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16.1 Introduction

Objective
Autonomous vehicles maneuver in traffic through road networks without requiring
humans as supervisors or decision makers. Autonomous vehicles increase comfort for
their passengers by removing the need for them to perform driving tasks. Autonomous
vehicles provide new mobility opportunities for groups of people that thus far have been
partially or entirely excluded from participation in public life due to mobility restrictions.

In addition to the benefits that autonomous vehicles potentially provide their users, the
social benefits that would come with their proliferation are of interest. For it is clear that
autonomous driving does not lead to a loss of safety or efficiency of road transport but
rather improves them. This paper considers the traffic impact of autonomous vehicles,
looking specifically at the efficiency of using the existing infrastructure.

The efficiency of the transport infrastructure is determined by its capacity. On high-
ways, the capacity is dependent to a large degree on the maximum possible flow of traffic
on the road sections as well as the capacity of entry, merging and exit lanes at
grade-separated traffic intersections. In the city road network, and on country roads with
through-roads, the capacities at the intersections are the crucial factor and therefore mostly
dependent on traffic signaling. While the capacity at traffic lights is determined by the
amount of time required by individual vehicles in the departing lane to pass the node, the
capacity of highway sections is determined by the instability that occurs at high traffic
volumes and leads to congestion.
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In order to understand the various factors that determine the effect of traffic on
autonomous vehicles, the key characteristics of traffic flow and their interdependent ele-
ments are the initial focus of this paper. Building on these foundations, we will derive the
impact of autonomous vehicles on the capacity of highway segments as well as on
intersections with traffic signals. The impact of autonomous vehicles on the connection
quality of journeys covering different infrastructure elements cannot be adequately
described in this model. Nevertheless, these considerations provide a preliminary
assessment of the potential for optimizing the efficiency of traffic flow that potentially
includes autonomous vehicles.

16.2 Characteristics of Traffic Flow

16.2.1 Parameters of Traffic Flow

In order to develop a mathematical model of traffic flow, we use an abstraction of the road
network, the vehicles, the drivers and their behavior. Certain simplifying assumptions are
therefore made.

The road network is divided, for example, into road segments and intersections. We
investigate here, therefore, either road segments or intersections where consistent condi-
tions, i.e., flatness, sufficient visibility, dry surface, etc. are assumed. With regard to
drivers and vehicles, it is expected, among other things, that properties such as reaction
time, willingness to engage in risks and technical proficiency follow an empirically proven
statistical distribution.

A distinction is to be made between several ways of describing traffic flow. The
microscopic model describes the relevant characteristics of a single vehicle i:

– temporal headway ti sð Þ
– spatial separation xi mð Þ
– speed vi km=hð Þ.

The macroscopic descriptive model takes into consideration many vehicles and the
relevant properties of a traffic flow:

– traffic volume q veh=hð Þ
– traffic density k veh=kmð Þ
– mean speed v km=hð Þ.

The traffic flow can be recorded by measuring the parameters of a particular
cross-section over a time interval dt by means of so-called local observations or mea-
surements at a given time over a path interval dx, which are so-called momentary
observations (Fig. 16.1).
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16.2.2 Traffic Flow Theory

Neither the macroscopic parameters v, q, and k, nor the corresponding microscopic values,
define in themselves a traffic state. In order to define a traffic state, knowledge of their
interdependencies is a prerequisite. The three macroscopic quantities, traffic volume,
traffic density and momentary speed, are dependent on one another according to the
equation

q ¼ k � v kð Þ

Measurements of traffic volume and mean speed resulted in a detectable decrease in
speed when traffic volume increases, i.e., with increasing mutual influence of vehicles.

One of the first models to describe traffic flow on an open stretch road came from
observations made by Greenshields [1], who researched the relationship between the
speed v and the traffic density k. With the help of regression analysis, he established a
linear relationship for v ¼ v kð Þ

Fig. 16.1 A system of local and momentary measurements. Different traffic speeds occur for the
individual speeds recorded locally or momentarily
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v kð Þ ¼ vf � vf=kmax
� k ¼ vf � 1� k=kmax

� �

where vf represents the free flow speed and kmax the maximum traffic density.
Inserted into the equation q ¼ v � k, this results in a parabolic relationship between

traffic volume and traffic density in the form:

q kð Þ ¼ vf � k � k2�
kmax

� �

Equations with these parameters are referred to as equations of state and their graphical
representations are called fundamental diagrams of traffic flow.

16.2.3 Model for Stationary Traffic Conditions—Fundamental
Diagram

The fundamental diagram is a graphical illustration of the equation of state for traffic, i.e.,
the functional relationship between the parameters of traffic volume q, traffic density k,
and the mean momentary, i.e., section-related speed v, and represents a curve in
three-dimensional space. The orthogonal projections of the curve onto the planes, each
spanned by two parameters, result in the familiar fundamental diagram shown in
Fig. 16.2. The resulting three diagrams enable a variety of information about the char-
acteristics of traffic flow over a cross section to be depicted and are referred to as the q-
v diagram, the q-k diagram, and the k-v diagram.

The fundamental diagram shows that, for the same traffic volume ql, two different
qualities of traffic flow can occur. The threshold qmax separates for qi\qmax the range of
high speeds at low traffic densities, i.e., the free and stable flow of traffic, from the range
with relatively low speeds and high traffic densities, i.e., the range of unstable and
interrupted traffic flow. Empirical studies reveal that the transition between a stable and an
unstable traffic state does not run continuously as shown in Fig. 16.2 in idealized form.
Rather, in case of high traffic load and triggered by disturbances a transition from the
stable to the unstable range takes place. This transition is associated with a significant drop
in the traffic volume (Fig. 16.3). In light of these considerations, May and Keller [2]
characterized three forms of traffic that occur:

– Free traffic at high speeds and low traffic volumes and densities
– Partially constricted traffic, up to the range of maximum traffic volumes, optimal speed

and traffic density
– Constricted traffic with high traffic densities, low traffic volumes and speeds.
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Fig. 16.2 Views of the fundamental diagram according to [3]. Source Handbuch für die
Bemessung von Straßenverkehrsanlagen (HBS), S. 3–19, FGSV 2001

Fig. 16.3 Fundamental
diagrams with separate ranges
for stable and unstable traffic
for single- and two-lane roads,
according to [2]
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16.2.4 Capacity and Stability

The efficiency of the traffic system depends on the capacity of the traffic infrastructure.
This capacity is defined as the “largest volume of traffic that a traffic flow can reach at a
given distance and traffic conditions at the cross-section determined for this flow” [3]. The
capacity is determined by the density of the platoon of vehicles and the speed with which
the platoon passes through the cross-section.

Traffic density is determined by the distances between vehicles. The rule of thumb is
that the safe distance in meters before the vehicle ahead that a driver should adhere to is
half the value of the current speed in kilometers per hour. This well-known rule of “half
speedometer distance” is based on a reaction time of less than 1.8 s, since at this value and
constant speed, precisely the distance to the preceding vehicle is travelled. This minimum
distance is also usually required by law (see, e.g., [4]). For trucks, road regulations
explicitly stipulate that, at speeds above 50 km/h, a minimum travel distance of 50 m
must be maintained, which requires a time interval of 2.25 s at the maximum speed limit
permissible for vehicles over 7.5 tons on highways.

Assuming a reaction time of 1.8 s, the capacity of a lane can be estimated, in a
simplified model, at about 2000 vehicles per hour. This applies equally to city streets as to
country roads and highways. However, empirical studies show that the headways are on
average significantly shorter than 1.8 s and especially at high traffic volumes amount to
1.0 s. The 15 % percentile of the distribution in these cases is even below 0.5 s (see also
Fig. 15.3 in the chapter by Peter Wagner in this book [5]). This means that 15 % of the
vehicles follow a preceding vehicle with a headway of less than 0.5 s. Figure 16.4 shows
the corresponding headway distributions for different traffic volume ranges and different
speed limits.

Due to the short following distances at relatively high speeds, empirical studies also
investigate capacities that may be significantly higher than the stated 2000 veh./h. Fur-
thermore, these studies indicate that there is no exact value where traffic flow stops being
stable and breaks down if this value is exceeded. Rather, it can be observed that the
capacity is a random parameter that can be represented by a distribution (Fig. 16.5).
Investigations of many sections of road [6] show that the capacity of highways are
typically Weibull-distributed and, for example for 3-lane highways, show a standard
deviation of about 600 veh./h (measured in 5-min intervals) and thus an unexpectedly
wide variability.

The expected value of the capacity corresponds in this stochastic depiction to a
nominal capacity and represents the 50th percentile of that traffic volume amount that was
the starting point of a breakdown in traffic flow. The closer the traffic load is to, or the
further it lies above, this nominal capacity, the higher the probability of traffic breakdown
and traffic congestion.

Traffic breakdown results in all cases, passing through a transient state of synchronized
traffic flow to congested traffic. Traffic recovery occurs also via a transient state of syn-
chronized traffic flow, back to a steady flow of traffic with higher speeds (Fig. 16.6).
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The traffic volume also decreases in the transitions to synchronized or to congested traffic
and a smaller recovery takes place. This effect of a “capacity drop” is caused by the fact
that drivers, in keeping a greater distance when leaving the downstream traffic-jam front,

Fig. 16.4 Distribution functions of the time gap distribution for different traffic loads and speed
restrictions [7]

Fig. 16.5 Values for 5-min intervals in the qv graph and the related capacity distribution for a cross
section of a two-lane highway, according to [6]
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maintain a greater distance than before in flowing traffic before the breakdown in traffic
flow.

According to [8], this capacity drop is 5–6 %; studies on German highways reported
values between 4 and 12 % [6].

16.3 The Effect of Autonomous Vehicles on Traffic

The efficiency of the transport system depends on the capacity of a transport infrastructure.
When a transport infrastructure is used by autonomously driving vehicles, the capacity
will differ from that of a transport infrastructure used by human drivers. Either the
capacity of the route sections of the intersections or define the traffic flow. While the
capacities of the intersections and the traffic signals are relevant to the performance of
urban road networks, on highways the capacities of open stretches of road are of principal
importance. For this reason, the following analysis considers the capacity for both cases,
taking into account that a yet-unknown proportion of vehicles drives autonomously.

16.3.1 Sections of Highways

16.3.1.1 Capacity
The capacity of a traffic lane is determined by the maximum number of vehicles that can
pass through a cross section per unit of time. It is determined by the density of the vehicle
platoon and the speed with which the platoon passes through the cross-section. The

Fig. 16.6 Pattern of traffic dynamics with the transitions from the state of stable traffic into the
states of synchronized and congested traffic. The values were measured on a three-lane highway in
5-min intervals, according to [6]

324 B. Friedrich



equation of state that describes the relationship between these fundamental characteristics
of traffic flow is:

q ¼ k � v kð Þ

In a homogeneous traffic flow, the density is easily determined and results from the
reciprocal of the footprint of a vehicle [9]:

k ¼ 1
vTh þ L

:

In this context, Th is the temporal distance (time gap) to the preceding vehicle and L is
the length of a vehicle. Since the capacity represents the maximum traffic volume qmax,
this is consequently a function of v; Th, and L. If only human drivers control the vehicle,
the capacity Ch results, with:

Ch ¼ qmax ¼ v

vTh þ L
:

Analogously, the capacity Ca is described in a traffic flow that purely consists of
autonomous vehicles by the following function, where Ta represents the time gap pre-
ferred by autonomous vehicles.

Ca ¼ v

vTa þ L
:

The ratio of the two capacity values and hence the change in the capacity is determined
by the relation

Ca=Ch
¼ vTh þ Lð Þ= vTa þ Lð Þ:

In order to evaluate the effect of autonomous vehicles on capacity values, values are
used for the parameters of the capacity formula that are empirically demonstrated for
today’s conditions. So it seems reasonable to assume as the mean speed at which the
capacity is reached the value v ¼ 80 km=h 22:�2m=sð Þ. For the footprint of an average
passenger car, the broadly accepted mean vehicle length is 4.5 m and the minimum safety
distance to the vehicle ahead is 3.0 m, thus Lcar ¼ 7:5 m is used. The mean length of a
truck is estimated to be 18 m, which is the weighted average of the lengths of a truck
(18.75 m) and of a semi-trailer (16.50 m). For the footprint of a truck, assuming that a
3.0 m distance is kept before the vehicle ahead, Ltruck ¼ 21 m. As a reasonable value for
the mean following distance at high traffic volumes, the empirical studies provide a value
of Th ¼ 1:15 s.

For the change in capacity for autonomous driving, the changed time gap Ta for the
following vehicle is the deciding factor. A technically feasible and, at the same time,
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acceptable value from the perspective of road users appears to be Ta ¼ 0:5 s. Depending
on the traffic conditions, this very short following distance already occurs in up to 20 % of
all following distances. This distance therefore seems acceptable provided that safety is
ensured from a technical perspective.

For the assumed values, the capacity and thus the maximum flow rate in the case of
purely autonomous traffic would significantly increase using the formulas derived above
(factor 1.78) (Fig. 16.7).

Compared to today’s observed capacity values of a lane of 2200 veh./h, an increase of
traffic volume to about 3900 veh./h would thus be possible with purely autonomous traffic.

If heavy traffic is included in the traffic flow, the mean footprint of the vehicles can be
deduced from a sum that is weighted with the proportion of heavy traffic ω. The traffic
density is obtained in turn from the reciprocal of the mean footprint of a vehicle with

k ¼ 1
1� xð Þ vTh þ LPkwð Þþx vTh þ LLkwð Þ :

For this capacity, the following correlation arises

C ¼ v

1� xð Þ vTa þ LPkwð Þþx vTa þ LLkwð Þ :

If one assumes a moderate speed of 80 km/h for autonomous traffic on German
motorways, we obtain the functional relationship shown in the following Fig. 16.8. If
trucks make up 15 % of traffic, which is typical on German motorways, a capacity of
about 3877 veh./h would be achieved, which is almost twice the value compared to
today’s empirically proven capacity. If, for the sake of a plausibility check and with
otherwise unchanged parameters, one inserts Ta ¼ 1:15 s into the capacity formula, this

Fig. 16.7 Capacity increase that, depending on the speed, would result in an exclusively
autonomous vehicle fleet (only passenger cars)
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results in a capacity of about 2280 veh./h for a heavy traffic share of 15 %. This value
corresponds to the measured capacity at present conditions and confirms the right choice
of the computational approach as well as the parameters.

In mixed traffic, where autonomous vehicles are represented by a share of g in the total
volume, the capacity Cm is additionally dependent on percentage g:

Cm ¼ v

gvTa þ 1� gð ÞvTh þ LPkw
:

If one inserts realistic values into the equation here, again with v ¼ 80 km=h and
Lcar ¼ 7:5 m, the correlation shown in the following graph results (Fig. 16.9). From the
graph, it is clear that the capacity increases more slowly at lower numbers of autonomous
vehicles. At g ¼ 0:5 capacity only reaches a value of about 3100 cars=h, and thus 36 % of
the increase that would be possible if all vehicles were autonomous.

Fig. 16.8 Capacity of a lane in purely autonomous traffic in relation to the share of trucks

Fig. 16.9 Capacity of a lane in proportion to the share of autonomous vehicles for pure passenger
car traffic
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If one also takes into account that autonomous vehicles should allow an additional
distance to a vehicle steered by a human driver so as not to harass these drivers, it is
slightly more complicated to determine the capacity. In this analysis, the combinations of
successive vehicles (a-a, a-h, h-a, and h-h) and the corresponding time gaps (Taa; Tah; Thx)
must be considered in order to arrive at a modified capacity equation:

Cm ¼ v

g2vTaa þ g 1� gð ÞvTah þ 1� gð ÞvThx þ L
:

As realistic values for the headways, the values Taa ¼ 0:5 s; Tah ¼ 0:9 s; Thx ¼ 1:15 s
can be used. In this analysis, the capacity increases in proportion to the share of auton-
omous vehicles a little more slowly in the lower range and reaches for g ¼ 0:5 a value of
2850 veh./h on the way to achieving a capacity value of almost 4300 veh./h where 100 %
of vehicles are autonomous (Fig. 16.10).

The same procedure can be used to estimate the capacity for pure heavy-vehicle traffic
that could be organized on a single lane of a highway. Not changing our assumptions for
the required time gaps, a required space of L ¼ 21m is again assumed. For purely
autonomous driving, these input values result in a capacity value of 2420 trucks=h,
compared to a capacity value of 1720 trucks=h as achievable for human drivers.

16.3.1.2 Stability
Besides the capacity that equates to the greatest traffic volume that a traffic flow at given
road and traffic conditions at a cross-section can achieve, the stability of the traffic flow is
an important factor in its efficiency. This becomes clear when the capacity is considered as
a stochastic variable that represents the probability of traffic breakdown as a function of
traffic intensity. The greater the standard deviation of the probability distribution, the
greater is the likelihood of traffic breakdown at lower traffic volumes and thus instability.

Fig. 16.10 Capacity of a lane in relation to the share of autonomous vehicles for pure car traffic,
taking into account larger time gaps for autonomous vehicles following vehicles driven by people
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If breakdown occurs, capacity is reduced by the effect of “capacity drop” noticeable at
the magnitude given in the above literature—by about 10 %. Given the same number of
lanes and same traffic framework conditions (traffic volume, proportion of heavy traffic),
different spatial and temporal factors result in different capacity distribution functions. The
key factors in this regard are the speed and the time gap distributions. The smaller the
standard deviation, the more stable the flow of traffic will be, and the fewer breakdowns to
be expected at high traffic volumes.

Especially when autonomous vehicles are able to anticipate the actions of preceding
vehicles through communication, they can contribute to a stabilization of traffic flow and
thus to stability. In purely autonomous traffic, it is to be assumed that full stability will be
achieved and a capacity drop avoided.

16.3.2 Intersections with Traffic Lights

Since intersections as part of streets with high traffic are usually controlled using traffic
signals, the following considerations relate to the capacity of intersections with traffic
signal control.

At high traffic loads at intersections with traffic lights, constant queues of traffic occur
independently of the coordination of the traffic signals. This is why it is usually the case
that the waiting queue of vehicles, once permitted by the green light to move, starts
moving from standstill. When the first vehicle has departed at a green light, the next
follows once a certain time interval has lapsed. This time interval is represented by the
value of the time variable, which for standard conditions (no slope, traffic travels in a
straight line, lane width is adequate) and pure passenger car traffic amounts to tb ¼ 1:8 s
[10]. This corresponds to a saturation flow of qs ¼ 2000 cars=h. The value for trucks and
buses is tb ¼ 3:15 s, and tb ¼ 4:5 s for semi-trailer truck.

At the start of the column of traffic, the time at which departure occurs can be antic-
ipated from the movement of vehicles ahead. Thus the response time to the departure of
the driver directly in front is reduced and can be assumed to be Th ¼ 0:6 s. At a vehicle
length of 4.5 m and a distance of 3.0 m from bumper to bumper, an average footprint of a
car in the traffic backlog in front of a traffic light may be assumed to be 7.5 m, and
plausible values for the average speed at the stop line of the traffic signal to be
v ¼ 22:5 km=h. One can thus confirm the required time interval via the relation
tb ¼ Th þ L=v ¼ 1:8 s. This applies equally to the amount of time required by trucks and
semi-trailer trucks with lengths of 12 and 18 m respectively. Consequently, the saturation
flow of a lane at a traffic signal can be given by the equation of state:

qs ¼ v

vTh þ L
:
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To analyze the saturation volumes of purely autonomous and mixed traffic, the cor-
relations used here are those derived for the capacity of road sections with assumed values
for queues starting at traffic signals of 22:5 km=h ¼ 6:25m=s, Th ¼ 0:6 s. For autonomous
driving, it is assumed that the reaction time or the safety margin, even in dense and slow
urban traffic, should not fall below Ta ¼ 0:3 s, Taa ¼ 0:3 s; Tah ¼ 0:6 s; Thx ¼ 0:6 s.

The capacity of a lane at intersections with traffic lights is, on the one hand, determined by
saturation traffic volumes and, on the other hand, by green intervals. Green intervals that are
allocated to different traffic streams over the period of one hour are themselves affected by the
cycle times and the clearance intervals. During rush hours, a cycle time of 90 s is usually
chosen, meaning that there are forty clearance intervals within an hour. For a typical road
junction situated on an urbanmain street, a three-phase signal program is normally used. The
clearance intervals used for the main traffic direction in the three phase-transitions typically
add up to around 20 s and are essentially dependent on the clearance times of crossing
pedestrians. With a cycle time of 90, 70 s remain for the green light intervals of the various
traffic flows. If one assumes that, from the remaining green interval, 50 % of the time is
available for the traffic flows in the main direction, within one hour a release time of 1400 s
and a release time share of pF ¼ 38:89 % results, i.e., a share of approximately 40 %.

In conflict-free signaling (i.e., there are no conditional compatibilities, e.g., with
pedestrians crossing parallel to the main traffic), the capacity of mixed traffic flows is
determined using the above approach.

CLSA ¼ qs � pF ¼ v � pF
vTh þ L

:

In current traffic conditions where vehicles are exclusively controlled by humans, when
using the above values a capacity of about 800 cars=h per lane results. In purely auton-
omous traffic with Ta ¼ 0:3 s, the capacity would increase to about 1120 cars=h and thus
increase by about 40 %. For a mixed composition of traffic flows, the efficiency gains are
between these stated values and can be determined with the formulas introduced above.

The formula also makes it clear that, in addition to the duration of the time delays of
following cars, it is especially speed that determines capacity (Fig. 16.11). With
increasing clearance speeds, capacity grows with autonomous traffic at a higher rate than
that of traffic with human drivers. If it is possible, therefore, to achieve faster departure
times and clearance with autonomous driving, as well as shorter time delays, then a
significantly higher capacity gain than the 40 % named above can be expected.

16.3.3 Assessing the Efficiency Gains from Autonomous Driving

Estimates of the effect of autonomous vehicles on capacity as a measure of the efficiency
of transport systems show significant potential for increasing traffic flow, both on some
sections of highways and intersections of major urban roads.
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In city traffic, a capacity increase of about 40 %could be achievedwith purely autonomous
traffic, while capacities could be increased on highway sections by about 80 %. The signif-
icant difference in the growth potential is due to the average speed at which vehicles drive
when using the traffic infrastructure. This is clear from Fig. 16.7, which shows a dispro-
portionate increase in capacity in the range of lower speeds and aflattening-out towards higher
speeds.When capacity is reached, the speeds on highways are about 80 km/ h.On urbanmain
roads, the platoon starting at green, which determines capacity at signal lights, moves at an
average of 20 km/h. Because of this difference in speeds, autonomous vehicles have a very
different impact on the capacity of transportation infrastructure elements.

In addition to the capacity level achievable by including autonomous vehicles, the
stability of the traffic flow at high traffic volumes is important. In city traffic at a capacity
utilization of 70–80 %, there is admittedly a constant traffic backlog before the relevant
traffic signal, which is why it is no longer possible to drive through without stopping
(green wave) at high traffic loads. Nevertheless, there will be a drop in capacity, as is the
case in extra-urban traffic, especially on highways. To this extent, the stability of traffic
flow is not compromised on the urban road network until it reaches full capacity—and
only then when an overload causes blockages at the intersections.

16.4 Conclusion and Outlook

16.4.1 Traffic

This analysis, with the help of the macroscopic traffic flow models, shows that, in prin-
ciple, a significant increase in capacity can be expected from using autonomous vehicles
and that this would also enable a more efficient use of the existing transport infrastructure.
Along with the expected increase in capacity for existing traffic infrastructure, traffic jams
and lost time are reduced, which in turn improve the quality of traffic flow. In particular,
two factors are responsible for the increase in capacity:

Fig. 16.11 Capacities for a
single lane at a traffic signal in
relation to clearance speed
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(a) One factor is the shortening of headways between autonomous vehicles. In this
context, it is significant that ride comfort is maintained, despite the short time gaps,
by anticipating the actions of the preceding vehicles and thereby enabling lower
acceleration or deceleration. This could also be important for column stability. The
intercommunication of vehicles and infrastructure appears to be an important pre-
requisite for this.

(b) In addition to the duration of the time gap, the speed of the vehicle group is very
important. The higher the speed at a constant density, the higher the traffic volume
over a cross section. However, achieving high speeds while maintaining traffic
density is possible only in purely autonomous traffic. A single human-driven vehicle
in the column would lead to slower speeds and reduce the capacity gain.

16.4.2 Infrastructure

The models developed for traffic flow and capacity, assuming a given share of autono-
mous vehicles, show that capacity increases disproportionately highly as the share of
autonomous vehicles increases. It should be noted that the shortening of the time gaps
comes into effect as early as the first autonomous vehicle; the speed increase at high
densities, however, will only be possible for purely autonomous traffic. The introduction
of autonomous vehicles will succeed, in the opinion of the author, only in their ability to
move safely in mixed traffic, as reserved transit areas would not be socially or econom-
ically acceptable, particularly with a low share of autonomous traffic.

However, once a sufficient number of vehicles with autonomous capabilities are par-
ticipating in traffic, it will be very beneficial to the transport efficiency to create reserved
lanes for autonomous driving. The benefits of autonomous vehicles can be maximized by
separation due to the nonlinear course of the capacity once nonautonomous vehicles are
added to autonomous traffic. In conjunction with specially dedicated lanes, the column
speed could also be increased even when traffic demand is higher, which would lead to
further significant capacity gains. This is not possible in mixed traffic, since even in traffic
with only a few human-driven vehicles, these would dictate the speed.

In an initial analysis of this far-reaching subject, this article has solely focused on the
traffic effects of autonomous vehicles on sections of motorways and, with an eye to urban
traffic, at intersections with traffic lights. These two driving situations to a large extent
determine the quality of the traffic flow. However, there are a number of other relevant
driving situations that may have a significant influence on the capacity of the overall system:

(a) Outside of urban areas, these are the entry, merging and exit maneuvers at the inter-
sections of major roads. Firstly, we can look forward here to further developing
already-emerging technical solutions with assistance functions, such as the merging
assistant, particularly in regard to the possibilities of machine cooperation. Secondly,
solutions for structural and regulatory adjustments to transportation facilities are still to
be developed. For example, one interesting scenario is where autonomous traffic is
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directed onto separate lanes between motorway intersections. This separation is then
removed in intersection areas. In an intersection area, autonomous and
human-controlled vehicles thus drive in all lanes and each may perform all maneuvers
(autonomous, highly assisted or human-driven) at a perhaps predetermined low speed.

(b) Within urban areas, there are still issues regarding the impact of the so-called conditional
compatibility that have to be clarified. Conditional compatibility occurs when different
traffic flows crossing at traffic signals are given the green light, requiring rules of right of
way to be adhered to. This, for example, is the case in traffic flows turning right or left,
which must grant right of way to pedestrians and cyclists travelling parallel to the traffic.
Various approaches could be interesting for this purpose and shouldbe subjected tocloser
scrutiny. Thus, one could give the green light to all lanes of autonomous vehicles
simultaneously in a separate phase—the maneuvers of the conflicting flows in the
intersection area would be negotiated independently by the autonomous vehicles. All
other road users would be controlled by the existing signaling. Another possible solution
would be to consider cyclists and pedestrians in a separate phase with “all green”, thus
maximizing vehicle-flow compatibility by using an appropriate phase structure.

16.4.3 Cooperation

For scenarios such as this last, where traffic at intersections is self-organizing, autonomous
vehicles need to be able to communicate among themselves and with the infrastructure.
Anticipating the maneuvers of moving vehicles ahead, and the reactions in the next
column that depend on this, results in a comfortable and thus acceptable rate of accel-
eration, also ensuring the experience of travelling in the vehicle is pleasant. For this
reason, currently existing technologies for communication and cooperation will play an
important role in the development of autonomous driving.
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