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Abstract. Goos, Pitassi and Watson (ITCS, 2015) have recently intro-
duced the notion of Zero-Information Arthur-Merlin Protocols (ZAM).
In this model, which can be viewed as a private version of the standard
Arthur-Merlin communication complexity game, Alice and Bob are hold-
ing a pair of inputs x and y respectively, and Merlin, the prover, attempts
to convince them that some public function f evaluates to 1 on (z,y). In
addition to standard completeness and soundness, G66s et al., require a
“zero-knowledge” property which asserts that on each yes-input, the dis-
tribution of Merlin’s proof leaks no information about the inputs (z,y)
to an external observer.

In this paper, we relate this new notion to the well-studied model
of Private Simultaneous Messages (PSM) that was originally suggested
by Feige, Naor and Kilian (STOC, 1994). Roughly speaking, we show
that the randomness complexity of ZAM corresponds to the communi-
cation complexity of PSM, and that the communication complexity of
ZAM corresponds to the randomness complexity of PSM. This relation
works in both directions where different variants of PSM are being used.
Consequently, we derive better upper-bounds on the communication-
complexity of ZAM for arbitrary functions. As a secondary contribution,
we reveal new connections between different variants of PSM protocols
which we believe to be of independent interest.

1 Introduction

In this paper we reveal an intimate connection between two seemingly unrelated
models for non-interactive information-theoretic secure computation. We begin
with some background.
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1.1 Zero-Information Unambiguous Arthur-Merlin Communication
Protocols

Consider a pair of computationally-unbounded (randomized) parties, Alice and
Bob, each holding an n-bit input, z and y respectively, to some public function
f:4{0,1}" x {0,1}" — {0,1}. In our first model, a third party, Merlin, wishes
to convince Alice and Bob that their joint input is mapped to 1 (i.e., (z,y) is
in the language f~1(1)). Merlin gets to see the parties’ inputs (z,y) and their
private randomness r 4 and rp, and is allowed to send a single message (“proof”)
p to both parties. Then, each party decides whether to accept the proof based
on its input and its private randomness. We say that the protocol accepts p if
both parties accept it. The protocol is required to satisfy natural properties of
(perfect) completeness and soundness. Namely, if (z,y) € f~1(1) then there is
always a proof p = p(x,y,74,75) that is accepted by both parties, whereas if
(x,y) € f~1(0) then, with probability 1 — § (over the coins of Alice and Bob),
no such proof exists. As usual in communication-complexity games the goal is
to minimize the communication complexity of the protocol, namely the length
of the proof p.

This model, which is well studied in the communication complexity litera-
ture [BFS86,Kl1a03,Klal0], is viewed as the communication complexity analogue
of AM protocols [BM88]. Recently, Goos et al. [GPW15] suggested a variant of
this model which requires an additional “zero-knowledge” property defined as
follows: For any 1-input (x,y) € f~!(1), the proof sent by the honest prover
provides no information on the inputs (x,y) to an external viewer. Formally, the
random variable p, , = p(z,y,74,75) induced by a random choice of r4 and
rp should be distributed according to some universal distribution D which is
independent of the specific 1-input (z,y). Moreover, an additional Unambiguity
property is required: any 1-input (z,y) € f~!(1) and any pair of strings (r4,75)
uniquely determine a single accepting proof p(x,y,74,7r5).

This modified version of AM protocols (denoted by ZAM) was originally pre-
sented in attempt to explain the lack of explicit nontrivial lower bounds for the
communication required by AM protocols. Indeed, G66s et al., showed that any
function f : {0,1}" x {0,1}" — {0,1} admits a ZAM protocol with at most
exponential communication complexity of O(2™). Since the transcript of a ZAM
protocol carries no information on the inputs, the mere existence of such protocols
forms a “barrier” against “information complexity” based arguments. This sug-
gests that, at least in their standard form, such arguments cannot be used to prove
lower bounds against AM protocols (even with Unambiguous completeness).

Regardless of the original motivation, one may view the ZAM model as
a simple and natural information-theoretic analogue of (non-interactive) zero-
knowledge proofs where instead of restricting the computational power of the
verifier, we split it between two non-communicating parties (just like AM com-
munication games are derived from the computational-complexity notion of AM
protocols). As cryptographers, it is therefore natural to ask:

How does the ZAM model relate to other more standard models of
information-theoretic secure computation?
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As we will later see, answering this question also allows us to make some (modest)
progress in understanding the communication complexity of ZAM protocols.

1.2 Private Simultaneous Message Protocols

Another, much older, notion of information-theoretically secure communication
game was suggested by Feige et al. [FKN94]. As in the previous model, there
are three (computationally-unbounded) parties: Alice, Bob and a Referee. Here
too, an input (z,%y) to a public function f : {0,1}" x {0,1}" — {0,1} is split
between Alice and Bob, which, in addition, share a common random string c.
Alice (resp., Bob) should send to the referee a single message a (resp., b) such
that the transcript (a, b) reveals f(x,y) but nothing else. That is, we require two
properties: (Correctness) There exists a decoder algorithm Dec which recovers
f(x,y) from (a,b) with high probability; and (Privacy) There exists a simulator
Sim which, given the value f(z,y), samples the joint distribution of the transcript
(a,b) up to some small deviation error. (See Sect. 4 for formal definitions.)

Following [IK97], we refer to such a protocol as a private simultaneous mes-
sages (PSM) protocol. A PSM protocol for f can be alternatively viewed as a
special type of randomized encoding of f [IK00,AIKO04], where the output of
f is encoded by the output of a randomized function F((z,y),c) such that F
can be written as F((z,y),c) = (Fi(x,c), F2(y,c)). This is referred to as a “2-
decomposable” encoding in [Ish13].

1.3 ZAM vs. PSM

Our goal will be to relate ZAM protocols to PSM protocols. Since the latter
object is well studied and strongly “connected” to other information-theoretic
notions (cf. [BIKK14]), such a connection will allow us to place the new ZAM in
our well-explored world of information-theoretic cryptography.

Observe that ZAM and PSM share some syntactic similarities (illustrated in
Fig.1). In both cases, the input is shared between Alice and Bob and the third
party holds no input. Furthermore, in both cases the communication pattern
consists of a single message. On the other side, in ZAM the third party (Merlin)
attempts to convince Alice and Bob that the joint input is mapped to 1, and
so the communication goes from Merlin to Alice/Bob who generate the output
(accept/reject). In contrast, in a PSM protocol, the messages are sent in the
other direction: from Alice and Bob to the third party (the Referee) who ends
up with the output. In addition, the privacy guarantee looks somewhat different.
For ZAM, privacy is defined with respect to an external observer and only over 1-
inputs, whereas soundness is defined with respect to the parties (Alice and Bob)
who hold the input (z,y). (Indeed, an external observer cannot even tell whether
the joint input (x,y) is a O-input.) Accordingly, in the ZAM model, correctness
and privacy are essentially two different concerns that involve different parties.
In contrast, for PSM protocols privacy should hold with respect to the view of
the receiver who should still be able to decode.
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Fig. 1. Flow of messages

These differences seem to point to non-trivial gaps between these two notions.
The picture becomes even more confusing when looking at existing construc-
tions. On one hand, the general ZAM constructions presented by [GPW15, The-
orem 6] (which use a reduction to Disjointness) seem more elementary than the
simplest PSM protocols of [FKN94]. On the other hand, there are ZAM con-
structions which share common ingredients with existing PSM protocols. Con-
cretely, the branching-program (BP) representation of the underlying function
have been used both in the context of PSM [FKN94,TIK97] and in the context of
ZAM [GPW15, Theorem 1]. (It should be mentioned that there is a quadratic
gap between the complexity of the two constructions.) Finally, both in ZAM and
in PSM, it is known that any function f : {0,1}" x {0,1}" — {0,1} admits a
protocol with exponential complexity, but the best known lower-bound is only
linear in n. Overall, it is not clear whether these relations are coincidental or
point to a deeper connection.’

2 Our Results

We prove that ZAM protocols and PSM protocols are intimately related. Roughly
speaking, we will show that the inverse of ZAM is PSM and vice versa. Therefore,
the randomness complexity of ZAM essentially corresponds to the communica-
tion complexity of PSM and the communication complexity of ZAM essentially
corresponds to the randomness complexity of PSM. This relation works in both
directions where different variants of PSM are being used. We proceed with a
formal statement of our results. See Fig. 2 for an overview of our transformations.

! The authors of [GPW15] seem to suggest that there is no formal connection between
the two models. Indeed, they explicitly mention PSM as “a different model of pri-
vate two-party computation, [...] where the best upper and lower bounds are also
exponential and linear.”
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Fig. 2. Overview of the constructions

2.1 From Perfect PSM to ZAM

We begin by showing that a special form of perfect PSM protocols (referred to
pPSM) yields ZAM protocols.

Theorem 1. Let f be a function with a pPSMprotocol that has communication
complezity t and randomness complexity s. Then f has a 1/2-sound ZAM scheme
with randommness complexity of t and communication complexity of s + 1.

A pPSM protocol is a PSM in which both correctness and privacy are required
to be errorless (perfect), and, in addition, the encoding should satisfy some
regularity properties.?

To prove the theorem, we use the combinatorial properties of the perfect
encoding to define a new function g(x,y,p) = (g1(z,p), 92(y,p)) which, when
restricted to a 1-input (x,y), forms a bijection from the randomness space to
the output space, and when (x,y) is a 0-input the restricted function g(z,y, )
covers only half of the range. Given such a function, it is not hard to design a
ZAM: Alice (resp., Bob) samples a random point 74 in the range of g; (resp.,
rp in the range of go), and accepts a proof p = (p1,p2) if p1 is a preimage of
ra under g; (resp. ps is a preimage of rp under g2). It is not hard to verify
that the protocol satisfies Unambiguous completeness, 1/2-soundness and zero-
information. (See Sect.5.)

Although the notion of pPSM looks strong, we note that all known general
PSM protocols are perfect. (See full version for details.) By plugging in the best
known protocol from [BIKK14], we derive the following corollary.

2 Essentially, the range of F = (F1, F2) can be partitioned into two equal sets So and
S1 and for every input (z,y) the function F, ,(c) that maps the randomness ¢ to
the transcript (a, b) forms a bijection from the randomness space to the set S¢(,). In
the context of randomized encoding, this notion was originally referred to as perfect
randomized encoding [AIKO04]. See Sect. 4 for formal definitions.
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Corollary 1. Every function f : {0,1}" x {0,1}" — {0,1} has a ZAM with
communication complexity and randomness complezity of O(2"/2).

Previously, the best known upper-bound for the ZAM complexity of a general
function f was O(2") [GPW15]. Using known constructions of BP-based pPSM,
we can also re-prove the fact that ZAM complexity is at most polynomial in the
size of the BP that computes f. (Though, our polynomial is worse than the one
achieved by [GPW15].)

2.2 From ZAM to One-Sided PSM

We move on to study the converse relation. Namely, whether ZAM can be used
to derive PSM. For this, we consider a relexation of PSM in which privacy should
hold only with respect to 1-inputs. In the randomized encoding literature, this
notion is referred to as semi-private randomized encoding [ATK04, ATK15]. In the
context of PSM protocols we refer to this variant as 1IPSM.

Theorem 2. Let f:{0,1}" x {0,1}" — {0,1} be a function with a §-complete
ZAM protocol that has communication complexity £ and randomness complexity
m. Then, for oll k € N, the following hold:

1. f has (22"6%)-correct and O-private IPSM with communication complexity of
km and 2km bits of shared randomness.

2. f has (22"6% + 27%)-correct and (2=%)-private 1PSM with communication
complezity of km and 20k bits of shared randomness.

In particular, if the underlying ZAM protocol has a constant error (e.g., § =
1/2), we can get a 1IPSM with an exponential small error of exp(—f2(n)) at the
expense of a linear overhead in the complexity, i.e., communication complexity
and randomness complexity of O(nm) and O(¢n), respectively.

Both parts of the theorem are proven by “inverting” the ZAM scheme. That
is, as a common randomness Alice and Bob will take a proof p sampled according
to the ZAM’s accepting distribution. Since each proof forms a rectangle, Alice and
Bob can locally sample a random point (74, ) from p’s rectangle (Alice samples
ra and Bob samples rg). The 1PSM’s encoding functions output the sampled
point (r4,rp). We show that if (z,y) is a 1-input then (r4,rp) is distributed
uniformly, while in the case of the O-input the sampled point belongs to some
specific set Z that covers only a small fraction of the point space. Therefore, the
1PSM’s decoder outputs 0 if the sampled point is in Z and 1, otherwise.

The difference between the two parts of Theorem 2 lies in the way that the
common randomness is sampled. In the first part we sample p according to the
exact ZAM’s accepting distribution, whereas in the second part we compromise
on imperfect sampling. This allows us to reduce the length of the shared ran-
domness in 1IPSM at the expense of introducing the sampling error in privacy
and correctness. The proof of the theorem appears in Sect. 6.
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2.3 From 1PSM to PSM and CDS

Theorem 2 shows that a ZAM protocol with low randomness complexity implies
communication-efficient 1IPSM protocol. However, the latter object is not well-
studied and one may suspect that, for one-sided privacy, such low-communication
1PSM protocols may be easily achievable. The following theorem shows that this
is unlikely by relating the worst-case communication complexity of 1IPSM to the
worst-case communication complexity of general PSM (here “worst case” ranges
over all functions of given input length).

Theorem 3. Assume that for all n, each function f : {0,1}" x {0,1}" —
{0,1}has a 6(n)-correct e(n)-private 1IPSM protocol with communication com-
plezity t(n)and randomness complexity s(n). Then, each f has a [6(n)+d(t(n))]-
correct max(e(n), d(n)+e(t(n)))-private PSM protocol with communication com-
plexity t(t(n)) and randomness complexity s(n) + s(t(n)). In particular, if every
such f has a 1IPSM with polynomial communication and randomness, and neg-
ligible privacy and correctness errors, then every f has a PSM with polynomial
communication and randomness, and negligible privacy and correctness errors.

The existence of a PSM for an arbitrary function f : {0,1}"x{0,1}" — {0,1}
with polynomial communication and randomness and negligible privacy and cor-
rectness errors is considered to be an important open question in information-
theoretic cryptography, and so constructing 1PSM with such parameters would
be considered to be a major breakthrough. Together with Theorem 2, we con-
clude that it will be highly non-trivial to discover randomness-efficient ZAM
protocols for general functions.

Finally, we observe that 1IPSM protocols yield (almost) directly protocols for
Conditional Disclosure of Secrets (CDS) [GIKMO0]. In this model, Alice holds an
input  and Bob holds an input y, and, in addition, both parties hold a common
secret bit s. The referee, Carol, holds both = and y, but it does not know the
secret s. Similarly to the PSM case, Alice and Bob use shared randomness to
compute the messages m, and mo that are sent to Carol. The CDS requires that
Carol can recover s from (mi,mq) iff f(x,y) = 1. Moving to the complement
f=1—fof f, one can view the CDS model as a variant of 1IPSM, in which the
privacy leakage in case of O-inputs is full, i.e., given the messages sent by Alice
and Bob, one can recover their input (x,y). Indeed, it is not hard to prove the
following observation (whose proof is deferred to the full version).

Theorem 4. Let f be a function with a 6-complete and e-private LPSM that has
communication complexity t and randomness complexity s. Then, the function

f=1—f has a §-complete and e-private CDS scheme with communication com-
plexity t and randomness complexity s.

In the full version we also describe a direct transformation from ZAM to CDS
which does not suffer from the overhead introduced in Theorem 2. We note that
CDS protocols have recently found applications in Attribute-Based Encryption
(see [GKW15]).
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3 Preliminaries

For an integer n € N, let [n] = {1,...,n}. The complement of a bit b is denoted
by b =1—b. For aset S, we let S* be the set of all possible k-tuples with entries
in S, and for a distribution D, we let D be the probability distribution over
k-tuples such that each tuple’s element is drawn according to D. We let s < S
denote an element that is sampled uniformly at random from the finite set S.
The uniform distribution over n-bit strings is denoted by U,. For a boolean
function f:S — {0,1}, we say that z € S is O-input if f(x) = 0, and is 1-input
if f(z) = 1. A subset R of a product set A x B is a rectangle if R = A’ x B’ for
some A’ C X and B’ CY.

The statistical distance between two random variables, X and Y, denoted
by A(X;Y) is defined by A(X;Y) := 23 |Pr[X = 2] — Pr[Y = z]|. We will
also use statistical distance for probability distributions, where for a probability
distribution D the value Pr[D = 2] is defined to be D(z).

We write Ag,—Dy,...an—Dy (F(21,...,2); G(21,...,2%)) to denote the sta-
tistical distance between two distributions obtained as a result of sampling
x;’'s from D;’s and applying the functions F' and G to (z1,...,2x), respec-
tively. We use the following facts about the statistical distance. For every dis-
tributions X and Y and a function F' (possibly randomized), we have that
A(F(X),F(Y)) < A(X,Y). In particular, for a boolean function F' this implies
that Pr[F(X) =1] < Pr[F(Y) = 1]+ A(X;Y).

For a sequence of probability distributions (D, ..., D) and a probability
vector W = (wy,...,wg) we let Z = > w;D; denote the “mixture distribution”
obtained by sampling an index ¢ € [k] according to W and then outputting an
element z «— D;.

Lemma 1. For any distribution Z = >, w;D; and probability distribution S, it
holds that

k
A(S:M) < 3 wi A(S: D).
i=1
Proof. By the definition of statistical distance we can write A(S; Z) as

k
% Z S(z) — ZwlDl(z)

k
<3 L wilsE) - Do)
1 k
= 5 ;wi Z |S(Z) - Dz(z)|
k
=1
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4 Definitions

4.1 PSM-Based Models

Definition 1 (PSM, 1PSM, pPSM). Let f : {0,1}" x {0,1}" — {0,1} be a
boolean function. We say that a pair of (possibly randomized®) encoding algo-
rithms Fi, Fy : {0,1}" x {0,1}° — {0,1}" are PSM for f if they satisfy the
following properties:

6-CORRECTNESS: There exists a deterministic algorithm Dec, called decoder,
such that for every input (x,y) we have that

Pr [DGC(Fl(x,C),FQ(y,C)) #f(xvy)} <4
c—pr{0,1}°
e-PRIVACY: There exists a randomized algorithm (simulator) Sim such that for
any input (z,y) it holds that

A S(Sim(f(x’y));(Fl(xac)’FQ(yvc))) <g,
c—pr{0,1}

where we write Ay, Dy, zp—Dy (F(T1,...,25); G(21,...,2k)) to denote the
statistical distance between two distributions obtained as a result of sampling
x;’s from D;’s and applying the functions F and G to (x1,...,xy), respec-
tively.

If privacy holds only on l-inputs then the protocol is referred to as 1PSM. A
pPSM protocol is a PSM which satisfies 0-correctness, (standard) 0-privacy, and,
in addition, satisfies the following properties:

BALANCE: There exists a 0-private (perfectly private) simulator Sim such that
SIm(Ul) = Ugt.

STRETCH-PRESERVATION: We have that 1+ s = 2t, i.e., the total output length
equals to the randomness complexity plus a single bit.*

The communication complexity of the PSM (resp., IPSM, pPSM ) protocol is
defined as the encoding length t, and the randomness complexity of the protocol
is defined as the length s of the common randomness.

Remark 1 (pPSM- combinatorial view). One can also formulate the pPSM def-
inition combinatorially [ATIKO04]: For f’s b-input (z,y), let Fyy,(c) denote the
joint output of the encoding (Fi(x,c), Fa(y,c)). Let Sy := {Fyy(c) | ¢ € {0,1}”,
(z,y) € f~1(b)} and let R = {0,1}" x {0,1}" denote the joint range of (Fy, Fy).
Then, (Fy, Fy) is a pPSM of f if and only if (1) The 0-image Sy and the 1-image
S are disjoint; (2) The union of Sy and S; equals to the range R; and (3) for

3 In the original paper [FKN94], the functions Fi, F> are deterministic. We extend
this model by allowing Alice and Bob to use local randomness that is assumed to be
available freely.

4 Intuitively, this bit carries the outcome of the function.
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all (x,y) the function Fy, is a bijection on Sy(,,). One can also consider a case
when F} and F, have arbitrary ranges, i.e., F; : {0,1}" x {0,1}° — {0,1}". In
this case we say that (Fy, Fy) is a pPSM of f if the above conditions hold with
respect to the joint range R = {0,1}"* x {0,1}".

4.2 ZAM

Definition 2 (ZAM). Let f: {0,1}" x {0,1}" — {0,1}. We say that a pair of
deterministic boolean functions A, B : {0,1}" x {0,1}™ x {0,1}* — {0,1} is a
ZAM for f if it satisfies the following properties:

UNAMBIGUOUS COMPLETENESS: For any l-input (z,y) and any randomness
(ra,rp) € {0,1}™ x {0,1}™ there exists a unique p € {0,1}" such that
A(z,ra,p) =1=B(y,rp,p).

ZERO INFORMATION: There exists a distribution D on the proof space {0,1}1Z
such that for any l-input (z,y) we have that

vp € {01} D(p) = Pr  [A(z,74,p) = 1= B(y,r5,p)]-

ra,rp—r{0,1}™

The distribution D is called the accepting distribution.
0-SOUNDNESS: For any 0-input (x,y) it holds that

Pro e 1} : A(z,7a,p) = 1 = B(y,75,p)] <.

ra,rg—r{0,1}™

The communication complexity (resp., randomness complexity) of the ZAM
protocol is defined as the length € of the proof (resp., the length m of the local
randomness).

The Zero Information property asserts that for every accepting input (z,y)
the distribution D, ,, obtained by sampling 74 and rp and outputting the
(unique) proof p which is accepted by Alice and Bob, is identical to a single
universal distribution D.

Following [GPW15], we sometimes refer to the proofs as “rectangles” because
for each (x,y) a proof p naturally corresponds to a set of points {(ra,r5) :
A(z,ra,p) = 1= B(y,rp,p)} which forms a rectangle in {0,1}" x {0,1}".

5 From pPSM to ZAM

In this section we construct a ZAM scheme from a pPSM protocol. By exploiting
the combinatorial structure of pPSM, for each input (x, y) we construct a function
hzy that is a bijection if (z,y) is a 1-input and is two-to-one if (z,y) is a O-input.
In the constructed ZAM scheme Alice and Bob use their local randomness to
sample a uniform point in A’s range (Alice samples its z-coordinate r4 and Bob
samples its y-coordinate rp). Merlin’s proof is the preimage p for the sampled
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point, i.e., a point p such that h.,(p) = (r4,7p). In order to accept the proof p,
Alice and Bob verify that it is a preimage for the sampled point (r4,7rg).

First, the constructed ZAM is unambiguously complete because h, is a bijec-
tion if (z,y) is a l-input of f. Second, the constructed ZAM satisfies the zero-
information property because the distribution of the accepted proofs is uniform.
Third, the constructed ZAM is sound, because if (z,y) is a O-input, then hy,
is two-to-one, implying that with probability at least 1/2 no preimage can be
found.

Theorem 1. Let f be a function with a pPSM protocol that has communication
complezity t and randomness complexity s. Then f has a 1/2-sound ZAM scheme
with randomness complexity of t and communication complexity of s + 1.

Proof. Let f : {0,1}" x {0,1}" — {0,1} be a function with a pPSM Fy, F; :
{0,1}" x{0,1}* — {0,1}". We show that there exists a 1/2-sound ZAM protocol
for f with Alice’s and Bob’s local randomness spaces {0,1}"" and proof space
{0,1}*, where m =t and ¢ = 2¢.

First, we prove some auxiliary statement about pPSM. Let g(z,y,c) :=
(Fi(z,¢), F5(y,c)). For any (z,y), we define a new function hgy, : {0,1}° x
{0,1} — {0,1}" x {0,1}" as follows.

g(xa yvc)a ifo=0;
g(xo, Yo, ¢),if b =1 (where (2o, yo) is a canonical 0 — input for f).

By (c, b) := {

The function h satisfies the following useful properties as follows from the
combinatorial view of pPSM (Remark 1).

Fact 1. If (z,y) is a I-input for f, then the function hyy is a bijection. Oth-
erwise, if (x,y) is a O-input for f, then the image of the function hy, covers
exactly half of the range {0,1}" x {0,1}".

We now describe a ZAM protocol for f in which the local randomness of Alice
and Bob is sampled from {0, 1}t, and the proof space is {0,1}" x {0, 1}. Recall

that (Fy, Fy) is a pPSM and therefore s + 1 = 2t and {0,1}" x {0,1} = {0,1}*".
The ZAM’s accepting functions A, B are defined as follows:

1,if (my = Fi(x,c)and b = 0) or
A(z,mq, (¢, b)) = (mq = Fy(x9,c¢)and b = 1);

0, otherwise.

1,if (mg = Fa(y,c) and b = 0) or
B(y, ma, (¢, b)) = (ma = F3(yo,c)and b = 1);

0, otherwise.

Observe that the following equivalence holds.
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Claim. e, y,e.b,mims [hey(,b) = (mima)| & [A@mi (b)) = 1 =
B(y,ma, (¢,b))].
Now we verify that A, B is ZAM for f:

UNAMBIGUOUS COMPLETENESS: Consider any f’s 1-input (z,y) and take any
(m1,ma) € {0,1} x {0,1}". Since (z,y) is a l-input for f, we have that
hay is a bijection. This means that there exists a unique (c,b) such that
hay(c,b) = (M1, m2). By Claim 5, this proof (c,b) is the only proof which is
accepted by both Alice and Bob when the randomness is set to my, ms.

ZERO INFORMATION: We show that the accepting distribution is uniform, i.e.,
for any 1-input (x,%) and for any p € {0,1}® x {0,1} it holds that

Pr  [A(z,ra,p) =1=B(y,rs,p)] =27".
ra,rp—r{0,1}*

Take any l-input (x,y). Since (z,y) is a l-input for f, we have that hgy, is
a bijection. Hence, there exists a unique (mj,m3) € {0,1}" x {0,1}" such
that hay(c, b) = (m}, m3). By Claim 5, this means that Alice and Bob accept
only this (mj, m3). Hence, for all proofs p we have that

Pr  [A(z,ra,p)=1=B(y,r,p)] =

ra,rp—r{0,1}"
Pr [ra =m},rg =mj] =272

T‘A,TBHR{O,l}t

1/2-SOUNDNESS: Fix some O-input (x,y), and recall that the image H of hy, cov-
ers exactly half of the range {0,1}" x {0,1}", i.e., |H| = ’{0, 1} x {0, 1}t‘ /2.
It follows that, with probability 1/2, the randomness of Alice and Bob
(m1,ms) chosen randomly from {0,1}" x {0,1}" lands outside H. In this
case, the set h,(m1,my) is empty and so there is no proof (¢,b) that will
be accepted.

O

6 From ZAM to 1PSM

In this section we construct 1IPSM protocols from a ZAM scheme and prove
Theorem 2 (restated here for convenience).

Theorem 2. Let f:{0,1}" x {0,1}" — {0,1} be a function with a §-complete
ZAM protocol that has communication complexity £ and randomness complexity
m. Then, for all k € N, the following hold:

1. f has (2276%)-correct and 0-private 1PSM with communication complexity of
km and 2km bits of shared randomness.

2. f has (2276% + 2=%%)-correct and (2%)-private 1IPSM with communication
complezity of km and 20k bits of shared randomness.
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Proof. Let f : {0,1}" x {0,1}" — {0,1} be a function with a d-sound ZAM
protocol (A, B) with Alice’s and Bob’s local randomness spaces {0,1}" and the
proof space {0, 1}Z. Fix some integer k. We start by constructing the first 1IPSM
protocol.

We first define some additional notation and prove auxiliary claims. For a
pair of inputs (z,y) let

Epy = {(ra,rp) € {0,1}" x{0,1}" [ Ip: A(z,74,p) = 1 = B(y,75,p)}
and Z:= U yyer-1(0) Boy-
Claim. |Z| < 227(§22m)k.

Proof. By the soundness property of ZAM, we have that |E,,| < §2*™ for any
O-input (z,y). Hence, each |EF, | < (62*™)%. We conclude that

‘Z| — U Efy < Z ’Efy| < 22n(522m)k — 5k22n+2mk'
(z,y)ef~1(0) (z,y)ef~1(0)
O
Let A7 := {ra € {0,1}" | A(z,74,p) =1} and BY := {rp € {0,1}" |
B(y;TB7p) = 1}

Claim. Let D,cc be the accepting distribution of ZAM. Then, for any 1-input
(z,y) and p € {0,1}" we have that D,eo(p) = 272 | AY||BY|.

Proof. By definition

_ {(ra,rp) € {0,1}"™ x {0,1}™ | A(z,r4,p) = 1= B(y.75,p)}|
{0, 13- [{0,1}"| '

In order to derive the claim, it remains to notice that since every proof forms a
“rectangle” [GPW15], we have that

{(TAarB) € {Oa l}m X {Oa l}m | A(l’,TA,p) =1= B(y7TBap)} = A[:f X Bzy)

O

Dce(p)

We can now describe the encoding algorithms G; and G2 and the decoder
Dec. First, G; and G5 use the shared randomness to sample a proof p according
to the accepting distribution. Then G; and G5 sample (private) randomness that
can lead to the acceptance of p on their input (x,y), i.e., G1 computes a g A3
and G2 computes b «r BY. We have that if f(z,y) = 1 then (a,b) is distributed
uniformly, while if f(z,y) = 0 then (a, b) is sampled from the set Z. The task of
the decoder is to verify whether it is likely that a point has been sampled from
Z or uniformly. This is achieved by repeating the protocol k times. Below is the
formal description of the algorithms G, G5 and decoder.
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— Shared Randomness. The common randomness ¢ € {0, 1}k'2m is used
for sampling k independent samples (p1,...,px) from D,oc. (Each such
sample can be obtained by sampling r = (ra,rp) «—r {0, 1}2m and
outputting the unique proof p that corresponds to r and to some fixed
1-input (2o,%o)-)

~ Encoders. The encoder G1(z,¢c) outputs (as,...,ar) «<pr Aj XX
Aj, and the encoder G outputs (by,...,bg) «—r Bj x - x By .

— Decoder. Dec((aq,...,ax), (b1,...,bx))

If ((a1,b1), ..., (ak, br)) € Z then output 0, otherwise output 1.

Let us verify that the proposed protocol is a 1PSM for f.

(227§%)-Correctness. Since that the decoder never errs on 0-inputs, it suffices
to analyze the probability that some 1-input (x,y) is incorrectly decoded to 0.
Fix some l-input (z,y). Below we will show that the message s = ((a1,b1),...,
(ak,br)) generated by the encoders G and Gg is uniformly distributed over
the set ({0,1}™ x {0,1}™)*. Hence, the probability that s lands in Z (and

decoded incorrectly to 0) is exactly (00 1}m‘XZ{|O Ty which, by Claim 6, is

upper-bounded by 227§%.

It is left to show that s is uniformly distributed. To see this, consider the
marginalization of (a;, b;)’s probability distribution: For a fixed (r4,7rp) we have
that

Pri(a;, b)) = (ra,rB)] = Z Pr{(a;, b)) = (ra,rs) | pi = p]Pr[p; = p).
pe{0,1}*

Because of the unambiguous completeness property of ZAM, we have that there
exists a single p* such that (ra,rp) € Ape X Bg*. Hence, all probabilities
Pr[(a;,b;) = (ra,rg) | p; = p|] are zero, if p # p*. This implies that

Pr(ai, b)) = (ra,rp)] = Pr((ai, bi) = (ra,rp) | pi = p] Prlpi = p*].

We have that Pr[p; = p] = Ducc(p) = 272"|A7||IBY| (due to Claim 6),
and Pr[(a;,b;)) = (ra,rp) | pi = p*] is W by the construction of
the encoding functions. Hence, Pr[(a;,b;) = (ra,rg)] = 272™. Because all
pairs (a;,b;) are sampled independently, we get that the combined tuple
s = ((a1,b1),..., (ak,by)) is sampled uniformly from ({0,1}"™ x {0,1}"™)k, as
required.

Privacy for l-inputs. As shown above, if (z,y) is a l-input, then s is uni-
formly distributed over ({0,1}™ x {0,1}"™)*. Hence, the simulator for prov-
ing the privacy property of PSM can be defined as a uniform sampler from

({0, 1}™ x {0,1}™)k.
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The Second Protocol. The second item of the theorem is proved by using the
first protocol, except that the point p = (p1,...,px) is sampled from a different
distribution D’. For a parameter ¢, the distribution D’ is simply the distribution
DF.., discretized into 2~ (“**%)_size intervals. Such D’ can be sampled using only
¢k + t random bits. Moreover, for each point p, the difference between DX .(p)
and D'(p) is at most 2~ (“*+%)_ Since the support of D%, is of size at most 2%, it
follows that A(S(Uppys); DF..) < 27 (k0 .28k — 9=t Ag a result, we introduce
an additional error of 27% in both privacy and correctness. By setting t to /k,

we derive the second 1PSM protocol. O

7 From 1PSM to PSM

In this section we show how to upgrade a 1PSM protocol into a PSM protocol.
We assume that we have a way of constructing 1PSM for all functions. Our main
idea is to reduce a construction of a PSM scheme for f to two 1PSM schemes.
The first 1PSM scheme computes the function f, and the second 1PSM scheme
computes the function Decy, i.e., the complement of the decoder Decy of the first
scheme. We show how to combine the two schemes such that the first scheme
protects the privacy of 1-inputs and the second scheme protects the privacy of
0-inputs.

Theorem 3. Assume that for all n, each function f:{0,1}" x {0,1}" — {0,1}
has a §(n)-correct e(n)-private 1PSM protocol with communication complexity
t(n) and randomness complexity s(n). Then, each f has a [§(n)+3(t(n))]-correct
max(e(n),d(n) + e(t(n))-private PSM protocol with communication complexity
t(t(n)) and randomness complexity s(n) + s(t(n)). In particular, if every such
f has a 1IPSM with polynomial communication and randomness, and negligible
privacy and correctness errors, then every f has a PSM with polynomial com-
munication and randomness, and negligible privacy and correctness errors.

Proof. Let f : {0,1}" x {0,1}" — {0,1}. Let F}, F : {0,1}" x {0,1}*" —
{0, l}t(") be a §(n)-correct and e(n)-private on 1 inputs 1PSM for f with decoder
Dec; and simulator Sim;. Define a function g : {0,1}'™ x {0,1}'™ — {0,1}
to be 1 — Decy(my,my). Let Gy, Gy : {0, 1} x {0,1}*) — {0, 1}/ pe
a 0(t(n))-correct and e(t(n))-private on 1 inputs 1PSM for g with decoder Dec,
and simulator Sim,.

We construct a (standard) PSM for f as follows. Let {0,1}" = {0,1}*™ x
{0,13*“) be the space of shared randomness, let {0,1}" = {0,1}“™) be the
output space and define the encoding functions Hi, Hoy : {0,1}" x {0,1}" —
{0,1}", by

Hy(z,(c,r)) = G1(Fi(x,c),r) and Ha(y, (c,7)) = G2(Fs(y,c),r).

We show that Hy, Hy satisfy the security properties of PSM:
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d(n) + 0(¢t(n))-CORRECTNESS: On an input (e, es) define the decoding algo-
rithm Dec to output 1 — Decy(eq,e2). The decoding algorithm Dec works
correctly whenever both Dec, and Decy succeed. Hence, the error probabil-
ity for decoding can be bounded as follows:

Pr  [Dec(Hi(x,(c,r)), Ha(y, (c,))) # f(z,y)]

(e,r)<—r{0,1}*

= Pr  [1—Decy(Gi(Fi(x,c),7)), Ga(F2(y,c),r))) # f(x,y)]

(e;r)—r{0,1}*

< Pr [ (1 (Decs (R 0), By, o) # )] + 6(t(n)

= Pr [Decs(Fi(x,c), Faly, c) # f(z.y)] +6(t(n))
c—r{0,1}5("

< 6(n) + 6(t(n)).

e-PRIvACY: We define the simulator Sim as follows: on O-inputs it outputs Simg
and on l-inputs it computes Simy = (mq,mg), randomly samples r from
{0,135 "and outputs (Gy(ma,r), Go(ma,r)). We verify that the simu-
lator truthfully simulates the randomized encoding (H;, H2) with deviation
error of at most ¢.
We begin with the case where (x,y) is a O-input for f. For any ¢, let L. denote
the distribution of the random variable (Gi(Fi(zx,c),r),Ga(Fa(y,c),r))
where 7 —p {0,1}*C) Let M denote the “mixture distribution” which
is defined by first sampling ¢ «—g {0, 1}8(”) and then outputting a random
sample from Le, that is, the distribution M =3~ 13500 Pr[Usm) = c|Le.
Due to Lemma 1, we have that

A(Simg; M)< Y~ Pr[Usn) = ¢ A(Simg; Le).
cef{0,1}(™

Let C denote a subset of ¢ € {0,1}*™ such that (Fy(z,c), Fa(y,c)) is a
l-input for g. The set C satisfies the following two properties: (1) Ve €
C A(Simg; L.) < e(t(n)) and (2) |C[/25™ > 1 — §(n). The property (1)
holds because G, G> is private on 1l-inputs of g. The property (2) holds
because Decy decodes correctly with the probability at least 1 — d(n). After
splitting the mixture sum in two, we have that

Z Pr[Us(n) = ¢] A(Simgy; L Z 25(n) A(Simg; L)
cef{0,1}5(™) ceC
+ ZQ () A(Simg; Le).
cgC

Because of the properties of C, we have that the first sum is upperbounded
by €(t(n)) and the second one is upperbounded by d(n). This implies that

A(Simg; M)<d(n) +e(t(n)).
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We move on to the case where (z,y) is a 1-input. Then

A (Simf ) (Fl(x,c)7F2(y,c))) S5(”)
{0,135
Consider the randomized procedure G which, given (mq,ms), samples r g
{0,134 and outputs the pair (G1(m1,r), Ga(ma,r)). Applying G to the
above distributions we get:

(G(Simyg;7r); G(Fi(z,0), Fa(y,c)ir)) < £(n). (
(e,r)—r{0,1}

—_
~—

Recall that, for a random r <z {0,1}*“"™ it holds that G(Sims;r) =
Slm(l)a and for every r, G(Fl('ra C)7 FQ(yv C); T) = (Hl(xv (Cv T))v HQ(y7 (Ca T)))
Hence, Eq. 1 can be written as

A (Sim(1); (Hi(z,(c,7)), Ha(y, (c,7)))) < (n).
(e,r)—r{0,1}

Since £(n) < max(e(n),d(n) + e(t(n))), the theorem follows.
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