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20.1 Introduction

In the case of highly-automated and fully-automated driving it is necessary for the vehicle
itself to recognize the limitations of its machine perception, as well as the functional
limitations of processing modules based on this perception to react adequately. While
simulator studies of highly-automated driving have shown that realistic transfer times to
the driver of between 5 and 10 s can be assumed [1, 2] before the driver can reliably take
over the driving task again, with fully-automated driving a human would not provide any
backup whatsoever. In the case of functional limitations, the vehicle would have to be able
to achieve an intrinsically safe state completely by itself. However, potential transfer times
of 5 s and more require extensive autonomy of the vehicle, if only for a limited time, in
order to be able to bridge this time period reliably under all circumstances.

To be able to achieve this degree of autonomy, the vehicle must perceive its sur-
roundings, interpret them appropriately and be able to derive and execute reliable actions
continuously. Technically, this task is carried out by individual processing modules that
build on each other. A simplified representation of the relationships is shown in Fig. 20.1.

The machine perception of the vehicle’s surroundings is enabled by various sensors,
such as cameras or radar sensors, incorporated into the vehicle. Further information about
the static driving environment is usually added from very precise digital maps. However,
this can only be used when the vehicle knows its exact position. Therefore, the vehicle
also requires a self-localization functional module for the map matching. The result of the
machine perception is a dynamic vehicle environment model in which the vehicle itself
and all other road users are represented by individual dynamic motion models. This
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should also contain all the relevant infrastructure elements such as traffic signs and traffic
lights, as well as structuring elements such as traffic islands and curbstones, road markings
for dividing traffic lanes, closed areas or pedestrian crossings.

Based on this vehicle environment model, during the situation recognition, all the
individual components are set in relation to each other in order to generate a machine
interpretation of the scene from the dependencies of the individual elements. In the
situation prediction module based on this, various possible developments of the scene
over time, also known as episodes, are calculated in advance and evaluated as to the
probability of their occurrence. Therefore, in this document an episode refers to a possible
specific development over time for a detected traffic scene, whereby the time horizon lies
within the range of a few seconds. On the basis of this situational information, the module
based on this determines the higher-level action planning. For example, it could stipulate
driving around an obstacle or overtaking a slower vehicle. For the execution of the plans,
possible trajectories of the vehicle are calculated with a typical time horizon of 3–5 s and
are evaluated in terms of safety and comfort. The optimal trajectory based on the criteria
that can be stipulated is executed by the vehicle control. The processing procedure
described is repeated continuously, usually in line with the data capture of the sensors, so
that the vehicle is able to react to the actions and reactions of other road users.

The description of this technical process chain clearly shows that a failure of the
machine perception would immediately lead to uncertainties in the situation evaluation of
such a magnitude that reliable safe action planning and action execution would no longer
be possible. The degradation of the machine interpretation of the scene and the action
planning and action execution based on this depends on the situation; however, reliable
prediction would typically not be able to exceed 2–3 s. Therefore, it is evident that a
minimum perception capability is required even for highly-automated driving due to the
significantly greater transfer times to the driver. A complete failure of the machine per-
ception must be avoided in all circumstances, though of course this also applies to the
modules based on it and the vehicle control with its sensors and actuators, which are not
within the focus of this document, however.

Fig. 20.1 General structure of
the information processing for
automated vehicle driving.
Image rights: Author has
copyright
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Therefore, the question is whether limitations in the operation of the machine per-
ception can be detected or even predicted, and if they are, over what period of time. In this
context, the following sections will discuss the state of the technology of known
methodical approaches, and on this basis derive possible research questions.

20.2 Machine Perception

20.2.1 Scope and Characteristic

As described in the previous section, the task of machine perception is to reliably detect all
the other road users relevant to the operation of the automated driving, and to assign them
correctly to the traffic infrastructure. This is particularly necessary because, for example, a
pedestrian at the side of the road presents a different potential risk than one who is using a
separate pedestrian walkway running parallel to the road.

For the machine perception sensors based on camera and radar and/or lidar technology
are used. More detailed information on the operation and design of these sensors can be
found in [3], for example. Cameras provide a 2D representation of a 3D scene in the form
of high-resolution gray-scale or colored images, from which image processing methods
can be used to extract individual objects when there is sufficient contrast or differentiation
in the texture. However, the object distance can only be determined with mono cameras
based on assumptions that often lead to errors, such as a flat surface. Although stereo
cameras also enable the object distance to be determined by means of the disparity image,
the accuracy decreases quadratically as the distance increases. With the currently pre-
vailing base distances for the stereo arrangements and the resolution of the cameras,
measuring ranges of up to around 50 m are possible without the error margin increasing to
such an extent that functions could no longer make any use of the data.

On the other hand, radar and also lidar sensors provide distance measuring data that is
comparatively very accurate and also practically distance-independent in terms of the
measuring error margin. However, due to their low angle resolution, they are less accurate
in capturing the contours, i.e. the external dimensions of objects. This applies in particular
to radar sensors. Additionally, radar and lidar sensors do not provide any texture infor-
mation. Due to these different measuring properties, the different sensor types are gen-
erally used in combination to create the machine perception. This is referred to as sensor
data fusion.

The combined sensor data enables moving and static objects, but also road surface
markings, for example, to be categorically detected and physically measured. The possible
measuring dimensions depend on the specific sensor set-up. Typical physical measured
data that can be captured includes the dimensions of an object used for a box model with
length, width and height, as well as its position absolutely in the world or relative to the
vehicle. In the case of moving objects, the object speeds and object accelerations are
added to this data. More difficult to determine, and generally very unreliably, from
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external sensor measurements is the yaw rate or yaw angle of other road users. Without
vehicle-to-vehicle communication, these variables can only be determined reliably for
one’s own vehicle.

However, for the subsequent situation evaluation and situation prediction, not only the
physical measurement of the objects is required, but also information about what class of
object is involved. For example, a pedestrian and a motorcyclist differ in terms of their
possible degrees of freedom of movement and also their possible movement dynamic.
Also, depending on the context and constellation, road surface markings can have dif-
ferent meanings. Therefore, it is necessary also to determine the semantic meaning of the
objects detected from the sensor data, or from other information sources such as a digital
map. In the context of the machine perception, this operation is known as a classification
step, but it is a component of the machine perception.

While humans are able to assign a semantic meaning to the visual perceptions very
quickly and nearly without errors, this is still a comparatively difficult task for the machine
perception with the current state of the technology. The known classification algorithms
are always based on more or less complex models of expected object classes, which are
either learned automatically from examples or are specified manually. These models then
display, as discriminately as possible, characteristics that can be captured with the
available sensors, so that a distinction can be made between the object classes that occur.
However, it also becomes clear that object classes that are not trained in advance cannot
be identified semantically with the methods known at present. Due to their significantly
greater capabilities, learning classification algorithms have become widely accepted.

A machine perception with semantic information is only technically possible in the
context of driver assistance systems and automated driving because the driving area is
well structured and limited to a few object classes. Additionally, only a rough class
differentiation is relevant for situation recognition and situation prediction. With the
current state of the technology, it is sufficient to be able to distinguish between the
pedestrian, cyclist, passenger car and truck or bus classes with respect to moving objects.
Additionally, there are stationary obstacles, but these are usually assigned to a residue
class along with the non-classifiable objects.

For the correct assignment of the classified objects to the traffic infrastructure, it is also
necessary to be able to identify reliably, with the correct semantic meaning, road surface
markings, blocked areas, stop lines, traffic light systems and traffic signs. As this complex
classification task is not yet possible with the required degree of reliability, highly accurate
and comprehensively attributed digital maps are used as a support, based on the state of
the technology. Knowing its own position, the automated vehicle can use these maps to
identify the stationary objects and markings expected in the sensors’ field of vision,
together with their semantic meaning. The sensors then only have to verify that the objects
are present.
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A disadvantage of this approach is that a highly accurate localization of the vehicle is
required, for which a standard GPS localization is not sufficient, and the map must always
be up to date. For this reason, the goal is to develop technical solutions in the future that
will no longer require highly accurate, up-to-date maps.

20.2.2 Characteristics of Environment Models

The machine perception is used to create a dynamic environment model. Two main
representations are known: object-based and grid-based forms. Both forms of represen-
tation can also be combined.

An object-based vehicle environment model is a dynamic data structure in which all the
relevant object and infrastructure elements in the vicinity of the vehicle are represented
correctly in space and time. As explained above, the capturing and tracking over time of
the objects and infrastructure elements is performed continuously by suitable, usually
fused on-board sensors such as cameras, radars, lidars, and with the additional use of
highly accurate digital maps. Figure 20.2 shows an example of components that incor-
porate an environment representation.

Which objects and structure elements are relevant for automated driving mainly
depends on the driving task to be performed, the complexity of which increases starkly,
starting from simple motorway scenarios via country roads to inner-city traffic. In the
object-based representation, all the other road users relevant to the representation, the
relevant infrastructure elements and one’s own vehicle itself are described by means of a
separate dynamic object model, usually a time-discrete state space model. The states of
this model, such as position, speed or 2D/3D object dimensions, are continuously updated
in line with the sensor measurements. Furthermore, there is continuous capturing of the
road surface markings and traffic signs, as well as the status of the traffic light systems.

Fig. 20.2 Schematic diagram of the object-based vehicle environment representation. All the
relevant objects are detected, classified and correctly assigned to the infrastructure. Image rights:
Author has copyright
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A grid-based representation uses raster maps to divide the stationary environment into
localized cells of equal size. The vehicle moves across this localized 2D or 3D grid and
the on-board, the sensors then only supply information as to whether specific cells are free
and thus can be driven on freely, or whether there is an obstacle in the respective cell.
Additionally, the state in which no information on cells is available can also be modeled.
This type of depiction is mainly suitable for representing static scenarios and static
obstacles. It does not require any model hypotheses about the object classes to be expected
and can therefore be categorized as very resistant to model errors. Figure 20.3 shows the
basic procedure. Further information on grid-based representations can be found in [4–8].

20.3 Methods for Dealing with Uncertainties of Machine
Perception

20.3.1 Uncertainty Domains

As described in Sect. 20.2, the machine perception is made up of different task scopes.
These are, on the one hand, detecting static and dynamic objects and physically measuring
them as precisely as possible, and on the other, assigning the correct semantic meanings to
the detected objects. In the context of these tasks, the following three uncertainty domains
exist for the machine perception:

1. State uncertainty
State uncertainty describes the uncertainty in the physical measured variables, such as
size, position and speed, and is a direct consequence of measuring errors in the sensors
and sensor signal processing that cannot always be avoided.

Assignment to localized
discrete grid cells

Calculation of occupancy
probabilities

Distance
measurements
Radar / lidar

Fig. 20.3 Schematic diagram of the structure of a grid-based representation of the vehicle’s
surroundings. In the simplest case, this only contains static obstacles. Image rights: Author has
copyright
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2. Existence uncertainty
Existence uncertainty describes the uncertainty as to whether an object detected by the
sensors and transferred to the representation of the surroundings actually exists at all.
Errors of this kind can occur due to deficiencies in the signal processing algorithms or
incorrect measurements by the sensors themselves.

3. Class uncertainty
This refers to uncertainty with regard to the correct semantic assignment, which can be
caused by deficiencies in the classification procedure or insufficiently accurate mea-
sured data.

In order to facilitate automated driving, it is necessary to reliably detect any uncer-
tainties or errors in the various domains and, if possible, even to be able to predict them. In
the current state of the technology, uncertainties are handled, almost without exception,
using methods based on Bayes’ theorem [9–11] or on the generalization of same, the
Dempster-Shafer theory [12]. The advantage of these methods is that they allow the
uncertainty domains to be handled using a totally probabilistic and therefore mainly
heuristic-free approach.

In the narrow sense, the uncertainty domains named above only apply to the on-board
sensors for now. However, errors in the information from a digital map or in the data
obtained via Car2x communication can also be categorized. Car2x communication in
particular can harbor additional sources of error due to possible variable latency times in
the transfer of data and the possibility of imprecisely known uncertainty evaluations of the
sending sources. However, the effects can still be assigned to the three uncertainty
domains named, and therefore we will not go into further detail here.

20.3.2 State Uncertainty

The state uncertainty of a detected object is described, in accordance with Bayes’ theorem,
by means of a probability density function which can be used to determine the most
probable total and individual state and also, with a certain probability, possible variations
from this. In the case of a multi-dimensional, normally distributed probability density
function, the state uncertainty is completely represented by a covariance matrix.

In estimating static variables, such as the vehicle dimensions, their state uncertainty can
be reduced progressively by means of repeated measurements. The estimated value based
on the available measurements converges with the true values, as long as there is no
systematic sensor error, e.g. in the form of an offset. For the estimation of dynamic,
time-changeable states such as the object position or the object speed, due to the move-
ment of the object between the measuring times, there is no convergence with a true value.
Therefore, for the evaluation of the quality of the state estimation, it is stipulated that the
mean error is zero and the uncertainty as low as possible.
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The basic procedure for handling state uncertainties is the general Bayes filter [9]. With
this, the estimated state of an object and the related uncertainty are represented by a
multi-dimensional probability density function p (PDF):

pkþ 1 xkþ 1jZ1:kþ 1ð Þ:

In general, it depends on all the measurements Z1:kþ 1 ¼ fz1; . . .; zkþ 1g available at
time k + 1. This is expressed by means of the selected notation of a conditional proba-
bility, i.e. the probability for the state of system x is conditional upon measurements Z.

The motion model of an object captured by the sensors for the period between two
consecutive measurements is described by a motion equation of the form

xkþ 1jk ¼ f xkð Þþ vk

whereby vk represents an additive disturbance variable representing possible model errors.
The motion equation expresses in which state, such as location, speed and direction of
motion, the object will probably find itself at the next point in time. Alternatively, this
motion equation can also be expressed by means of a Markov transition probability
density:

fkþ 1jkðxkþ 1jxkÞ:

The Markov transition probability density is ultimately only another mathematical
notation for the same model assumptions. To keep the equations practically calculable, it
is common to presuppose a Markov property of the first order. This property expresses
simplistically that the future state of a system only depends on the last known state and the
current measurement, not on the entire history of measurements and states. Therefore, the
Markov property of the first order is a presupposed system property. In our specific case,
the predicted state xk+1 of the object before the new measurement is available only
depends on the last determined state xk, as this implicitly comprises the entire measure-
ment history Z1:k ¼ fz1; . . .; zkg:

The prediction of the current object state xk to the next measuring time k + 1 is
basically carried out based on the Chapman-Kolmogorov equation

pkþ 1jk xkþ 1jxkð Þ ¼
Z

fkþ 1jk xkþ 1jxkð Þpk xkð Þdxk:

This is denoted as a prediction step of the Bayes filter.
The measuring process of the sensors can generally be described as a measurement

equation in the form

zkþ 1jk ¼ hkþ 1 xkþ 1ð Þþwkþ 1
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The measurement function hð�Þ describes how measurements and state variables are
related. For example, if a state variable can be measured directly, then hð�Þ is a 1:1
mapping. Here, the stochastic disturbance variable wkþ 1 represents a possible measuring
error. An alternative mathematical representation of the measurement equation is the
likelihood function

g zkþ 1jxkþ 1ð Þ:

If the current measurements zkþ 1 are available, the probability density function of the
object state is updated. The current estimate of the state is calculated using the Bayes
formula

pkþ 1 xkþ 1jzkþ 1ð Þ ¼ g zkþ 1jxkþ 1ð Þpkþ 1jk xkþ 1jxkð ÞR
g zkþ 1jxkþ 1ð Þpkþ 1jk xkþ 1jxkð Þdx :

This second step to incorporate the current measurement is known as the innovation
step.

The recursive estimation procedure briefly described by the prediction step and the
innovation step is known as the general Bayes filter, and all the methods and imple-
mentations of the stochastic state estimation commonly used today are based on this.
Along with the process and measurement equations, the procedure only requires an a
priori PDF for object state p0ðx0Þ at time k ¼ 0: However, it is not efficient to implement
the filter in this general form.

With the assumption of normally distributed measurement signals and linear models, the
Kalman filter [13] enables a simple analytical implementation of the general Bayes filter.
As a Gaussian distribution is completely described by its first two statistical moments, i.e.
the mean value and the related covariance matrix, the temporal filtering of these two
moments represents a mathematically exact solution. The Kalman filter can be applied to
systems with non-linear process or measurement equations by using the Extended Kalman
Filter (EKF) [11] or the Unscented Kalman Filter (UKF) [14]. While the EKF linearizes the
system equations by using a Taylor series approximation, the objective of the UKF is a
stochastic approximation by using what are known as sigma points [14].

Independently of the specific implementation, all the procedures based on the general
Bayes filter have in common that they continuously supply a probabilistic measure for the
uncertainty of the physical variables determined from the sensor data. This enables the
reliable detection of sensor failures, but also of degeneration in the capabilities of indi-
vidual sensors. For example, if the measured data of individual sensors deviates signifi-
cantly, i.e. outside the variation range to be expected statistically, there is a corresponding
reduction in capability.
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However, it must be remembered that a reduction in the capability of a sensor can only
be detected after it has occurred. Apart from trend indication in the case of slow
degeneration, it is not possible to make any prediction of the future perception capability
in relation to the state uncertainty.

20.3.3 Existence Uncertainty

For the performance of automated driving, existence uncertainty is at least as relevant as
state uncertainty. It expresses the probability that the object in the representation of the
vehicle’s surroundings actually corresponds to a real object. For example, emergency
braking of an automated vehicle should only be triggered in the case of a very high
existence probability for a detected obstacle.

While the estimation of state uncertainties using Bayes estimation methods is well
founded in theory, the existence probability in today’s systems is still mostly determined
on the basis of a heuristic quality measure. An object is taken as confirmed if the quality
measure exceeds a sensor- and application-dependent threshold. For example, the quality
measures are based on the number of measurements that have confirmed the object, or
simply the interval between the initialization of the object and the current point in time.
Often the state uncertainty of the object (Sect. 20.3.2) is also used for the validation.

An approach with a better theoretical foundation is the estimation of a probability-based
existence probability. This firstly requires a definition of the specific object existence. While
in some applications, all real objects are taken to be existent, the object existence can also be
limited to the objects that are relevant in the current application. Additionally, a limitation to
the objects that can also be detected with the current sensor setup is also possible. In contrast
to a threshold procedure, this determination of the existence probability enables a
probability-based interpretation option. For example, an existence probability of 90 %
means that there is a 90 %probability that themeasurement history and themotion pattern of
the object were created by a real object. Consequently, the action planning of the automated
vehicle can use these probabilities when evaluating alternative actions.

A known algorithm for calculating an existence probability is the Joint Integrated
Probabilistic Data Association (JIPDA) procedure, also based on the Bayes filter, which
was first introduced in 2004 by Musicki and Evans [15]. This procedure additionally uses
the detection and false alarm probabilities of the sensors, which are presumed to be
known.

The calculation of the current object existence probability is performed similarly to
state estimation in the Kalman filter in a prediction step and an innovation step. The
existence prediction is performed using a Markov model of the first order. The predicted
existence of an object is given by the Markov chain

pkþ 1jk 9xð Þ ¼ pSpk 9xð Þþ pBpkð6 9xÞ
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whereby the probability ps represents the persistence probability of the object and pB the
probability for the occurrence of an object in the sensor capture area. Consequently, the
probability for the disappearance of an object is given by 1� pS: In the innovation step,
the a posteriori existence probability pkþ 1ð9xÞ is calculated. It essentially depends on the
number of current measurements that confirm the existence of the object.

As the persistence probability of an object depends on the current object state and the
posteriori existence probability in turn depends on the data associations, the JIPDA filter
can be interpreted as the coupling of two Markov chains shown in Fig. 20.4. The upper
Markov chain represents the state prediction and innovation known from the Kalman filter,
while the lower Markov chain represents the prediction and innovation of the existence
probability. For details on the JIPDA procedure and its specific formulation with regard to
the applications in automotive applications, see [16] for example. Current multi-object
tracking procedures only developed in the last few years also enable integrated
object-specific existence estimation. For further information on this, see [9, 17, 18, 19–21].

With regard to the functional behavior of the existence estimation, the same limitations
apply as with the state estimation. A probabilistic measure for the specific existence of the
object is continuously supplied. Therefore, sensor failures during operation can also be
detected reliably in this uncertainty domain. However, a prediction of future capability is
not possible here either.
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20.3.4 Class Uncertainty

Classification procedures for determining the object class, i.e. the determination of
semantic information, are structured very sensor-specifically. Due to the significantly
higher information content, image-based procedures are more common in the classifica-
tion sector. A differentiation is made for learning procedures in which the classifier trains
offline using positive and negative examples and then can recognize the trained object
classes to a greater or lesser extent during online operation. The characteristics used in the
training are either specified or are implicitly generated themselves in the learning process.
Methodically, two basic approaches have established themselves in the learning proce-
dures. On the one hand there are cascaded procedures based on Viola and Jones [22] or
methods based on different neuronal networks [23, 24].

A more classical but also common approach is to specify from the sensor data as many
deterministic characteristics as possible for the different classes, such as length, width or
speed, and to determine for these the class-specific statistical variation areas. The mean
value of the individual characteristics, including the variation range, is approximated by
means of a normal distribution, for example. Following this, based on the current mea-
sured values and the known characteristic distributions, the most probable class from a
Bayesian perspective is determined. If different sensors are to be used in combination
which can each only capture individual characteristics of the total set, the
Dempster-Shafer theory [12] can be used for the class determination, because it allows
“non-knowledge” to be considered as well. However, these procedures are generally less
powerful than learning procedures, and will presumably continue to diminish in impor-
tance as a result.

A disadvantage of all the classification procedures named is that no theoretically
substantiated probabilities can be determined for the current quality of the classification.
At present no comprehensive theoretical basis exists for this. The output of the classifiers
is currently only an individual reliability measure that can be standardized to the value
range of 0–1. It does not represent a probability in the narrower sense, and therefore
different algorithms are not comparable in this regard. Image-based trained classifiers
differ so greatly from characteristic-based procedures comprising lidar and radar sensors
that standardized treatment of them will not be easy to achieve.

20.3.5 Summary

The explanation in the previous sections make clear that the machine perception is made
up of three fundamental uncertainty domains, namely the state uncertainty, the existence
uncertainty and the class uncertainty. All domains have a direct influence on the capability
of the machine perception. If the uncertainties are too great, whereby it must be defined
which uncertainties are tolerable for specific functions, it is no longer possible to drive an
automated vehicle reliably.
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What is problematic is that a future higher uncertainty, and thus a greater error
probability, cannot be predicted in time. While the currently known methods for esti-
mating state and existence uncertainties do enable a current estimation of the capability of
the machine perception, in principle it is not possible to predict degeneration in the
capability of individual sensors or even a failure of components. Only a trend indication is
possible. Table 20.1 summarizes the results once more.

20.4 Implications for the Machine Perception Capability
Prediction

As was explained and substantiated in the previous sections, the future development of the
machine perception capability of an automated vehicle cannot be predicted with sufficient
confidence. By no means can the perception capability for the period of 5–10 s required to
transfer the driving duties to a human be reliably predicted under all circumstances, as is
stipulated as a backup option in highly-automated driving. Moreover, a fully-automated
vehicle would have to be able to achieve an intrinsically safe state autonomously, for
which even a longer period of time would be required in some cases than for the case of a
driver taking over. Although there are certainly a number of options for predicting the
future limitation of the perception capability based on external conditions such as

Table 20.1 Uncertainty domains of machine perception and their methodical handling

State uncertainty Existence uncertainty Class uncertainty

Characteristic Uncertainty in the state
variables such as object
position, object speed,
etc.

Uncertainty whether an
object captured by a
sensor really exists

Uncertainty of class
membership (e.g.
passenger car versus
truck)

Cause Stochastic measuring
error of the sensor
technology used

Detection uncertainties
of individual sensors,
e.g. camera, lidar or
radar

Classification
uncertainties of the
algorithms/limitations
of individual sensors

Modeling Probabilistic; expected
value with
variances/covariances

Probabilistic by means
of detection
probabilities

No persistent method; at
present mainly heuristic

Methods Closed theory via
general Bayes filter
(e.g. Kalman filter
variant)

Closed theory coupled
with estimate of state
uncertainty (e.g. JIPDA
filter)

Feature-based:
Bayes, Dempster-Shafer
Learning-based:
Neuronal networks,
cascaded procedures
(Viola Jones, etc.)

Prediction of
the future

Generally no; limited
possibility using trend
indications

Generally no Generally no
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imminent camera glare due to the low position of the sun and sensor limitation due to the
onset of rain, snow or fog banks, these are special scenarios that also require extremely
reliable context information. Therefore, in principle, the prediction of the perception
capability is not a general option for ensuring the necessary reliability for automated
driving.

However, as described above, there already exist theoretically substantiated methods
and procedures for continually monitoring the current machine perception capability and
being able to detect system failures and the degradation of individual components reliably
and quickly. Therefore, machine perception systems must be designed in such a way that
sensor redundancy is provided which ensures that sufficient perception capability remains
either until the transfer to the driver or, in the case of a fully-automated vehicle, until an
intrinsically safe state is achieved if individual components break down. Thus, a complete
failure of the machine perception must not occur.

Redundancies such as these are basically provided by multi-sensor systems that are
used in parallel and combine information from various sensors and sensor principles. For
example, if radar and lidar sensors are incorporated, they both supply distance mea-
surement data, but of different quality and in a different sensor capture area. The weather
dependencies of the sensor principles are also different. However, due to the similarity of
the measured data, they can provide mutual support or also mutual compensation if a
component breaks down, with a slight loss of measuring quality for the overall system.
Additionally, only through this usage of independent sensor principles is it possible to
achieve the highest safety level in accordance with ASIL D, which is required for the
operational safety in automated driving.

A redundancy can also be planned and provided easily for cameras. For example, if a
camera in a stereo camera system breaks down, the second camera of the stereo system
remains available for the classification tasks and the detection of road markings. Only a
distance estimate is then no longer available from stereo data and would have to be
compensated be means of lidar or radar sensors, for example. Of course, a prerequisite for
this redundancy is that the processing hardware and the underlying software of the
individual cameras would have to be set up independently, i.e. redundantly. Alternatively,
an additional mono camera could be incorporated, including its own processing hardware
and software. Therefore, redundancy concepts such as these can enable a minimum
perception capability to be always maintained in the automated vehicle, even if individual
components break down.

Automated vehicle control is based on the current machine perception and on the
prediction of the current traffic situation. With the state of the technology, the latter is
essentially performed by means of a simple prediction of the current motion behavior of
the objects into the future. Due to the large number of possible and non-predictable events,
especially the reactive actions of other road users, the uncertainties increase so starkly
after around 2–3 s that reliable trajectory planning is no longer possible on this basis.
Therefore, the situation prediction cannot reliably bridge the period for transferring the
vehicle control back to the driver in highly-automated driving, or for achieving an
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intrinsically safe state in fully-automated driving, if the machine perception no longer
continuously updates the vehicle environment model.

However, due to his/her driving experience, a human is also only capable of anticipating
the overall situation for around 2–3 s into the future with a degree of reliability [25]. But,
because a human perceives and interprets his/her environment quasi-continuously, this
brief prediction horizon is completely sufficient for reacting adequately and de-escalatory
in practically all situations, and for avoiding accidents as a general rule. This should also be
possible for automated vehicles, whereby here of course additional latencies and uncer-
tainties in the perception must be considered. The prerequisite, as mentioned above, is a
guaranteed minimum capability for the machine perception.

However, for the overall operation, it is essential that the automated vehicle does not
put itself into a technically insolvable situation in the first place. The permissible criticality
of the situation must always correspond to the current machine perception capability.
What must be considered in particular here are suddenly occurring failures and the
resulting spontaneous reduction in the machine perception capability. Within the relatively
reliable prediction period for the situation development of 2–3 s, the automated vehicle
must be able to adjust its driving behavior to the altered machine perception capability.
A simple example would be driving on its own lane. If the sensor range is reduced by
technical failures or weather factors, the vehicle must be able to adjust its speed to the
current situation within the validity of the prediction, and this represents a reliably
solvable technical problem.

While this simple situation is easy to describe and analyze, at present it is generally not
known how critical situations arise, and what distinguishes these in terms of the capability
of an automated vehicle. In any case, in establishing the reliability of automated vehicles,
driving a predefined number of kilometers does not ensure that the resulting dataset
contains all the possible critical situation developments (episodes). Consequently, it is not
possible to ensure the operating reliability in this way, regardless of the fact the mileage
required to statistically prove the very low error rates would be neither practically nor
economically feasible.

Therefore, a possible research task in the future would be to find a suitable mathe-
matical representation of random episodes that would then provide the range of all pos-
sible episodes. Based on this description, what are known as Monte Carlo simulations, for
example, can be used to structure the entire episode range into critical and uncritical
subareas, in order to draw a conclusion about required specific tests. A possible
methodical approach for this would be rejection sampling, whereby every sample rep-
resents a complete episode. Starting from basic episodes, which are distinguished by
different road types (1, 2, or 3 lanes per direction, oncoming traffic), for example, or by the
number of vehicles in the near vicinity, similar situations are generated through the
statistical variation of the episode parameters. When there are a sufficient number of
samples, it is to be expected that the episode range has been completely covered. In the
process, every episode used is tested for its physical feasibility, and irrelevant episodes are
discarded. The remaining episodes are then tested as to whether, for example, critical time
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gaps or spaces arise between objects. The suitable criteria for this must also be defined.
The identification and prioritizing of critical situations are carried out by means of sub-
sequent clustering in the episode range.

The goal of such a procedure would be to use this hierarchical approach to determine a
quantity of potentially critical episodes that is as complete as possible but still manage-
able. This would then be analyzed using simulated data as to its controllability by the
highly-automated system at different levels of machine perception capability. For exam-
ple, individual ranges, capture angles and detection rates could be modeled for a sensor
setup in the vehicle in order to then systematically analyze the consequences for the
behavior of the vehicle for critical episodes. This analysis can be carried out initially for a
fully-functioning system, and then under the assumption of a failure of individual
components.

Another research question that is open is the possibility of a more reliable situation
prediction that would use context information and hypotheses about the future behavior of
the road users to enable longer prediction periods. Such a procedure would be justified to
the extent that our entire traffic system is based on the cooperation of the road users. Of
course, a disadvantage of this would be that uncooperative behavior, or simply the errors
of other road users, could not be expected nor included in the action planning of an
automated vehicle. In this respect, such approaches do not enable a significant extension
of the reliably predicted time period, but they can still support planning algorithms.
Additionally, it should be noted that in many situations manual drivers do not have a
chance to react appropriately when other drivers do not behave correctly or make
unforeseen driving errors. Therefore, excessive demands should not be made of automated
vehicles in this regard. However, naturally this is also a question of society’s consensus
with respect to the permissible potential risk involved in a new technology.

20.5 Summary

The existing methods for the state and existence estimations are based on a closed,
well-founded theory and enable in-line, reliable evaluation of the current quality of the
machine perception capability. This makes it possible to detect complete failures of
individual sensors as well as a gradual degeneration in the sensor technology and/or
perception.

However, the procedures do not enable a prediction of the future perception capability,
and only a linear extrapolation of detected trends is conceivable. The reliability and quality
of the evaluation of the machine perception capability depends on the available sensor
models, and error models in particular, which are sensor- and manufacturer-specific. The
perception systems alone do not have a sufficient prediction capability that could reliably
cover a time horizon of between 5 and 10 s, as is currently envisaged for returning the
highly-automated system to the driver. However, this is probably not even necessary for the
reliable behavior of an automated vehicle. What is decisive for the controllability of
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situations during automated driving is a sufficient number of physically implementable and
reliable trajectories for the automated vehicle. These are essentially defined by the spatial
proximity of limiting objects to one’s vehicle and the available drivable free space.
Therefore spatial proximity must be incorporated into key figures for evaluating criticality,
while also taking into account uncertainties in the perception and the number of physically
possible, reliable trajectories. The currently available machine perception capability must
also be considered here. Such sufficiently coordinated and theoretically founded criticality
measures do not exist at present.

A situation prediction into the future over a period of 2–3 s will not provide a con-
clusive result in purely model-based, probabilistic extrapolation, as every development of
the situation becomes possible after this period. A possible approach, and a future research
question, would be the context-related, hypothesis-based temporal extrapolation based of
known and evaluated situations stored in a knowledge base. With an existing knowledge
base, the current situation can then be evaluated continuously with regard to the assumed
outcome. No reliable methods exist for this at present, and in some cases not even any
ideas of how it could be implemented. However, this seems to be a path which can be
taken.

The advances in situation prediction are extremely difficult to foresee. However, sig-
nificantly more capable methods can presumably be expected only in a time horizon of
10 years or more.
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