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Abstract. The iterated Even-Mansour construction defines a block
cipher from a tuple of public n-bit permutations (P1, . . . , Pr) by alter-
natively xoring some n-bit round key ki, i = 0, . . . , r, and applying
permutation Pi to the state. The tweakable Even-Mansour construction
generalizes the conventional Even-Mansour construction by replacing the
n-bit round keys by n-bit strings derived from a master key and a tweak,
thereby defining a tweakable block cipher. Constructions of this type
have been previously analyzed, but they were either secure only up to
the birthday bound, or they used a nonlinear mixing function of the
key and the tweak (typically, multiplication of the key and the tweak
seen as elements of some finite field) which might be costly to imple-
ment. In this paper, we tackle the question of whether it is possible to
achieve beyond-birthday-bound security for such a construction by using
only linear operations for mixing the key and the tweak into the state.
We answer positively, describing a 4-round construction with a 2n-bit
master key and an n-bit tweak which is provably secure in the Random
Permutation Model up to roughly 22n/3 adversarial queries.

Keywords: Tweakable block cipher · Iterated Even-Mansour cipher ·
Key-alternating cipher · Beyond-birthday-bound security

1 Introduction

Background. A block cipher with key space K and message space M is a family
of permutations of M indexed by the key k ∈ K. A tweakable block cipher
(TBC) takes an additional (potentially public) input parameter t ∈ T called a
tweak aiming at providing inherent variability in about the same way an IV or
nonce brings variability to an encryption scheme. Some block ciphers such as the
Hasty Pudding Cipher [35], Mercy [10], or Threefish (the block cipher underlying
the Skein hash function [15]) were designed so as to natively support tweaks.
The syntax and security requirements for tweakable block ciphers were formally
articulated in a seminal paper by Liskov, Rivest and Wagner [24]. Since then,
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TBCs have found multiple applications such as (tweakable) length-preserving
encryption modes [18,19], online ciphers [1,33], and authenticated encryption
modes [24,31,32].

Liskov et al. [24] also proposed two generic constructions of a TBC from a
standard block cipher, achieving security up to the so-called birthday bound,
i.e., when the adversary is allowed at most roughly 2n/2 queries to the encryp-
tion or decryption oracle, where n is the block size (that is, the message space
of the TBC is M = {0, 1}n). The “black-box” design strategy (i.e., building a
TBC on top of an existing standard block cipher, in a black-box way) has since
then been the main avenue of research. Earlier proposals, such as XEX [31] and
variants [4,26] were related to the second of the two original proposals of Liskov
et al., and were limited to birthday-bound security as well. Recently, a number
of constructions achieving beyond-birthday-bound security have emerged, such
as Minematsu’s construction [27], the CLRW construction [22,23,30], and two
constructions by Mennink [25]. All those constructions enjoy a security proof in
the standard model (i.e., assuming that the underlying block cipher is a pseudo-
random permutation), except for Mennink’s constructions that were analyzed in
the ideal cipher model.
Tweaking Even-Mansour Ciphers. Unfortunately, none of the currently
known black-box TBC constructions with beyond-birthday-bound security can
be deemed truly practical (even though some of them might come close to it [25]).
Hence, it might be beneficial to “open the hood” and to study how to build
a TBC from some lower level primitive than a full-fledged conventional block
cipher, e.g., a pseudorandom function or a public permutation. For example,
Goldenberg et al. [16] investigated how to include a tweak in Feistel ciphers. This
was extended to generalized Feistel ciphers by Mitsuda and Iwata [28]. Recently,
a similar study was undertaken for the second large class of block ciphers besides
Feistel ciphers, namely key-alternating ciphers [11], a super-class of Substitution-
Permutation Networks (SPNs). An r-round key-alternating cipher based on a
tuple of public n-bit permutations (P1, . . . , Pr) maps a plaintext x ∈ {0, 1}n to
the ciphertext defined as

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )), (1)

where the n-bit round keys k0, . . . , kr are either independent or derived from a
master key k. When the Pi’s are modeled as public permutation oracles, con-
struction (1) is also referred to as the (iterated) Even-Mansour construction,
in reference to Even and Mansour who pioneered the analysis of this construc-
tion in the Random Permutation Model [13]. While Even and Mansour limited
themselves to proving birthday-bound security in the case r = 1, larger num-
bers of rounds were studied in subsequent works [3,21,36]. The general case has
been recently (tightly) settled by Chen and Steinberger [6], who proved that
the r-round iterated Even-Mansour cipher with r-wise independent round keys
ensures security up to roughly 2

rn
r+1 adversarial queries.

In order to incorporate a tweak t in the iterated Even-Mansour construction,
it is tantalizing to generalize (1) by replacing round keys ki by some function
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fi(k, t) of the master key k and the tweak t (see Fig. 1). We will refer to such a
construction as a Tweakable Even-Mansour (TEM) construction.1 This is exactly
the spirit of the TWEAKEY framework introduced by Jean et al. [20]. In fact,
these authors go one step further and propose to unify the key and tweak inputs
into what they dub the tweakey. The main topic of this paper being provable
security (in the traditional model where the key is secret and the tweak is chosen
by the adversary), we will not make such a bold move here, since we are not
aware of any formal security model adequately capturing what Jean et al. had
in mind.

The investigation of the theoretical soundness of this design strategy was
initiated in three recent papers. First, Cogliati and Seurin [8], and independently
Farshim and Procter [14], analyzed the simple case of an n-bit key k and an
n-bit tweak t simply xored together at each round, i.e., fi(k, t) = k ⊕ t for
each i = 0, . . . , r.2 They gave attacks up to two rounds, and proved birthday-
bound security for three rounds. In fact, the security of this construction caps
at 2n/2 queries independently of the number of rounds. Indeed, it can be written
˜E(k, t, x) = E(k ⊕ t, x), where E is the conventional iterated Even-Mansour
cipher with the trivial key-schedule (i.e., the same round key is xored between
each round), and by a result of Bellare and Kohno [2, Corollary 5.7], a tweakable
block cipher of this form can never offer more than κ/2 bits of security, where
κ is the key-length of E (i.e., κ = n in the case at hand). Hence, if we want
beyond-birthday-bound security, we have no choice but to consider more complex
functions fi (at the bare minimum, these functions, even if linear, should prevent
the TBC construction from being of the form E(k ⊕ t, x) for some block cipher
E with n-bit keys).

This was undertaken by Cogliati, Lampe, and Seurin [7], who considered
nonlinear ways of mixing the key and the tweak. More specifically, they studied
the case where fi(k, t) = Hki

(t), where the family of functions (Hk) is uniform
and almost XOR-universal, and the master key is k = (k0, . . . , kr). A classical
example is multiplication-based hashing, i.e., fi(k, t) = ki ⊗ t, where ⊗ denotes
the multiplication in the finite field F2n , the tweak t = 0 being forbidden. Cogliati
et al. showed that one round is secure up to the birthday bound, and that two
rounds are secure up to roughly 22n/3 adversarial queries.3 They also provided a

1 We warn that the naming Tweakable Even-Mansour construction was previously
used by the designers of Minalpher [34], a candidate to the CAESAR competition,
to designate a permutation-based variant of Rogaway’s XEX construction [31], i.e., a
1-round Even-Mansour construction where the derivation functions f0 and f1 applied
to (k, t) are allowed to depend on the internal permutation P1 (something we do not
consider in this paper).

2 Actually, the results of [8,14] were stated in terms of xor-induced related-key security
of the (conventional) iterated Even-Mansour cipher, but in this case this is equivalent
to standard (i.e., single-key) security of the corresponding tweakable construction.

3 More precisely, the birthday-bound result applies to the variant of the construction
were the same key is used before and after permutation P1, and the 22n/3-security
bound applies to the cascade of this construction with two independent keys and
two independent permutations.
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(non-tight) asymptotic security bound improving as the number of rounds grows.
However, implementing a xor-universal hash function might be costly, and linear
functions fi’s would be highly preferable for obvious efficiency reasons.
Our Results. In this paper, we ask whether it is possible to come with a
tweakable Even-Mansour construction achieving both:

1. a linear mixing of the tweak and the key to the state;
2. beyond-birthday-bound security.

We answer positively, by providing a construction with 2n-bit keys and n-bit
tweaks. The starting point is the 4-round iterated Even-Mansour construction
with a 2n-bit master key (k0, k1), k0 and k1 being both n bits, and what we
call the “alternating” key schedule, namely round keys are k0, k1, k0, etc. This
is for example how LED-128 is designed [17]. To turn this block cipher into a
tweakable Even-Mansour construction, we simply add the n-bit tweak t between
each permutation (see Fig. 2). In other words, if we denote E((k0, k1), x) the
conventional Even-Mansour cipher with alternating round keys, the tweakable
construction that we consider can be written

˜E((k0, k1), t, x) = E((k0 ⊕ t, k1 ⊕ t), x).

We prove that this construction is secure up to roughly 22n/3 adversarial
queries. Unsurprisingly, and as in many previous works, our proof uses Patarin’s
H-coefficients technique [6,29]. In particular, we rely on a key lemma by Cogliati
et al. [7] to analyze so-called good transcripts.
Application to Related-Key Security. Our result can be rephrased in terms
of related-key security [2] of the conventional Even-Mansour cipher: the 4-round
conventional Even-Mansour cipher with the alternating key-schedule is secure
up to roughly 22n/3 adversarial queries against related-key attacks for the set of
related-key deriving functions.

Φ2−⊕ def= {(k0, k1) �→ (k0 ⊕ Δ, k1 ⊕ Δ) : Δ ∈ {0, 1}n}.

Note that this set is more restrictive than the set Φ⊕ that would allow to xor an
arbitrary 2n-bit string to the master key (k0, k1). It remains an open problem
(already stated in [8]) to find an Even-Mansour construction provably secure
beyond the birthday bound against Φ⊕-related-key attacks.

Open Problems. We propose three challenging open problems, the first two
being restricted to the case of n-bit tweaks. First, what would be the analogue
of the Chen-Steinberger result [6] in the tweakable setting? In more details, we
know how to deliver n/2 bits of security with an n-bit master key [8,14] and
this paper shows how to reach 2n/3 bits of security with a 2n-bit master key.
Hence, it is natural to ask whether one can obtain rn/(r + 1) bits of security
from an rn-bit master key for r > 2, and what would be the adequate num-
ber of rounds and the corresponding (linear) “tweak-and-key” schedule. Second,
Chen et al. [5] showed that the 2-round conventional Even-Mansour construc-
tion can provably deliver 2n/3 bits of security even with an n-bit master key
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(for example, when the two inner permutations are independent, the trivial key-
schedule is sufficient). Again, what would be the analogue of this result in the
tweakable setting? Can we design a TEM construction with an n-bit master key
and an n-bit tweak delivering 2n/3 bits of security, or even more? Finally, it is
natural to ask whether one can extend the construction of this paper to handle
larger tweaks, in particular 2n-bit tweaks. We show in the full version of this
paper [9] that the naive way of proceeding, namely adding alternatively t0 and
t1, is insecure for four rounds. Hence, this seems to require at least five rounds.

We also remark that attacks against the (conventional) iterated Even-
Mansour cipher with the alternating key-schedule have been investigated by
Dinur et al. [12]. It would be interesting to study whether these attacks can be
adapted (and potentially improved) in the tweakable setting.

Organization. In Sect. 2, we introduce the notation, the security definitions,
and give some background on the H-coefficients technique. Our main result is
proved in Sect. 3.

2 Preliminaries

2.1 Notation and General Definitions

General Notation. In all the following, we fix an integer n ≥ 1 and denote
N = 2n. For integers 1 ≤ b ≤ a, we will write (a)b = a(a − 1) · · · (a − b + 1) and
(a)0 = 1 by convention. The set of all permutations of {0, 1}n will be denoted
P(n).

Tweakable Block Ciphers. A tweakable block cipher with key space K, tweak
space T , and message space M is a mapping ˜E : K × T × M → M such that
for any key k ∈ K and any tweak t ∈ T , x �→ ˜E(k, t, x) is a permutation of M.
We denote TBC(K, T , n) the set of all tweakable block ciphers with key space K,
tweak space T , and message space {0, 1}n. A tweakable permutation with tweak
space T and message space M is a mapping ˜P : T × M → M such that for any
tweak t ∈ T , x �→ ˜P (t, x) is a permutation of M. We denote TP(T , n) the set of
all tweakable permutations with tweak space T and message space {0, 1}n.

Tweakable Even-Mansour Constructions. Fix integers n, r ≥ 1. Let K and
T be two sets, and let f = (f0, . . . , fr) be a (r+1)-tuple of functions from K×T
to {0, 1}n. The r-round tweakable Even-Mansour construction TEM[n, r, f ] spec-
ifies, from an r-tuple P = (P1, . . . , Pr) of permutations of {0, 1}n, a tweakable
block cipher with key space K, tweak space T , and message space {0, 1}n, simply
denoted TEMP in the following (parameters [n, r, f ] will always be clear from the
context) which maps a key k ∈ K, a tweak t ∈ T , and a plaintext x ∈ {0, 1}n to
the ciphertext defined as (see Fig. 1):

TEMP(k, t, x) = fr(k, t) ⊕ Pr(fr−1(k, t) ⊕ Pr−1(· · · P1(f0(k, t) ⊕ x) · · · )).

We will denote TEMP
k the mapping taking as input (t, x) ∈ T × {0, 1}n and

returning TEMP(k, t, x).
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We will mostly be interested in the case where K = ({0, 1}n)a and T =
({0, 1}n)b for integers a, b ≥ 1. In this setting, we will denote k = (k0, . . . , ka−1)
and t = (t0, . . . , tb−1), all ki’s and tj ’s being n-bit strings, or simply k = k, resp.
t = t when a = 1, resp. b = 1. When all fi’s are linear over ({0, 1}n)a+b, we say
that the construction has linear tweak and key mixing.

Fig. 1. The r-round tweakable Even-Mansour construction based on a tuple of public
permutations (P1, . . . , Pr).

Previously Studied Constructions. Two types of TEM constructions have
already been studied. In [8], Cogliati and Seurin considered the simplest case
where a = b = 1 (n-bit keys and n-bit tweaks) and fi(k, t) = k ⊕ t for each
i = 0, . . . , r. This construction has linear tweak and key mixing, and is secure
up to 2n/2 adversarial queries starting from r = 3. (The results of [8] were for-
mulated in terms of xor-induced related-key attacks against the conventional
iterated Even-Mansour construction, but in this simple case the two security
notions are in fact equivalent.) In [7], Cogliati, Lampe, and Seurin studied a
large class of nonlinear mixing functions, in particular, for n-bit tweaks, finite
field multiplication-based ones, i.e., f(k, t) = k ⊗ t, or more generally, for
bn-bit tweaks, polynomial hashing-based functions, i.e., f(k, (t0, . . . , tb−1)) =
∑b−1

i=0 ki+1 ⊗ ti.

2.2 Security Definitions

Fix some family of functions f = (f0, . . . , fr) from K × T to {0, 1}n. To study
the security of the construction TEM[n, r, f ] in the Random Permutation Model,
we consider a distinguisher D which interacts with r + 1 oracles that we denote
generically ( ˜P0, P1, . . . , Pr), where syntactically ˜P0 is a tweakable permutation
with tweak space T and message space {0, 1}n, and P1, . . . , Pr are permutations
of {0, 1}n. The goal of D is to distinguish two “worlds”: the so-called real world,
where D interacts with (TEMP

k ,P), where P = (P1, . . . , Pr) is a tuple of public
random permutations and the key k is drawn uniformly at random from K, and
the so-called ideal world ( ˜P0,P), where ˜P0 is a uniformly random tweakable
permutation and P is a tuple of random permutations of {0, 1}n independent
from ˜P0. We will refer to ˜P0 as the construction oracle and to P1, . . . , Pr as the
inner permutation oracles.
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The distinguishing advantage of a distinguisher D is defined as

Adv(D)
def=

∣

∣

∣Pr
[

DTEMP
k ,P = 1

]

− Pr
[

D ˜P0,P = 1
]∣

∣

∣ ,

where the first probability is taken over the random choice of k and P, and
the second probability is taken over the random choice of ˜P0 and P. In all
the following, we consider computationally unbounded distinguishers, and hence
we can assume wlog that they are deterministic. We also assume that they
never make pointless queries (i.e., queries whose answers can be unambiguously
deduced from previous answers). The distinguisher is allowed to query all oracles
adaptively in both directions; this corresponds to adaptive chosen-plaintext and
ciphertext attacks (CCA).

For non-negative integers qc and qp, we define the insecurity of the
TEM[n, r, f ] construction against CCA-attacks as

Advcca
TEM[n,r,f ](qc, qp) = max

D
Adv(D),

where the maximum is taken over all distinguishers making exactly qc queries to
the construction oracle and exactly qp queries to each inner permutation oracle.

2.3 The H-Coefficients Technique

As in many previous works [5–8], our security proof will use the H-coefficients
technique [29], which we explain here.
Transcript. Recall that the distinguisher D interacts with a tuple of r+1 oracles
denoted ( ˜P0, P1, . . . , Pr). In the real world, the construction oracle ˜P0 is TEMP

k

where P = (P1, . . . , Pr) and k is random, whereas in the ideal world it is a ran-
dom tweakable permutation independent from (P1, . . . , Pr). From the interaction
of D with these oracles, we define the queries transcript (QC ,QP1 , . . . ,QPr

) of
the attack as follows. The list QC records the queries to the construction oracle:
if D made either a direct query (t, x) to the construction oracle ˜P0 which was
answered by y, or an inverse query (t, y) which was answered by x, then the
triple (t, x, y) ∈ T × {0, 1}n × {0, 1}n is added to QC . Similarly, for 1 ≤ i ≤ r,
QPi

contains all pairs (u, v) ∈ {0, 1}n ×{0, 1}n such that D made either a direct
query u to permutation Pi which was answered by v, or an inverse query v
which was answered by u. Note that queries are recorded in a directionless and
unordered way, but by our assumption that the distinguisher is deterministic,
the raw interaction of D with its oracles can unambiguously be reconstructed
from the queries transcript (see e.g. [6] for more details). Note also that by our
assumption that D never makes pointless queries, each query to the construc-
tion oracle results in a distinct triple in QC , and each query to Pi results in a
distinct pair in QPi

. Moreover, since we assume that the distinguisher always
makes the maximal number of allowed queries to each oracle, one has |QC | = qc

and |QPi
| = qp for 1 ≤ i ≤ r. In all the following, we also denote m the number

of distinct tweaks appearing in QC , and qi the number of queries for the i-th
tweak, 1 ≤ i ≤ m, ordering the tweaks arbitrarily. Note that one always has
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∑m
i=1 qi = qc, even though m may depend on the answers received from the

oracles.
A queries transcript is said attainable (with respect to some fixed distin-

guisher D) if there exists oracles ( ˜P0,P) such that the interaction of D with
( ˜P0,P) results in this transcript (in other words, the probability to obtain this
transcript in the ideal world is non-zero). Moreover, in order to have a simple
definition of bad transcripts, the actual key k is revealed to the adversary at
the end of the experiment if we are in the real world, while in the ideal world,
a “dummy” key k ←$ K is simply drawn uniformly at random independently
from the answers of the oracle ˜P0 (this is obviously without loss of generality
since this can only help the distinguisher and increase its advantage). All in all,
a transcript τ is a tuple τ = (QC ,QP1 , . . . ,QPr

,k), and we say that a tran-
script is attainable if the corresponding queries transcript (QC ,QP1 , . . . ,QPr

) is
attainable. We denote Θ the set of attainable transcripts. In all the following,
we denote Tre, resp. Tid, the probability distribution of the transcript τ induced
by the real world, resp. the ideal world (note that these two probability distrib-
utions depend on the distinguisher). By extension, we use the same notation to
denote a random variable distributed according to each distribution. The main
lemma of the H-coefficients technique is the following one (see e.g. [5,6] for the
proof).

Lemma 1. Fix a distinguisher D. Let Θ = Θgood
Θbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Θgood,
one has4

Pr[Tre = τ ]
Pr[Tid = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Θbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Useful Observations. We end this section with some useful preliminary obser-
vations. First, we introduce some additional notation. Given a permutation
queries transcript Q and a permutation P , we say that P extends Q, denoted
P � Q, if P (u) = v for all (u, v) ∈ Q. By extension, given a tuple of permu-
tation queries transcripts QP = (QP1 , . . . ,QPr

) and a tuple of permutations
P = (P1, . . . , Pr), we say that P extends QP, denoted P � QP, if Pi � QPi

for
each i = 1, . . . , r. Note that for a permutation transcript of size qp, one has

Pr[P ←$ P(n) : P � Q] =
1

(N)qp

. (2)

Similarly, given a tweakable permutation transcript ˜Q and a tweakable permu-
tation ˜P , we say that ˜P extends ˜Q, denoted ˜P � ˜Q, if ˜P (t, x) = y for all
(t, x, y) ∈ ˜Q. For a tweakable permutation transcript ˜Q with m distinct tweaks
and qi queries corresponding to the i-th tweak, one has

Pr[ ˜P ←$ TP(T , n) : ˜P � ˜Q] =
m
∏

i=1

1
(N)qi

. (3)

4 Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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It is easy to see that the interaction of a distinguisher D with oracles
( ˜P0, P1, . . . , Pr) yields any attainable queries transcript (QC ,QP) with QP =
(QP1 , . . . ,QPr

) iff ˜P0 � QC and Pi � QPi
for 1 ≤ i ≤ r. In the ideal world, the

key k, the permutations P1, . . . , Pr, and the tweakable permutation ˜P0 are all
uniformly random and independent, so that, by (2) and (3), the probability of
getting any attainable transcript τ = (QC ,QP,k) in the ideal world is

Pr[Tid = τ ] =
1

|K| ×
(

1
(N)qp

)r

×
m
∏

i=1

1
(N)qi

.

In the real world, the probability to obtain τ is

Pr[Tre = τ ] =
1

|K| ×
(

1
(N)qp

)r

× Pr
[

P ←$ (P(n))r : TEMP
k � QC

∣

∣

∣P � QP

]

.

Let
p(τ)

def= Pr
[

P ←$ (P(n))r : TEMP
k � QC

∣

∣

∣P � QP

]

.

Then we have
Pr[Tre = τ ]
Pr[Tid = τ ]

= p(τ)
/

m
∏

i=1

1
(N)qi

. (4)

Hence, applying Lemma 1 will require three steps: first, define good and bad
transcripts, then upper bound the probability of bad transcripts in the ideal
world, and finally lower bound the real world probability p(τ) when τ is good in
order to use Eq. (4).

2.4 An Extended Sum-Capture Lemma

To upper bound the probability of getting a bad transcript in the ideal world,
we will need a generalization of the sum-capture theorem from [5] (that applied
to a random permutation) to the case of a family of random permutations
(in other words, a random tweakable permutation).

We denote GL(n) the general linear group of degree n over F2, i.e., the set of
all automorphisms (linear bijective mappings) of Fn

2 .

Lemma 2. Fix an automorphism Γ ∈ GL(n) and a non-empty set T . Let ˜P
be a uniformly random tweakable permutation in TP(T , n), and let A be some
probabilistic algorithm making exactly q (two-sided) adaptive queries to ˜P . Let
˜Q = ((t1, x1, y1), . . . , (tq, xq, yq)) denote the transcript of the interaction of A
with ˜P . For any two subsets U and V of {0, 1}n, let

μ( ˜Q, U, V ) = |{((t, x, y), u, v) ∈ ˜Q × U × V : x ⊕ u = Γ (y ⊕ v)}|.
Then, assuming 9n ≤ q ≤ N/2, one has

Pr
˜P,ω

[

∃U, V ⊆ {0, 1}n : μ( ˜Q, U, V ) ≥ q|U ||V |
N

+
2q2

√

|U ||V |
N

+ 3
√

nq|U ||V |
]

≤ 2
N

,
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where the probability is taken over the random choice of ˜P and the random coins
ω of A.

The proof of this lemma is a simple generalization of the one from [5] and can
be found in the full version of this paper [9].

3 Beyond-Birthday-Bound Security

3.1 Statement of the Result and Discussion

In this section, we consider the 4-round tweakable Even-Mansour construction
TEM[n, 4, f ] with 2n-bit keys and n-bit tweaks depicted on Fig. 2. The main
result of this paper is the following one:

Theorem 1. Let f = (f0, . . . , f4) where fi((k0, k1), t) = kimod 2 ⊕ t. Let qc, qp

be two integers such that 9n ≤ qc and qp + 3qc + 1 ≤ N/2. Then one has

Advcca
TEM[n,4,f ](qc, qp) ≤

44q
3/2
c + 38qc

√
qp + (30 + 3

√
n)qp

√
qc + 4q

3/2
p + 2

N
.

Hence, this construction ensures CCA-security as long as qc and qp are small
compared to 22n/3, up to logarithmic terms in N = 2n.

The proof follows the H-coefficients method exposed in Sect. 2.3. In Sect. 3.2,
we begin by describing the set of bad transcripts and upper bound the proba-
bility to get such a transcript in the ideal world. Then, for any good attainable
transcript τ , we prove in Sect. 3.3 that the ratio between the probability to get
τ in the real world and in the ideal world is close enough to 1.

Fig. 2. The 4-round tweakable Even-Mansour construction with a 2n-bit key (k0, k1)
and an n-bit tweak t.

3.2 Definition and Probability of Bad Transcripts

The first step is to define the set of bad transcripts. Let τ = (QC ,QP1 , . . . ,
QP4 , (k0, k1)) be an attainable transcript, with |QC | = qc and |QPi

| = qp for
i = 1, . . . , 4. In all the following, we let, for i ∈ {1, . . . , 4},

Ui = {ui ∈ {0, 1}n : (ui, vi) ∈ QPi
}

Vi = {vi ∈ {0, 1}n : (ui, vi) ∈ QPi
}
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denote the domains and ranges of QPi
respectively. We also define three quan-

tities characterizing the transcript,

α1
def= |{((t, x, y), u1) ∈ QC × U1 : x ⊕ k0 ⊕ t = u1}|

α4
def= |{((t, x, y), v4) ∈ QC × V4 : y ⊕ k0 ⊕ t = v4}|

α2,3
def= |{((t, x, y), v2, u3) ∈ QC × V2 × U3 : v2 ⊕ k0 ⊕ t = u3}|.

We also define two quantities depending respectively on QP2 and QP3 :

ν2
def= |{((u2, v2), (u′

2, v
′
2)) ∈ (QP2)

2 : (u2, v2) �= (u′
2, v

′
2), u2 ⊕ v2 = u′

2 ⊕ v′
2}|

ν3
def= |{((u3, v3), (u′

3, v
′
3)) ∈ (QP3)

2 : (u3, v3) �= (u′
3, v

′
3), u3 ⊕ v3 = u′

3 ⊕ v′
3}|.

Definition 1. We say that a transcript τ is bad if at least one of the following
conditions is fulfilled:

(B-1) there exists (t, x, y) ∈ QC , (u1, v1) ∈ QP1 , and (u4, v4) ∈ QP4 such that
k0 ⊕ t = x ⊕ u1 = v4 ⊕ y;

(B-2) there exists (t, x, y) ∈ QC , (u1, v1) ∈ QP1 , and (u2, v2) ∈ QP2 such that
k0 ⊕ t = x ⊕ u1 and k1 ⊕ t = v1 ⊕ u2;

(B-3) there exists (t, x, y) ∈ QC , (u3, v3) ∈ QP3 , and (u4, v4) ∈ QP4 such that
k1 ⊕ t = v3 ⊕ u4 and k0 ⊕ t = v4 ⊕ y;

(B-4) α1 ≥ √
qc/2;

(B-5) α4 ≥ √
qc/2;

(B-6) α2,3 ≥ qp
√

qc;
(B-7) ν2 ≥ √

qp;
(B-8) ν3 ≥ √

qp.

Otherwise we say that τ is good.5 We denote Θgood, resp. Θbad the set of good,
resp. bad transcripts.

We start by upper bounding the probability of getting bad transcripts in the
ideal world.

Lemma 3. Assume that 9n ≤ qc ≤ N/2 and qp ≤ N/2. Then one has

Pr [Tid ∈ Θbad] ≤
2q2cqp + 3qcq

2
p

N2
+

(5 + 3
√

n)
√

qcqp + 4q
3/2
p + 2

N
.

Proof. We upper bound the probability of each condition in turn. We denote
Θi the set of attainable transcripts satisfying condition (B-i). Recall that in the
ideal world, the key (k0, k1) is drawn independently from the queries transcript.

5 We define conditions (B-4) and (B-5) using
√

qc/2 rather than
√

qc in order to be
able later to directly apply a previous result by Cogliati et al. [7].
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Condition (B-1). Let BadK1 be the set of keys k0 such that there exists (t, x, y) ∈
QC , (u1, v1) ∈ QP1 , and (u4, v4) ∈ QP4 such that k0 ⊕ t = x ⊕ u1 = y ⊕ v4. Note
that BadK1 only depends on the queries transcript, hence for any constant C we
have, since k0 is uniformly random,

Pr [Tid ∈ Θ1] ≤ Pr
[

˜P0 ←$ TP(T , n),P ←$ (P(n))4 : |BadK1| > C
]

+
C

N
. (5)

Moreover, if we let

μ(QC , U1, V4)
def= |{((t, x, y), u1, v4) ∈ QC × U1 × V4 : x ⊕ u1 = y ⊕ v4)}|,

then one clearly has
|BadK1| ≤ μ(QC , U1, V4).

Hence, we can use Lemma 2 in order to upper-bound |BadK1| with overwhelming
probability (we consider D with access to the inner permutations as a proba-
bilistic algorithm A interacting with the tweakable permutation ˜P0, resulting in
the transcript QC , and we let Γ be the identity mapping). For

C =
qcq

2
p

N
+

2q2cqp

N
+ 3qp

√
nqc,

we obtain that

Pr
[

˜P0 ←$ TP(T , n),P ←$ (P(n))4 : |BadK1| > C
]

≤ 2
N

.

Using (5) gives

Pr [Tid ∈ Θ1] ≤
qcq

2
p

N2
+

2q2cqp

N2
+

3qp
√

nqc

N
+

2
N

.

Conditions (B-2) and (B-3). We consider (B-2). For each (t, x, y) ∈ QC ,
(u1, v1) ∈ QP1 , and (u2, v2) ∈ QP2 , the probability, over the random draw of
(k0, k1), that k0 ⊕ t = x ⊕ u1 and k1 ⊕ t = v1 ⊕ u2 is 1/N2 since (k0, k1) is
uniform and independent from the queries transcript. Summing over the qcq

2
p

possibilities for (t, x, y), (u1, v1), and (u2, v2) yields

Pr [Tid ∈ Θ2] ≤
qcq

2
p

N2
.

Similarly,

Pr [Tid ∈ Θ3] ≤
qcq

2
p

N2
.

Conditions (B-4) and (B-5). We consider (B-4). Seeing α1 as a random variable
over the random draw of (k0, k1), one has

E[α1] =
∑

(t,x,y)∈QC

∑

u1∈U1

Pr [k0 = x ⊕ u1 ⊕ t] ≤ qcqp

N
.
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Then, using Markov’s inequality,

Pr [Tid ∈ Θ4] = Pr
[

α1 ≥
√

qc

2

]

≤ 2E[α1]√
qc

≤ 2qp
√

qc

N
.

Similarly,

Pr [Tid ∈ Θ5] ≤ 2qp
√

qc

N
.

Condition (B-6). Again, we see α2,3 as a random variable over the random draw
of k0. Then

E[α2,3] =
∑

(t,x,y)∈QC

∑

v2∈V2

∑

u3∈U3

Pr [k0 = v2 ⊕ u3 ⊕ t] ≤
qcq

2
p

N
.

Then, using Markov’s inequality,

Pr [Tid ∈ Θ6] = Pr [α2,3 ≥ qp
√

qc] ≤ E[α2,3]
qp

√
qc

≤ qp
√

qc

N
.

Conditions (B-7) and (B-8). Consider (B-7). We see the distinguisher combined
with ˜P0 and the inner permutations P1, P3, and P4 as a probabilistic algorithm
A interacting with P2, and we see ν2 as a random variable over the random
choice of P2 and the randomness of A. One has

E[ν2] =
∑

(i,j)
1≤i�=j≤qc

Pr [u2,i ⊕ v2,i = u2,j ⊕ v2,j ] ,

where the queries to P2 are ordered as they are issued by A. Consider the i-th
and the j-th query, and assume wlog that i < j. If the j-th is a direct query
u2,j , then v2,j is uniformly random in a set of size N − j + 1. Similarly, if this
is a inverse query v2,j , then u2,j is uniformly random in a set of size N − j + 1.
In all cases, the probability that u2,i ⊕ v2,i = u2,j ⊕ v2,j is at most 1/(N − qp).
Hence,

E[ν2] ≤ qp(qp − 1)
N − qp

≤
2q2p
N

.

Using Markov’s inequality,

Pr [Tid ∈ Θ7] = Pr
[

ν2 ≥ √
qp

]

≤ 2q
3/2
p

N
.

Similarly,

Pr [Tid ∈ Θ8] ≤ 2q
3/2
p

N
.

The result follows by a union bound over all cases. �
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3.3 Analysis of Good Transcripts

In this section, we fix a good transcript τ = (QC ,QP1 , . . . ,QP4 , (k0, k1)). By (4),
we have to lower bound

p(τ)
def= Pr

[

P ←$ (P(n))4 : TEMP
k0,k1

� QC

∣

∣

∣P1 � QP1 ∧ . . . ∧ P4 � QP4

]

.

The proof will proceed in two steps: first, we will lower bound the probability
that permutations P1 and P4 satisfy some conditions given in the definition
below, and then, assuming (P1, P4) is good, we will lower bound the probability,
over the choice of P2 and P3, that TEMP

k0,k1
� QC . For this second step, we will

directly appeal to a previous result by Cogliati et al. [7].
We start by giving the conditions defining good pairs of permutations

(P1, P4). We stress that these conditions cannot be accommodated in the def-
inition of bad transcripts since they depend on values of P1 and P4 which do
not appear in the queries transcript, so that they cannot be defined from the
transcript τ alone. We also warn the reader upfront that conditions (C-5) and
(C-6) are “dummy” conditions that will easily be seen to be impossible to fulfill,
yet will allow us to cleanly use the previous result of Cogliati et al. [7].

Definition 2. A pair of permutations (P1, P4) such that P1 � QP1 and P4 � QP4

is said bad if at least one of the following conditions is fulfilled (see Fig. 3 for a
diagram of the first ten conditions):

(C-1) there exists (t, x, y) ∈ QC , u2 ∈ U2, and v3 ∈ V3 such that
{

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3;

(C-2) there exists (t, x, y) ∈ QC , (u2, v2) ∈ QP2 , and u3 ∈ U3 such that
{

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

v2 ⊕ k0 ⊕ t = u3;

(C-3) there exists (t, x, y) ∈ QC , (u3, v3) ∈ QP3 , and v2 ∈ V2 such that
{

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3

u3 ⊕ k0 ⊕ t = v2;

(C-4) there exists (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC with (t, x, y) distinct from
(t′, x′, y′) and from (t′′, x′′, y′′) such that

{

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t′′;

(C-5) there exists (t, x, y, ) �= (t′, x′, y′) ∈ QC such that
{

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

t = t′;
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(C-6) there exists (t, x, y, ) �= (t′, x′, y′) ∈ QC such that
{

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′

t = t′;

(C-7) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and u2 ∈ U2 such that
{

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′;

(C-8) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and v3 ∈ V3 such that
{

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′;

(C-9) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u2, v2), (u′
2, v

′
2) ∈ QP2 such

that
⎧

⎨

⎩

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

P1(x′ ⊕ k0 ⊕ t′) ⊕ k1 ⊕ t′ = u′
2

v2 ⊕ t = v′
2 ⊕ t′;

(C-10) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u3, v3), (u′
3, v

′
3) ∈ QP3 such

that
⎧

⎨

⎩

P−1
4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = v3

P−1
4 (y′ ⊕ k0 ⊕ t′) ⊕ k1 ⊕ t′ = v′

3

u3 ⊕ t = u′
3 ⊕ t′;

(C-11) α2 ≥ √
qc;

(C-12) α3 ≥ √
qc;

(C-13) β2 ≥ √
qc;

(C-14) β3 ≥ √
qc;

where

α2
def= |{(t, x, y) ∈ QC : P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ U2}|,

α3
def= |{(t, x, y) ∈ QC : P−1

4 (y ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ V3}|,

β2
def= |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y),

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′}|,

β3
def= |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y),

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′}|.

Otherwise we say that (P1, P4) is good. We denote Πgood, resp. Πbad the set of
good, resp. bad pairs of permutations (P1, P4) such that P1 � QP1 and P4 � QP4 .

In all the following, we denote Π the set of pairs of permutations (P1, P4) such
that P1 � QP1 and P4 � QP4 . The first step towards studying good transcripts
will be to upper bound the probability that the pair (P1, P4) is bad.
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Fig. 3. The ten “collision” conditions characterizing a bad pair of permutations
(P1, P4). Black dots correspond to pairs (u2, v2) ∈ QP2 or (u3, v3) ∈ QP3 . Note that for
(C-4) one might have (t′, x′) = (t′′, x′′), and for (C-9) (resp. (C-10)) one might have
x ⊕ t = x′ ⊕ t′ (resp. y ⊕ t = y′ ⊕ t′).
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Lemma 4. For any integers qc and qp such that qp + qc + 1 ≤ N/2, one has

Pr[(P1, P4) ∈ Πbad] ≤
4q3c + 16q2cqp + 4qcq

2
p

N2
+

10q
3/2
c + 4qc

√
qp + 10

√
qcqp

N

where the probability is taken over the uniformly random draw of (P1, P4) in Π.

Proof. We upper bound the probabilities of the fourteen conditions in turn. We
denote Πi the set of pairs of permutations (P1, P4) ∈ Π satisfying condition
(C-i).

Condition (C-1). Fix (t, x, y) ∈ QC , u2 ∈ U2, and v3 ∈ V3. Note that if
x ⊕ k0 ⊕ t = u1 for some (u1, v1) ∈ QP1 , then v1 ⊕ k1 ⊕ t cannot be equal
to u2 since otherwise τ would satisfy (B-2). Similarly, if y ⊕ k0 ⊕ t = v4 for some
(u4, v4) ∈ QP4 , then u4 ⊕ k1 ⊕ t cannot be equal to v3 since otherwise τ would
satisfy (B-3). On the other hand, if x ⊕ k0 ⊕ t /∈ U1 and y ⊕ k0 ⊕ t /∈ V4, then
the probability over (P1, P4) ←$ Π that

{

P1(x ⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t
P−1
4 (y ⊕ k0 ⊕ t) = v3 ⊕ k1 ⊕ t

is at most 1/(N −qp)2 ≤ 4/N2. (In more details, if u2⊕k1⊕t ∈ V1 or v3⊕k1⊕t ∈
U4, then this probability is zero, whereas otherwise it is exactly 1/(N − qp)2.)
Summing over the at most qcq

2
p possibilities for (t, x, y), u2, and v3 yields

Pr[(P1, P4) ∈ Π1] ≤
4qcq

2
p

N2
.

Conditions (C-2) and (C-3). We consider (C-2), the reasoning for (C-3) is sim-
ilar. Fix (t, x, y) ∈ QC , (u2, v2) ∈ QP2 , and u3 ∈ U3. Note first that for (C-2)
to be satisfied, one must have v2 ⊕ k0 ⊕ t = u3, and there are by definition at
most α2,3 triplets ((t, x, y), v2, u3) satisfying this equality. If x ⊕ k0 ⊕ t = u1 for
some (u1, v1) ∈ QP1 , then v1 ⊕ k1 ⊕ t cannot be equal to u2 since otherwise τ
would satisfy (B-2). On the other hand, if x ⊕ k0 ⊕ t /∈ U1, then the probability
that P1(x ⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t is at most 1/(N − qp) ≤ 2/N (it is zero if
u2 ⊕ k1 ⊕ t ∈ V1, and 1/(N − qp) otherwise). Summing over the at most α2,3

possibilities for (t, x, y), (u2, v2), and u3, with α2,3 ≤ qp
√

qc since otherwise τ
would satisfy (B-6), we obtain

Pr[(P1, P4) ∈ Π2] ≤ 2qp
√

qc

N
.

Similarly,

Pr[(P1, P4) ∈ Π3] ≤ 2qp
√

qc

N
.
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Condition (C-4). Fix (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC with (t, x, y) distinct
from (t′, x′, y′) and from (t′′, x′′, y′′). First, note that if x ⊕ k0 ⊕ t = x′ ⊕ k0 ⊕ t′

or y ⊕ k0 ⊕ t = y′′ ⊕ k0 ⊕ t′′, then (C-4) cannot be satisfied. Hence, we assume
that none of these two equalities holds. We consider three cases. Assume first
that x ⊕ k0 ⊕ t = u1 for some (u1, v1) ∈ QP1 . Note that there are at most
α1 possibilities for (t, x, y), and α1 ≤ √

qc/2 since otherwise τ would satisfy
(B-4). Moreover y ⊕ k0 ⊕ t /∈ V4 since otherwise τ would satisfy (B-1). Hence,
the probability that

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t′′

is at most 1/(N − qp − 1) ≤ 2/N . (In more details, if y′′ ⊕ k0 ⊕ t′′ ∈ V4, then
this probability is either zero if P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t ⊕ t′′ ∈ U4, or exactly
1/(N − qp) otherwise, whereas if y′′ ⊕ k0 ⊕ t′′ /∈ V4, then this probability is at
most 1/(N − qp − 1).) Summing over the at most

√
qc/2 × qc possibilities for

(t, x, y) and (t′′, x′′, y′′), the probability of this first case is at most q
3/2
c /N . The

second case where y ⊕ k0 ⊕ t ∈ V4 is handled similarly. Finally, consider the case
where x ⊕ k0 ⊕ t /∈ U1 and y ⊕ k0 ⊕ t /∈ V4. Then the probability that

{

P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′′ ⊕ k0 ⊕ t′′) ⊕ t′′;

is at most 1/(N −qp −1)2 ≤ 4/N2. Summing over the at most q3c possibilities for
(t, x, y), (t′, x′, y′), and (t′′, x′′, y′′), the probability of this third case is at most
4q3c/N2. Overall, we obtain

Pr[(P1, P4) ∈ Π4] ≤ 4q3c
N2

+
2q

3/2
c

N
.

Conditions (C-5) and (C-6). These conditions cannot be satisfied. Indeed,
assume that there exits (t, x, y) �= (t′, x′, y′) ∈ QC satisfying (C-5). Since t = t′,
then x �= x′ by the assumption that the distinguisher never makes pointless
queries. This obviously implies that P1(x ⊕ k0 ⊕ t) ⊕ t �= P1(x′ ⊕ k0 ⊕ t′) ⊕ t′, a
contradiction. The reasoning is similar for (C-6). Hence,

Pr[(P1, P4) ∈ Π5] = Pr[(P1, P4) ∈ Π6] = 0.

Conditions (C-7) and (C-8). We consider condition (C-7). Fix queries (t, x, y) �=
(t′, x′, y′) ∈ QC and u2 ∈ U2. We will consider two cases: first, the case where
y ⊕ k0 ⊕ t ∈ V4, and then the case where y ⊕ k0 ⊕ t /∈ V4. For both cases, note
that if x ⊕ k0 ⊕ t = u1 for some (u1, v1) ∈ QP1 , then v1 ⊕ k1 ⊕ t cannot be
equal to u2 since otherwise τ would satisfy (B-2). Hence, we can assume that
x ⊕ k0 ⊕ t �∈ U1. It follows that the probability that

P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t = u2

is at most 1/(N − qp) ≤ 2/N (it is zero if u2 ⊕ k1 ⊕ t ∈ V1, and 1/(N −
qp) otherwise). Summing over the at most α4 queries (t, x, y) ∈ QC such that
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y ⊕ k0 ⊕ t ∈ V4, with α4 ≤ √
qc/2 since otherwise τ would satisfy (B-5), and

the qp possibilities for u2, we see that the first case happens with probability at
most qp

√
qc/N . Assume now that y ⊕ k0 ⊕ t /∈ V4. Then the probability that

P−1
4 (y ⊕ k0 ⊕ t) ⊕ t = P−1

4 (y′ ⊕ k0 ⊕ t′) ⊕ t′

is at most 1/(N −qp −1) ≤ 2/N . (In more details, if y⊕k0⊕ t = y′ ⊕k0⊕ t′, then
it can easily be seen that it cannot hold, whereas if y ⊕ k0 ⊕ t �= y′ ⊕ k0 ⊕ t′, the
equation holds with probability at most 1/(N − qp − 1).) Summing over the at
most q2cqp possibilities for (t, x, y), (t′, x′, y′), and u2, we see that the probability
of the second case is at most 4q2cqp/N

2. Overall,

Pr [(P1, P4) ∈ Π7] ≤ qp
√

qc

N
+

4q2cqp

N2
.

Similarly, one has

Pr [(P1, P4) ∈ Π8] ≤ qp
√

qc

N
+

4q2cqp

N2
.

Conditions (C-9) and (C-10). Consider condition (C-9). First note that, if the
condition is satisfied, we have x⊕k0⊕t �∈ U1, x′⊕k0⊕t′ �∈ U1, u2⊕k1⊕t �∈ V1 and
u′
2⊕k1⊕t′ �∈ V1, otherwise (B-2) is fulfilled. Moreover, if (u2, v2) = (u′

2, v
′
2), then

t = t′, thus x = x′, which is impossible. Hence we must have (u2, v2) �= (u′
2, v

′
2).

The condition can be divided into two conditions:

9.1 there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u2, v2) �= (u′
2, v

′
2) ∈ QP2 such

that x⊕t = x′⊕t′, P1(x⊕k0⊕t) = u2⊕k1⊕t and P1(x′⊕k0⊕t′) = u′
2⊕k1⊕t′

and v2 ⊕ t = v′
2 ⊕ t′;

9.2 there exists (t, x, y) �= (t′, x′, y′) ∈ QC and (u2, v2) �= (u′
2, v

′
2) ∈ QP2 such

that x⊕t �= x′⊕t′, P1(x⊕k0⊕t) = u2⊕k1⊕t and P1(x′⊕k0⊕t′) = u′
2⊕k1⊕t′

and v2 ⊕ t = v′
2 ⊕ t′.

In the first case, one has

u2 ⊕ k1 ⊕ t = P1(x ⊕ k0 ⊕ t) = P1(x′ ⊕ k0 ⊕ t′) = u′
2 ⊕ k1 ⊕ t′,

thus u2⊕u′
2 = t⊕t′ = v2⊕v′

2. Hence the first condition implies the following one:
there exists (t, x, y) ∈ QC and (u2, v2) �= (u′

2, v
′
2) ∈ QP2 such that P1(x⊕k0⊕t) =

u2 ⊕k1 ⊕ t and u2 ⊕u′
2 = v2 ⊕v′

2, with x⊕k0 ⊕ t �∈ U1 and u2 ⊕k1 ⊕ t �∈ V1. Since
ν2 <

√
qp, the number of suitable u2 ∈ U2 is lower than √

qp, and the probability

that this first condition is fulfilled is at most qc
√

qp
N−qp

≤ 2qc
√

qp
N . For the second

condition, fix any queries (t, x, y) �= (t′, x′, y′) ∈ QC such that x ⊕ t �= x′ ⊕ t′,
x ⊕ k0 ⊕ t �∈ U1, x′ ⊕ k0 ⊕ t′ �∈ U1 and (u2, v2) ∈ QP2 . If v2 ⊕ t ⊕ t′ �∈ V2, the
condition cannot be fulfilled. Otherwise let (u′

2, v
′
2) ∈ QP2 be the unique query

such that v2 ⊕ t = v′
2 ⊕ t′. Then the probability that P1(x⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t

and P1(x′⊕k0⊕t′) = u′
2⊕k1⊕t′ is at most 1

(N−qp)(N−qp−1) . Finally, by summing
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over every possible tuple of queries, and by taking into account the condition
9.1, one has

Pr [(P1, P4) ∈ Π9] ≤
2qc

√
qp

N
+

4q2cqp

N2
.

Similarly,

Pr [(P1, P4) ∈ Π10] ≤
2qc

√
qp

N
+

4q2cqp

N2
.

Conditions (C-11) and (C-12). We see α2 (resp. α3) as a random variable over
the choice of P1 (resp. P4). Note that

α2 = |{(t, x, y) ∈ QC : P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ U2}|
= |{(t, x, y) ∈ QC : x ⊕ k0 ⊕ t �∈ U1, P1(x ⊕ k0 ⊕ t) ⊕ k1 ⊕ t ∈ U2}|,

because, if x⊕k0 ⊕ t ∈ U1 and P1(x⊕k0 ⊕ t)⊕k1 ⊕ t ∈ U2, then (B-2) is fulfilled.
We denote QC,1 the subset of queries (t, x, y) ∈ QC such that x ⊕ k0 ⊕ t �∈ U1.
Then

E[α2] =
∑

(t,x,y)∈QC,1

∑

u2∈U2

Pr [P1(x ⊕ k0 ⊕ t) = u2 ⊕ k1 ⊕ t]

≤
∑

(t,x,y)∈QC,1

∑

u2∈U2

1
N − qp

≤ 2qcqp

N
.

Using Markov’s inequality, we get

Pr [(P1, P4) ∈ Π11] ≤ 2qp
√

qc

N
.

Similarly,

Pr [(P1, P4) ∈ Π12] ≤ 2qp
√

qc

N
.

Conditions (C-13) and (C-14). Consider condition (C-13). Note that

β2 = |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y),
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′}|

≤ α1 + |{(t, x, y) ∈ QC : x ⊕ k0 ⊕ t �∈ U1 and ∃(t′, x′, y′) �= (t, x, y),
P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′}|.

We denote β′
2 the last term of this sum. Thus

E[β′
2] =

∑

(t,x,y)∈QC,1

∑

(t′,x′,y′) �=(t,x,y)

Pr [P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′]

≤ q2c
N − qp − 1

≤ 2q2c
N

.
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This inequality holds because, if x⊕t = x′⊕t′, then t �= t′ since the distinguisher
never makes pointless queries, thus P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′

cannot be fulfilled. Otherwise,

Pr [P1(x ⊕ k0 ⊕ t) ⊕ t = P1(x′ ⊕ k0 ⊕ t′) ⊕ t′] ≤ 1
N − qp − 1

.

Finally, since (B-4) is not fulfilled, α1 <
√

qc/2. Thus β2 ≥ √
qc implies β′

2 ≥√
qc/2. Hence, using Markov’s inequality,

Pr [(P1, P4) ∈ Π13] ≤ Pr [β′
2 ≥ √

qc/2] ≤ 2E[β′
2]√

qc
≤ 4q

3/2
c

N
.

Similarly,

Pr [(P1, P4) ∈ Π14] ≤ 4q
3/2
c

N
.

The result follows by an union bound over all conditions. �


We are now ready for the second step of the reasoning.

Definition 3. Fix any pair of permutations (P1, P4) such that P1 � QP1 and
P4 � QP4 . We define a new query transcript Q′

C depending on (P1, P4) as

Q′
C = {(t, P1(x ⊕ k0 ⊕ t), P−1

4 (y ⊕ k0 ⊕ t)) : (t, x, y) ∈ QC}.

We also denote

p̃(τ, P1, P4) = Pr
[

P2, P3 ←$ P(n) : TEMP2,P3
k1,k0

� Q′
C

∣

∣

∣ (P2 � QP2) ∧ (P3 � QP3)
]

.

Lemma 5. One has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
∑

(P1,P4)∈Πgood

p̃(τ, P1, P4)
((N − qp)!)

2 ∏m
i=1 1/(N)qi

.

Proof. Clearly, once P1 and P4 are fixed, TEMP1,P2,P3,P4
k0,k1

� QC is equivalent to
TEMP2,P3

k1,k0
� Q′

C . Hence,

p(τ) =
∑

(P̄1,P̄4)∈Π

Pr
[

(P1, P4) ←$ Π : (P1 = P̄1) ∧ (P4 = P̄4)
]

p̃(τ, P̄1, P̄4)

≥
∑

(P̄1,P̄4)∈Πgood

p̃(τ, P̄1, P̄4)
((N − qp)!)2

.

The result follows from Eq. (4). �


We can now directly appeal to a previous result by Cogliati et al. [7].
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Lemma 6. Let qc and qp be two positive integers such that qp + 3qc ≤ N/2. Fix
any pair of permutations (P1, P4) ∈ Πgood. Then

p̃(τ, P1, P4)
∏m

i=1 1/(N)qi

≥ 1 −
(

4qc(qp + 2qc)2

N2
+

14q
3/2
c + 4

√
qcqp

N

)

.

Proof. One can check that the queries transcript τ ′ = (Q′
C ,QP2 ,QP3) satisfies

exactly the conditions defining a good transcript as per [7, Definition 2]. More-
over, the ratio p̃(τ, P1, P4)/

∏m
i=1 1/(N)qi is exactly the ratio of the probabilities

to get τ ′ in the real and in the ideal world once a good pair (P1, P4) is fixed.
Hence, we can apply [7, Lemma 6] that directly yields the result.6 �


We are now ready to prove the main lemma of this section.

Lemma 7. Let qc and qp be two positive integers such that qp + 3qc + 1 ≤ N/2.
One has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥ 1 −
20q3c + 32q2cqp + 8qcq

2
p

N2
−

24q
3/2
c + 4qc

√
qp + 14

√
qcqp

N
.

Proof. From Lemmas 5 and 6, one has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
∑

(P1,P4)∈Πgood

p̃(τ, P1, P4)
((N − qp)!)

2 ∏m
i=1 1/(N)qi

≥
(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)

∑

Πgood

1
((N − qp)!)

2

=

(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)

|Πgood|
((N − qp)!)

2

=

(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)

Pr [(P1, P4) ∈ Πgood] ,

where the last probability is taken over the random draw of (P1, P4) from Π, the
set of pairs of permutations satisfying P1 � QP1 and P4 � QP4 . Using Lemma 4,
one has

Pr [Tre = τ ]
Pr [Tid = τ ]

≥
(

1 −
4q3c + 16q2cqp + 4qcq

2
p

N2
−

10q
3/2
c + 4qc

√
qp + 10

√
qcqp

N

)

×
(

1 − 4qc(qp + 2qc)2

N2
− 14q

3/2
c + 4

√
qcqp

N

)

≥ 1 −
20q3c + 32q2cqp + 8qcq

2
p

N2
−

24q
3/2
c + 4qc

√
qp + 14

√
qcqp

N
. �


6 Even though this might not be apparent to the reader unfamiliar with [7], the proof
of Lemma 7 in that paper does not rely on the xor-universal hash functions h1 and
h2 appearing in the definition of good transcripts of [7].
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Concluding. We are now ready to prove Theorem1. Combining Lemmas 1, 3,
and 7, one has

Advcca
TEM[n,4,f ](qc, qp) ≤

2q2cqp + 3qcq
2
p

N2
+

(5 + 3
√

n)
√

qcqp + 4q
3/2
p + 2

N

+
20q3c + 32q2cqp + 8qcq

2
p

N2
+

24q
3/2
c + 4qc

√
qp + 14

√
qcqp

N

≤
20q3c + 34q2cqp + 11qcq

2
p

N2

+
24q

3/2
c + 4qc

√
qp + (19 + 3

√
n)

√
qcqp + 4q

3/2
p + 2

N
.

Since the result holds trivially when q3c > N2, q2cqp > N2, or qcq
2
p > N2, we can

assume that q3c ≤ N2, q2cqp ≤ N2, and qcq
2
p ≤ N2, so that

q3c
N2

≤ q
3/2
c

N
,

q2cqp

N2
≤

qc
√

qp

N
, and

qcq
2
p

N2
≤

√
qcqp

N
.

Thus

Advcca
TEM[n,4,f ](qc, qp) ≤

44q
3/2
c + 38qc

√
qp + (30 + 3

√
n)qp

√
qc + 4q

3/2
p + 2

N
,

which concludes the proof of Theorem1.
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