commit to

a1 by running (com, dec1, rand1) ← TComΠ0(1
λ, x0, a1). Output com.

2. POR
2 ((x0, x1), c, (w, b), (rand1, R1)) (with (xb, w) ∈ Rb).

If b = 1, compute z1 ← P1
2(x1, w,R1, c) and output (dec1, a1, z1).

If b = 0, compute (a2, z2) ← Sim1(x1, c), dec2 ← TFakeΠ0 (x0, w, a1, a2,
com, rand1) and output (dec2, a2, z2).

3. VOR, on input (x0, x1), com, c, and (dec, a, z)) received from ΠOR, outputs 1
iff

TDecΠ0(x0, com, dec, a) = 1 and V1(x1, a, c, z) = 1;

Theorem 8. If R0 admits a 2-IDTC (resp., 3-IDTC) scheme and if R1 admits
an input-delayed Σ-protocol, then ΠOR is a Σ-protocol (resp., is a 3-round public-
coin SHVZK PoK) for relation ROR.

Proof. Completeness follows by inspection. We next prove the properties of
Protocol 4 when instantiated with a 2-IDTC and 3-IDTC schemes.

Proof for the construction based on the 2-IDTC scheme. Special Soundness.
It follows from the special soundness of the underlying Σ-protocol Π1 and
the 2-Special Extract of the 2-IDTC scheme. More formally, consider a colli-
sion (com, c, (dec, a, z)) and (com, c′, (dec′, a′, z′)) for input (x0, x1). We observe
that:

– if a = a′ then (a, c, z) and (a′, c′, z′) is a collision for Π1 for input x1; then we
can obtain a witness w1 for x1 by the Special Soundness property of Π1;

– if a �= a′, then dec and dec′ are two openings of com with respect to x0 for
messages a �= a′; then we can obtain a witness w0 by the 2-Special Extract of
the 2-IDTC scheme.

SHVZK Property. Consider simulator SimOR that, on input (x0, x1) and chal-
lenge c, sets (a, c, z) ← Sim1(x1, c) and (com, dec) ← TComx0(a), and outputs
(com, c, (dec, a, z)). Next, we show that the transcript generated by SimOR is
indistinguishable from the one generated by a honest prover.

Let us first consider the case in which the prover of ΠOR receives a witness
for x1. In this case, if we sample a random distribution (com, c, (dec, a, z)) of
ΠOR on input (x0, x1) constrained to c being the challenge we have that (a, c, z)
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has the same distribution as in random transcript of Π1 on input x1 constrained
to c being the challenge; moreover, (com, dec) is a pair of commitment and
decommitment of a with respect to x0. By the property of Sim1, this distribution
is indistinguishable from (a, c, z) computed as Sim1(x1, c) which is exactly as in
the output SimOR.

Let us now consider the case in which the prover of ΠOR receives a witness
for x0. If we sample a random distribution (com, c, (dec, a, z)) of ΠOR on input
(x0, x1) constrained to c being the challenge we have that (a, c, z) are distributed
exactly as in the output of SimOR (that is by running Sim1 on input x1 and c). In
addition, in the output of SimOR, (com, dec) are commitment and decommitment
of a whereas in the view of ΠOR they are computed by means of TFake algorithm.
However, the two distributions are indistinguishable by the trapdoorness of the
Instance-Dependent Trapdoor Commitment.

Proof for the construction based on the 3-IDTC scheme. 3-Special Soundness.
This property ensures that there exists an efficient algorithm that, given three
accepting transcripts, (a, c0, z0), (a, c1, z1), (a, c2, z2) with ci �= cj for 1 ≤ i <
j ≤ 3, for the same common input, outputs a witness for x.

Consider three accepting transcripts for ΠOR and input (x0, x1): (com, c1,
(dec1, a1, z1)), (com, c2, (dec2, a2, z2)) and (com, c3, (dec3, a3, z3)).

We observe that:

– if ai = aj for some i �= j then (ai, ci, zi) and (aj , cj , zj) is a collision for Π1

for input x1; thus we can obtain a witness w1 for x1 by the Special Soundness
property of Π1;

– if ai �= aj for all i �= j, then, dec1 and dec2 and dec3 are three openings of the
same com with respect to x0 for messages a1, a2 and a3; then we can obtain
a witness w0 for x0 by the 3-Special Extract of the 3-IDTC scheme.

We stress that having a long enough challenge, 3-special soundness implies the
proof of knowledge property.

SHVZK Property. This is similar to the proof for the construction based on
2-IDTC.

5.1 Witness Indistinguishability of Our Transform

In this section we discuss the adaptive WI property of ΠOR. Roughly speaking,
adaptive WI means that in the WI experiment the adversary A is not forced to
choose both theorems x0 and x1 at the onset of the experiment. Rather, she can
choose theorem x1 and witnesses w0, w1 adaptively, after seeing the first message
of ΠOR played by the prover on input x0. After x1, w0, w1 have been selected by
A, the experiment randomly selects b ← {0, 1}. The prover then receives x1 and
wb and proceeds to complete the protocol. The adversary wins the game if she
can guess b with probability non-negligibly greater than 1/2. More formally, we
consider adaptive WIfor polynomial-time relation

Rp
OR =

{
((x0, x1), w) :

(
(x0, w) ∈ R0 ∧ x1 ∈ L̂R1

)
OR
(
(x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)}
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and for the weaker relation

Rc
OR =

{
((x0, x1), w) :

(
(x0, w) ∈ R0 ∧ x1 ∈ LR1

)
OR
(
(x1, w) ∈ R1 ∧ x0 ∈ LR0

)}
.

The adaptive WI experiment, ExpWIδA(x0, λ, aux) with δ ∈ {c, p}, is parameter-
ized by PPT adversary A and has three inputs: instance x0, security parameter
λ, and auxiliary information aux for A.
ExpWIδA(x0, λ, aux):

1. a = POR
1 (x0, 1λ;R1), for random coin tosses R1;

2. A(x0, a, aux) outputs ((x1, w0, w1), c, state)
such that ((x0, x1), w0), ((x0, x1), w1) ∈ Rδ

OR;
3. b ← {0, 1};
4. z ← POR

2 ((x0, x1), wb, R1, c);
5. b′ ← A(z, state);
6. If b = b′ then output 1 else output 0.

We set Advδ
A(x0, λ, aux) =

∣∣∣Prob
[
ExpWIδA(x0, λ, aux) = 1

]
− 1

2

∣∣∣ .

Definition 7. ΠOR is Adaptive Witness Indistinguishable (resp., Adaptive Per-
fect Witness Indistinguishable) if for every adversary A there exists a negligible
function ν such that for all aux and x0 it holds that Advc

A(x0, λ, aux) ≤ ν(λ)
(resp., Advp

A(x0, λ, aux) = 0).

Next, in Theorem 9, we prove the Adaptive Perfect WI of ΠOR when both Π0

and Π1 are perfect SHVZK. When one of Π0 and Π1 is not perfect, we would
like to prove that ΠOR is Adaptive WI. In Theorem10 we prove a weaker form
of Adaptive WI in which the adversary is restricted in his choice of witnesses
(w0, w1) for relation Rc

OR. We leave open the problem of an OR-composition
technique that gives Adaptive WI when the Σ-protocol composed are not both
perfect SHVZK.

Theorem 9. If Π0 and Π1 are perfect SHVZK then ΠOR is Adaptive Perfect
Witness Indistinguishable.

Proof. The proof considers the following three cases:

Case 1. (x0, w0) ∈ R0 and (x1, w1) ∈ R1;
Case 2. (x0, w0) ∈ R0 and (x0, w1) ∈ R0;
Case 3. (x1, w0) ∈ R1 and (x1, w1) ∈ R1.

For each case we present a sequence of hybrids and prove that pairs of consecutive
hybrids are perfectly indistinguishable.

Case 1. The first hybrid experiment H1(x0, λ, aux) is the original experiment
ExpWIpA(x0, λ, aux) in which b = 1 (and thus P uses witness w1). That is,
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– In Step 1 of ExpWIpA(x0, λ, aux), the following steps are executed:
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. set a′ = a;
2. z ← P1

2(x1, w1, c, R1);
3. set dec′ = dec;
4. output (dec′, a′, z).

The second hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the
way a′ and dec′ are computed. More specifically,

– Step 1 of ExpWIpA(x0, λ, aux) stays the same.
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. a′ = P1
1(1

λ;R′
1), for random coin tosses R′

1;
2. z ← P1

2(x1, w1, c, R
′
1);

3. dec′ ← TFakeΠ0(x0, w0, a, a′, com, rand);
4. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commitment scheme based
on Π0 guarantees that H1(x0, λ, aux) and H2(x0, λ, aux) are perfectly indistin-
guishable for all λ.

The third hybrid experiment H3(x0, λ, aux) differs from H2(x0, λ, aux) in the
way a′ and z are computed. More specifically,

– Step 1 of ExpWIpA(x0, λ, aux) stays the same.
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. (a′, z) ← Sim1(x1, c);
2. dec′ ← TFakeΠ0(x0, w0, a, a′, com, rand);
3. (dec′, a′, z).

By the perfect SHVZK of Π1, we have that H2(x0, λ, aux) and H3(x0, λ, aux) are
perfectly indistinguishable for all λ. The proof ends with the observation that
H3(x0, λ, aux) is exactly experiment ExpWIpA(x0, λ, aux) when b = 0.

Case 2. The first hybrid experiment H1(x0, λ, aux) is again the original exper-
iment ExpWIpA(x0, λ, aux) in which b = 1 (and thus P uses witness w1). The
second hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the way
TFake is executed (namely, using as input w0 instead of w1). More specifically,

– Step 1 of ExpWIpA(x0, λ, aux) stays the same.
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:
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1. (a′, z) = Sim1(x1, c);
2. dec′ ← TFakeΠ0(x0, w0, a, a′, com, rand);
3. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commitment scheme based
on Π0 implies that H1(x0, λaux) is perfectly indistinguishable from H2(x0, λaux)
for all λ. The proof ends with the observation that H2(x0, λ, aux) is exactly
experiment ExpWIpA(x0, λ, aux) when b = 0.

Case 3. The first hybrid experiment H1(x0, λ, aux) is again the original experi-
ment ExpWIpA(x0, aux) in which b = 1 (and thus P uses witness w1). The second
hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the way z is com-
puted (using as input w1 instead of w0 when P2 is executed). More specifically,

– In Step 1 of ExpWIpA(x0, λ, aux), the following steps are executed:
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. z ← P1
2(x1, w0, c, R1);

2. output (dec, a, z)

The Perfect WI property of Π1 implies that H1(x0, λ, aux) is perfectly indis-
tinguishable from H2(x0, λ, aux). The proof ends with the observation that
H2(x0, λ, aux) is exactly the experiment ExpWIpA(x0, λ, aux) when b = 0.

Next we consider the computational case in which one of Π0 and Π1 is not
Perfect SHVZK (but they are still both SHVZK).

Theorem 10. If Π0 and Π1 are SHVZK then ΠOR is Adaptive Witness Indis-
tinguishable with respect to adversaries that output (x1, w0, w1) such that at least
one of w0 and w1 is a witness for x1 ∈ LR1 .

Proof. We prove this theorem by considering the following two cases:
(1) (x0, w0) ∈ R0 and (x1, w1) ∈ R1;
(2) (x1, w0) ∈ R1 and (x1, w1) ∈ R1.

Case 1. In this case the proof follows closely the one of Case 1 of Theorem 9,
with the difference that hybrids here are only computationally indistinguishable.

Case 2. In this case we show that there exists A′ for Case 1 that has the same
success probability of A. Suppose indeed that both w0 and w1 are witnesses for
x1 and that A breaks the adaptive WI property of ΠOR. Then, by definition of
Rc

OR and by Definition 7, there exists A′ that has in his description a witness w2

for x0. Indeed, the output of A interacting with P((x0, x1), w2) would necessarily
be distinguishable from the output of the interaction with either P((x0, x1), w0)
or P((x0, x1), w1). Therefore A′ would contradict Case 1 and thus there exists
no successful A for Case 2.
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6 Applications

In this section, we describe the application of our new OR-composition technique
for constructing a 3-round straight-line perfect quasi-polynomial time simulat-
able argument system. In the full version we also show an efficient 4-round reset-
table WI argument system and an efficient 4-round resettable zero knowledge
with concurrent soundness argument system in the BPK model.

A 3-Round Efficient Perfect Quasi-Polynomial Time Simulatable Argument Sys-
tem. In [38], Pass introduced relaxed notions of zero knowledge and knowledge
extraction in which the simulator and the extractor are allowed to run in quasi-
polynomial time. Allowing the simulator to run in quasi-polynomial time typi-
cally dispenses with the need of rewinding the verifier; that is, the simulator is
straight-line. In [38], Pass first describes the following 2-round perfect ZK argu-
ment for any language L: the verifier V sends a value Y = f(y) for a randomly
chosen y where f is a sub-exponentially hard OWF and the first round of a
ZAP protocol. The prover P then sends a commitment to (y′|w′) and uses the
second round of the ZAP to prove that either y′ = f−1(y) or w′ is a witness for
x ∈ L. If language L admits a Σ-protocol ΠL then the above construction can
be implemented as an efficient 4-round argument with quasi-polynomial time
simulation: the function f is concretely instantiated to be an exponentiation in
a group in which the Discrete Log problem is hard and the ZAP is replaced with
the CDS-OR composition of ΠL and Schnorr’s Σ-protocol for the Discrete Log.

Note that Schnorr’s Σ-protocol is input delayed and thus we can use it as Σ-
protocol Π1 in our OR transform in conjunction with any Chameleon Σ-protocol
Π0. One drawback of reducing to 3 rounds the result of [38] is that we can use
only a perfect Σ-protocol since the goal is to obtain perfect WI in 3 rounds.

Simulation in Quasi-Polynomial Time. Since the verifier in an interactive argu-
ment is often modeled as a PPT machine, the classical zero-knowledge definition
requires that the simulator runs also in (expected) polynomial time. In [38], the
simulator is allowed to run in time λpoly(log(λ)). Loosely speaking, we say that an
interactive argument is λpoly(log(λ))-perfectly simulatable if for any adversarial
verifier there exists a simulator running in time λpoly(log(λ)), where λ is the size
of the statement being proved, whose output is identically distributed to the
output of the adversarial verifier.

Definition 8 (One-way functions for sub-exponential circuits [38]). A
function f : {0, 1}∗ → {0, 1}∗ is called one-way for sub-exponential circuits if
there exists a constant α such that the following two condition holds:

– there exist a deterministic polynomial-time algorithm that on input y outputs
f(y);

– for every probabilistic algorithm A with running time bounded by 2λα

, all
sufficiently large λ’s, and every auxiliary input z ∈ {0, 1}poly(λ)
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Prob
[

y
R← {0, 1}∗ : A(f(y), z) ∈ f−1(f(y))

]
<

1
poly(2λα)

.

Now we define straight-line T (λ)-perfectly simulatable interactive arguments.
For our result we consider a one-way functions for sub-exponential circuits

that is also one-to-one.

Definition 9 (straight-line T (λ) simulatability, Definition 31 of [39]). Let
T (λ) be a class of functions that is closed under composition with any polynomial.
We say that an interactive argument (proof) (P,V) for the language L ∈ NP,
with the witness relation RL, is straight-line T (λ)-simulatable if for every PPT
machine V� there exists a probabilistic simulator S with running time bounded by
T (λ) such that the following two ensembles are computationally indistinguishable
(when the distinguish gap is a function in λ = |x|)
– {(〈P(w),V�(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary w s.t. (x,w) ∈ RL

– {(〈S,V�(z)〉(x))}z∈{0,1}∗,x∈L

We note that the above definition is very restrictive. In fact, the simulator is
supposed to act as a cheating prover, with its only advantage being the possibility
of running in time T (λ), instead of in polynomial time. Trivially, it do not exist
a straight-line T (λ)-simulatable proof for non-trivial languages (this should be con-
trastedwith straight-line simulatable interactive arguments, which instead do exist).

For any NP-language L we consider the perfect chameleon Σ-protocol ΠL for
the relation RL. Also we consider the Schnorr Σ-protocol ΠDLOG the following
relation DLOG = {((G, q, g, Y ), y) : gy = Y } with the associated NP-language
LDLOG, over groups G of prime-order q, and use our OR-composition technique
to obtain a new Σ-protocol ΠOR = (POR,VOR) for the relation

ROR =
{

((xL, xDLOG), w) :
(
(xL, w) ∈ RL ∧ xDLOG ∈ L̂DLOG

)
OR

(
(xDLOG, w) ∈ DLOG ∧ xL ∈ L̂RL

)}

with challenge length l = λ and associated algorithms POR
1 , POR

2 and VOR.
Let f be a sub-exponentially hard one-to-one one-way function implemented

using DLog as described before, with the only change that for some constant α,
f is one-way w.r.t circuits of size 2λα

. Let L ∈NP and k = 1
α + 1. Our 3-round

straight-line quasi-polynomial time simulatable argument system for x ∈ L is
the following.

Protocol 5. A 3-round straight-line quasi-polynomial time simulatable argu-
ment system.

Common input: An instance x of a language L ∈NP with witness relation RL

with a perfect chameleon Σ-protocol, and 1λ as security parameter.

Private input: P has w as a private input, s.t. (x,w) ∈ RL.
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Round 1. P → V:

1. On input a randomness R1, Puniformly chooses (p, q, g) where p = 2q + 1 is
a safe prime and g is a generator of a group Gq of size q. We remark that
(p, q, g) are parameters selected so that the function f(y) = gy is a one-to-one
one-way function for some constant α w.r.t circuits of size 2λα

.
2. Pcomputes a ← POR

1 ((x, 1λα

);R1).
3. Psends (p, q, g) and a to V.

Round 2. V → P:

1. V chooses y ← Zq and computes Y = gy.
2. V chooses c ← {0, 1}l.
3. V sends c and Y to P.

Round 3. P → V:

1. P computes z ← POR
2 ((x, ((p, q, g), Y )) , w, c, R1).

2. P sends z to V.
3. V accepts if and only if VOR((x, ((p, q, g), Y )) , a, c, z) = 1.

We remark that we are using the same assumption of [7] that allows the
adversary of DLog to generate the DLog parameters while the challenger selects
the random element of the group.

Theorem 11. If ΠOR is a perfect Σ-protocol for OR composition of RL and
DLOG, then Protocol 5 is a 3-round straight-line perfectly λO(logk λ)-simulatable
argument of knowledge.

Proof. Completeness follows directly from the completeness of ΠOR.

Soundness/Knowledge Extraction. We show that Π is an argument of knowledge;
this directly implies soundness. The claim follows from the fact that the argument
system ΠOR used is a proof of knowledge when the challenge is long enough. and
from the fact that a PPT adversary only finds a pre-image to Y (for f) with
negligible probability. More formally, we construct a polynomial-time extractor
E for every polynomial-time P� for protocol Π. E internally incorporates P�

and each time ΠOR proves a new theorem it proceeds as follows. E invokes the
extractor EOR for ΠOR. E outputs whatever EOR outputs. By the proof knowledge
property of ΠOR, the output of E will either be a witness w for the statement
proved, or the pre-image of Y . If E outputs w, we are done. Otherwise, if it
outputs y with non-negligible probability, then we can construct a reduction
that breaks the DLog assumption (still in the form proposed by [7]).

Quasi-Polynomial Time Perfect Simulation. Consider a straight-line simulator
Sim that computes the first round as the honest prover. This is possible because
ΠOR does not need any witness to computes the first round. After the simulator
receives Y it checks that Y has a pre-image. Sim thereafter performs an exhaus-
tive search to find a pre-image y of a value Y for the function f . To perform this
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task Sim tries all possible values y′ ∈ {0, 1}logk λ and checks if f(y′) = Y . This
thus takes time poly(2log

k λ), since the time it takes to evaluate the function f is
a polynomial in λ. After having found a value y such that f(y) = Y , Sim uses y
as witness to complete the execution of ΠOR (instead of using a real witness for
x, as the honest prover would do). Clearly the running time of Sim is bounded
by λO(logk λ). We proceed to show that the output of the simulator is identically
distributed to the output of any adversarial verifier in a real execution with
an honest prover. Note that the only difference between a real execution and
a simulated execution is in the choice of the witness used in the last stage of
the protocol. Therefore, from the adaptive WI property of ΠOR we have that
the output of the simulated execution is identically distributed to the output
of the real execution.
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