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Abstract. We investigate new constructions of n-circular counterex-
amples with a focus on the case of n = 2. We have a particular inter-
est in what qualities a cryptosystem must have to be able to separate
such circular security from IND-CPA or IND-CCA security. To start, we
ask whether there is something special about the asymmetry in bilinear
groups that is inherent in the works of [1,18] or whether it is actually
the bilinearity that matters. As a further question, we explore whether
such counterexamples are derivable from other assumptions such as the
Learning with Errors (LWE) problem. If it were difficult to find such
counterexamples, this might bolster our confidence in using 2-circular
encryption as a method of bootstrapping Fully Homomorphic Encryp-
tion systems that are based on lattice assumptions.

The results of this paper broadly expand the class of assumptions
under which we can build 2-circular counterexamples. We first show
for any constant k ≥ 2 how to build counterexamples from a bilinear
group under the decision k-linear assumption. Recall that the decision
k-linear assumption becomes progressively weaker as k becomes larger.
This means that we can instantiate counterexamples from symmetric
bilinear groups and shows that asymmetric groups do not have any inher-
ently special property needed for this problem. We then show how to
create 2-circular counterexamples from the Learning with Errors prob-
lem. This extends the reach of these systems beyond bilinear groups and
obfuscation.
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1 Introduction

The notion of key dependent message security [12] moves beyond our classical
notion of encryption security [22]. It demands a system remain secure even if an
attacker gains access to ciphertexts that encrypt messages that are, or depend on,
the very private keys of the system it is trying to attack. As a concrete example,
consider a special case of key-dependent security called n-circular security. Here
an encryption scheme is said to be n-circular secure, if an adversary is unable
to distinguish Enc(pk1, sk2),Enc(pk2, sk3), . . . ,Enc(pkn, sk1) from corresponding
zero encryptions.

While the notion of key dependent or circular security might first appear
to be just a technical exercise, this very problem arises in multiple contexts.
Camenisch and Lysyanskaya [17] applied circular secure encryption to build an
anonymous credentials scheme with certain properties. Other works used circular
security in formal methods to prove the soundness of symbolic protocols [2,26].
Perhaps the most compelling example comes from Gentry [20], who showed that
a fully homomorphic scheme for limited depth can be “bootstrapped” to work
for arbitrary depth circuits if the original system is sufficient to compute its own
decryption circuit and is 1-circular secure.

The first positive examples of key-dependent message security were given in
the random oracle model by Black et al. [12] and Camenisch and Lysyanskaya
[17]. It was a significant time later when Boneh, Hamburg, Halevi and Ostro-
vsky [14] gave an elegant construction of an n-circular secure encryption in the
standard model under the decision Diffie-Hellman assumption. Subsequently, a
sequence of further works [5,7–9,15,16] gave standard model constructions of key
dependent security for functions that could be arbitrary circuits on the private
key(s).

All the above constructions and proofs were based on encryption schemes
with specific properties. A natural question is whether key-dependent message
security is implied by IND-CPA (or IND-CCA) security. If this were true, we
would get it for free, without needing such specific properties of the encryption
scheme.

A cursory examination of the problem shows that in the broadest sense the
answer is no. One can derive a simple counterexample for 1-circular security (i.e.,
a system that encrypts its own private key) by slightly modifying a public key
encryption system. To do so, simply augment a standard private key K with a
randomly chosen K ′ ∈ {0, 1}λ and append y = f(K ′) to the public key where f
is a one way function. When encrypting a message m = (m1,m2) the system will
give out the message in the clear if f(m2) = y) and encrypt normally otherwise.
Clearly, an encryption of the private key will be detectable. Yet, if the function
f is one way and the original system is IND-CPA secure, the resulting system
will still be IND-CPA secure.

While it can be trivially shown (by the argument above) that IND-CPA secu-
rity does not imply 1-circular security, the case for n ≥ 2 becomes significantly
more challenging. Intuitively, when multiple public keys are thrown into the mix,
we need a system that is powerful enough to allow for different ciphertexts to
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“talk” to each other in a manner that allows for cycle detection, but does not
compromise IND-CPA security. So far there have been two approaches to this.
For the case of n = 2, Acar et al. [1] and Cash, Green and Hohenberger [18]
showed how to construct a counterexample from a certain class of asymmet-
ric bilinear groups.1 Here there must exist a bilinear map e : G1 × G2 → GT

where the decision Diffie-Hellman problem is believed to remain hard respec-
tively within G1 and within G2 (this is called the SXDH assumption). A second
approach by Koppula, Ramchen and Waters [25] showed a counterexample under
the assumption of indistinguishability obfuscation for poly-sized circuits. Inde-
pendently and concurrently, Marcedone and Orlandi [27] showed this under the
stronger assumption of virtual black box obfuscation.

Our Goals and Results. In this work, we investigate new constructions of
n-circular counterexamples with a focus on the case of n = 2. We have a partic-
ular interest in what qualities a cryptosystem must have to be able to separate
circular security from IND-CPA and IND-CCA security.

To start, we ask whether there is something special about the asymmetry
in bilinear groups that is inherent in the works of [1,18,34] or whether it is
actually more the bilinearity that matters. As a further question, we explore
how to derive such counterexamples from other assumptions such as the Learning
with Errors (LWE) problem. If it were difficult to find such counterexamples,
this might bolster are confidence in using 2-circular encryption as a method
of bootstrapping [20] fully homomorphic encryption systems that are based on
lattice assumptions.

The results of this paper broadly expand the class of assumptions from which
we can build 2-circular counterexamples. We first show for any constant k ≥ 2
how to build 2-circular counterexamples from a bilinear group under the deci-
sion k-linear assumption. Recall that the decision k-linear assumption becomes
progressively weaker as k becomes larger. This means that we can instantiate
counterexamples from symmetric bilinear groups and shows that asymmetric
groups do not have any inherently special property needed for this problem.
We then show how to create 2-circular counterexamples from the Learning with
Error (LWE) problem. This extends the reach of these systems beyond bilin-
ear groups and obfuscation, giving us a much broader understanding of circular
security and its challenges.

Our Approach. We begin by introducing a new abstraction called an n-Cycle
Tester that will simplify the process of finding and describing counterexam-
ples by focusing on the core problem. A cycle tester consists of four algorithms
(Setup,KeyGen,Enc,Test). The algorithms of Setup,KeyGen,Enc behave as in
a normal encryption scheme with a common trusted setup algorithm, while
the Test algorithm will take in an n-tuple of public keys and ciphertexts and

1 In a similar vein, Rothblum [34] presented an elegant counterexample for bit-
encryption under a generalization of the SXDH assumption applied to multilinear
groups.
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detect (with some non-negligible probability) the presence of a cycle. Notably
absent is the inclusion of a decryption algorithm. Thus, a tester does not require
that ciphertexts be decryptable in the traditional sense — it only matters that
the Test algorithm work with some non-negligible probability. We found that
relieving the responsibility of providing a system with decryption simplifies our
constructions and allows us to focus on the main ideas. The security property
required is IND-CPA security (recall that the basic IND-CPA game does not
involve a decryption algorithm).

Of course, to obtain a full-fledged counterexample of an encryption system we
actually do need to provide an encryption system that decrypts. We show how to
generically derive such a counterexample for n-circular encryption by combining
a standard IND-CPA secure cryptosystem (of sufficient message length) with
a n-cycle tester. The idea is fairly straightforward. The setup algorithm of the
counterexample will run the respective setup algorithms of the encryption and
cycle tester schemes. The public key is the pair of these public keys and the
secret key is the pair of secret keys. To encrypt a message m = (m1,m2), first
encrypt m = (m1,m2) under the regular encryption system, then encrypt just
m2 under the cycle tester. We can now see that: (1) the cycle tester will allow for
any key cycle to be detected and (2) the standard encryption scheme can be used
for decryption. A simple hybrid argument shows that the IND-CPA security of
the standard encryption scheme and cycle tester imply IND-CPA security of the
derived counterexample system.

We also show that it is possible to extend this transformation idea to chosen
ciphertext security, where we can combine any IND-CCA secure encryption sys-
tem (of appropriate message length) with the same IND-CPA secure cycle tester
to get an encryption system that is IND-CCA secure, but where encryption of
key cycles can be detected.

Again, the usefulness of this framework is its modularity. We show these basic
transformations once in Sect. 4, and then for each construction we only need to
focus on the basic cycle tester abstraction.

A Cycle Tester from Asymmetric Bilinear Groups. As a baseline for our explo-
ration (see [11] for the full details), we first create a 2-cycle tester from asym-
metric groups using the SXDH assumption. Our construction is extracted from
Cash et al. [18] (also similar to [1,34]), but simpler in that we only aim for the
tester abstraction.

In our construction, the Setup algorithm creates an asymmetric pairing
description PP = (p,G1,G2,GT , e) of prime order p. It also produces gener-
ators g ∈ G1 and h ∈ G2. The message space will be Z

∗
p.

A key can be of one of two types. The cycle detection algorithm Test will
work on any cycle of keys of two different types. The key generation algorithm
KeyGen will first flip a coin β ∈ {0, 1} to determine its type. It then picks a
random key s ∈ Z

∗
p. If β = 0, it sets its public key to be K = gs ∈ G1; otherwise,

its public key is K = hs ∈ G2.
The encryption algorithm will choose a random exponent t ∈ Zp and if

the key is of type β = 0, it produces the ciphertext as (C1 = Ktm = gstm,
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C2 = gt) ∈ G
2
1; otherwise if β = 1, it produces the ciphertext as (C1 = Ktm =

hstm, C2 = ht) ∈ G
2
2. With ciphertexts of this form, the test algorithm follows

straightforwardly. Suppose we had a pair of ciphertexts y = (C = (C1, C2), C ′ =
(C ′

1, C
′
2)) that encrypted a cycle for keys of different types. The algorithm can

test this by simply computing e(C1, C
′
2)

?= e(C2, C
′
1). Plugging in s, s′ as the

respective keys, t, t′ as the encryption randomness, and m,m′ as the messages,
we see that the test computes:

e(gstm, ht′
) ?= e(gt, hs′t′m′

).

This equality holds if m = s′ and m′ = s and will not hold with high probability
for a message independent of the private key.

One thing we emphasize here is that IND-CPA is clearly broken if the SXDH
assumption does not hold. Consider an encryption (C1 = Ktm = gstm, C2 =
gt) ∈ G

2
1 for the message m. The group elements g, (gs)m = gsm, C2 = gt, C1 =

gstm clearly form a DDH tuple. So if DDH is easy in G1, any β = 0 type key
is susceptible to attack. An analogous statement holds in G2 for any β = 1 key.
This potential attack demonstrates that the above construction relies strongly
on properties of asymmetric groups. We next show how to remove that reliance.

A Cycle Tester from the Decision k-Linear Assumption. We next move to con-
structing a cycle tester from the decision k-linear assumption for any constant
k ≥ 2. Recall that the k-linear assumption [24,35] is a parameterized family
of assumptions on the source elements of bilinear groups. The assumption class
becomes progressively weaker for larger values of k. Importantly, by moving
to the decision k-linear assumption we remove our dependence on asymmetric
groups.2 See [11] for a review.

In our construction, the setup algorithm first generates a bilinear source
group G of prime order p with generator g. Then it chooses a random invert-
ible (rank k) matrix A ∈ Z

k×k
p and computes gA, which along with the group

description forms the common public parameters. (We use the notation gM as
shorthand for the set of group elements resulting from raising g to each matrix
entry in M.) The message and key spaces are defined to be the set of rank k
matrices in Z

k×k
p .3

Once again the key generation algorithm will flip a coin β to determine its
type. Next it chooses a random W from the set of invertible matrices in Z

k×k
p .

If β = 0 the key is gAW; otherwise it is gWA.

2 We emphasize though that our constructions could use an asymmetric form of bilin-
ear maps if desired, although we describe things in terms of symmetric groups. The
main point is that there is no longer a reliance on asymmetry or that DDH is hard
within each group.

3 In our scheme, we actually let the message and key space be {0, 1}λ for security
parameter λ and define a pseudorandom generator from this to rank k matrices. That
way the message space is defined before the common setup is executed. However, for
simplicity we will just assume here that the message and key spaces are the set of
invertible k × k matrices.
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The encryption algorithm takes as input a message M ∈ Z
k×k
p and then

computes its inverse M−1. (Recall the message space is the set of invertible
matrices.) If the type bit β = 0, the algorithm chooses a random row vector r
of length k in Zp (i.e. a random matrix of dimension 1 × k). The ciphertext is
computed and output as C1 = grAW, C2 = grAM−1

. Thus, the ciphertext will
consist of two row vectors in the exponent. We observe all terms are computable
from the public keys and public parameters. If the type bit β = 1 the algorithm
chooses a random column vector r of length k in Zp (i.e., a random matrix of
dimension k×1). The ciphertext is computed and output as C1 = gWAr, C2 =
gM

−1Ar.
Now suppose we have two ciphertexts y = (C = (C1, C2), C ′ = (C ′

1, C
′
2)) of

different types (with the first being of β = 0). We can then test for a cycle by
testing if e(C1, C

′
2)

?= e(C ′
1, C2). To see why, suppose we had a cycle, so we have

that M′−1 = W−1 and M−1 = W′−1. Then, in the exponent, it follows that:

rAWM′−1Ar′ ?= rAM−1W′Ar′

rAIAr′ ?= rAIAr′

rA2r′ ?= rA2r′.

So if there is a cycle, the test will output 1. In contrast, if the messages encrypted
are independent of the key, the test will output 0 with high probability.

Finally, we can give a simple proof of IND-CPA security from the decision k-
linear assumption. More specifically, we will use the matrix k-linear assumption,
introduced by Naor and Segev [29], that was shown to be equivalent to the
decision k-linear assumption. Informally, the assumption says that it is hard to
distinguish gX and gY where X is a random matrix of rank i > k and Y is a
random matrix (of the same dimension) of rank j > k. I.e., the rank of matrices
in the exponent cannot be determined as long as it is greater than k. For our
purposes, we will be interested in using the difficulty of distinguishing between
rank k and rank k + 1 matrices.

Let us examine IND-CPA security for an encryption under a type β = 0 key.
(The argument for β = 1 will follow analogously.) We will devise a reduction
algorithm that receives a matrix k-linear assumption challenge gM, where M
is selected as either a random rank k matrix or rank k + 1 matrix. In the case
where it is a rank k matrix, our reduction algorithm will use it to derive the key
and ciphertext values of

gA, gAW, grAW, grA.

These can be used to generate a well-formed ciphertext of a given message.
However, if the reduction algorithm receives a random matrix of rank k + 1, it
will create key and ciphertext values distributed as

gA, gAW, grAW, guA.

In this case the fact that u is fresh randomness will information-theoretically
hide the message from the attacker. It then follows that any attacker with
non-negligible advantage against our system must break the matrix k-linear
assumption.
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In the full version [11], we present a different 2-cycle tester from the Decision
Linear assumption in symmetric pairing groups. This construction can be viewed
as closer to an extension of the SXDH one (sketched above and detailed in [11]) to
symmetric groups where new variables and equations are introduced to prevent
the use of pairings to disrupt IND-CPA security. However, it does not seem
to generalize to a system that is secure using the decision k-linear assumption
for k > 2 or help move toward a Learning with Errors Assumption. At the
same time, when compared to our more general construction just given for the
k = 2 (decision linear assumption) case, it achieves smaller public keys. Public
keys here are two group elements as opposed to four. Our techniques for this
construction might be of future interest for other applications of transforming
constructions proved under asymmetric group assumptions to those that do not
rely on them. We defer further details of these techniques to the full version [11].

A Cycle Tester from Learning with Errors Assumption. While there are now
many known examples of cryptographic functionalities that can be achieved in
both the bilinear and lattice settings, it is not at all clear how to imitate the
pairings-based approach above to obtain a cycle tester from the LWE assump-
tion. Typically, encryption schemes proven secure under LWE have ciphertexts
that are large, noisy vectors in Z

m
q and secret keys that are short vectors in Z

m,
with decryption computing a dot product and then removing the small effect
of the noise multiplied by the short key vector. It seems unlikely that we could
build a cycle tester using only this kind of structure, as the cycle effect would be
obscured by the interactions of large ciphertext vectors with the embedded noise.

Intuitively, we then expect that a cycle tester may use ciphertexts that have
two parts: a noisy vector and a short vector. The large, noisy vectors will help us
prove IND-CPA security from LWE, while the short vectors will help us perform
the cycle test. Naturally, the main challenge is designing the relationship between
the noisy and short vectors such that the short vectors do not break security
when there is no cycle.

The secret key for our scheme will generate a matrix B and a corresponding
short trapdoor basis TB . For IND-CPA security, it is important that B is hidden,
so one should ignore the notational collision and not think of this as correspond-
ing to the public matrix A in an LWE challenge, but rather the columns of B will
play the role of different hidden s vectors in typical LWE notation. The public
key will be formed by choosing several random vectors c1, . . . , c� and publishing
noisy versions of c1B, . . . , c�B as well as the (non-noisy) vectors c1, . . . , c� (so
these ci’s can be thought of as playing the role of the public matrix A in an
LWE challenge).

To encrypt a message, the message will first be used to generate a matrix Z
and a corresponding short trapdoor basis TZ . The encryptor will mimic typical
LWE-style encryption by forming a noisy version of sB for some vector s, but
since it does not know B, it will form s as a linear combination of c1, . . . , c� with
coefficients chosen randomly from {−1, 1}. Note that the encryptor can then
compute both s (without noise) and a noisy version of sB. The noisy version of
sB becomes the noisy part of the ciphertext, and the other part of the ciphertext
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is a short vector v such that Zv equals the transpose of s. Note that such a vector
v can be sampled appropriately using the trapdoor basis TZ .

For full details of how the cycle test works, see Sect. 6. The main idea is
that when there is a 2-cycle, the secret key matrix B for one ciphertext is the
same as the message matrix Z for the other ciphertext and vice versa. This
leads to a common relationship between the short vector of one ciphertext and
the noisy vector of the other, while when the B,Z matrices of each are fresh
and unrelated, this relationship does not appear. One convenient feature of this
scheme as compared to the bilinear schemes is that there is no need for different
types of ciphertexts. Intuitively, the pairing relationship has been replaced by a
dot product relationship between a short vector and a noisy one.

Proving IND-CPA security for this scheme can be accomplished in a few
steps. First, since B is hidden and its columns act like the hidden vector s in
a typical LWE challenge and the ci’s act like rows of the public matrix A, we
can argue that LWE implies the noisy public versions of ciB can be replaced
by uniformly random vectors, independent of the ci’s and B. Next, using a
convenient variant of the left over hash lemma from [3], we argue that the random
coefficients in {−1, 1} that form s from the ci’s and the noisy ciphertext vector
from the public noisy vectors supply sufficient entropy to replace both of these
with fresh uniformly random vectors as well. We are then left with an encryption
that samples a uniformly random s (now independent of the noisy part of the
ciphertext) and samples the short part of the ciphertext as a short vector v such
that Zv is the transpose of s. Here we can argue that the distribution of such a v
is statistically close to a distribution that is independent of Z: this follows from
a result in [21] that ensures us that the image of a short, Gaussian distributed
vector v under multiplication by Z is uniformly distributed in Z

n
q . Thus, by

employing LWE followed by a sequence of statistical arguments, we can arrive
at a point where the ciphertext is independent of the message, and this implies
IND-CPA security.

Other Related Work. Haitner and Holenstein [23] show black box impossibility
results for proving key-dependent message security from different cryptographic
assumptions. Their goal deviates from ours in two important ways. First, their
work focuses on impossibility results for ciphertext encrypting functions of its
own private keys, whereas we are concerned with the circular case where there
is a cycle over multiple private keys. Second, we are interested in concrete coun-
terexamples. In particular, it may be possible that IND-CPA security implies
certain key-dependent security properties even if there does not exist any black
box reduction. In contrast our counterexamples will show that this is impossible
if certain specific number theoretic assumptions hold.

2 Preliminaries

Background on pairings can be found in the full version [11].
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2.1 The k-LIN Assumption

Decision Linear and the k-LIN Family (k-LIN). We now present a family
of assumptions called the k-LIN assumptions (where k = 1 is the standard DDH
assumption and k = 2 is called Decision Linear [13]) [10,24]. Let G be a group
of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A and k ≥ 1, the following
probability is 1/2 plus an amount negligible in λ:

Pr[g, g1, . . . , gk ← G; r1, . . . , rk ← Zp;T0 = g(r1+···+rk);T1 ← G; d ← {0, 1};
d′ ← A(g, g1, . . . , gk, gr1

1 , . . . , grk

k , Td) : d = d′].

In the generic group model, these k-LIN assumptions become progressively
weaker for increasing k.

In our proof of security in Sect. 5 we will use a theorem due to Naor and
Segev [29] that shows that under the decision k-linear assumption no attacker
can distinguish between a random rank i matrix and a random rank j matrix
(in the exponent and of the same dimensions) for i, j ≥ k.

2.2 Lattices and LWE

We let q, n, and m denote positive integers. Given a matrix A ∈ Z
n×m
q , we let

Λ⊥
q (A) denote the lattice {x ∈ Z

m : Ax = 0 mod q}. For u ∈ Z
n
q , we let Λu

q (A)
denote the set {x ∈ Z

m : Ax = u mod q}.
For a matrix A ∈ Z

n×m, we let ||A|| denote the �2 length of the longest
column of A, and we let ||A||GS denote || ˜A||, where ˜A is the Gram-Schmidt
orthogonalization of the columns of A. We let At denote the transpose of the
matrix A.

Learning with Errors (LWE). Given integers n,m, a prime q, and a noise distri-
bution χ over Z, the (n,m, q, χ)-LWE problem is to distinguish the distributions
(A,Ats + e) and (A, u), where A is chosen uniformly from Z

n×m
q , s is chosen

uniformly from Z
n
q , e is chosen from χm, and u is chosen uniformly from Z

m
q .

Under a quantum reduction, Regev [33] showed that for certain noise dis-
tributions, the LWE problem is as hard as the worst-case SIVP and GapSVP.
Peikert [31] gave a reduction in the classical setting. Our construction will admit
a range of parameters where solving the LWE problem is as hard as approxi-
mating the worst-case GapSVP to polynomial (in n) factors, which is believed
to be computationally hard.

Trapdoor Generation. We will rely on the polynomial time algorithm Trap-
Gen(1n, 1m, q) (developed in [4,6,28]). This is a randomized algorithm that
when given m = Θ(n log q), outputs a full rank matrix A ∈ Z

n×m
q and an

accompanying basis TA ∈ Z
m×m for Λ⊥

q (A) such that the distribution of A is
negligibly close (in n) to uniform over Z

n×m
q and ||TA||GS = O(

√
n log q) with

all but negligible probability (as a function of n).
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Discrete Gaussian Distributions. We employ the discrete Gaussian distribution
Dσ(Γu

q (A)) on Γu
q (A), parameterized by σ > 0 (as defined e.g. in [33]). The salient

fact we will use about this distribution is that for a random matrix A ∈ Zn×m
q

and σ = Ω̃(
√

n), a vector sampled from Dσ(Λu
q (A)) has �2 norm less than σ

√
m

with probability at least 1 minus a quantity that is negligible in m.
We will rely on a polynomial time algorithm SampleD(A, TA, u, σ) [21]. This

is a randomized algorithm that when σ = ||TA||GS · ω(
√

log m), produces a
random vector x from a distribution that is statistically close to Dσ(Λu

q (A)).
We also employ the following result from [21] (appears as Corollary 5.4 in

that work):
Lemma 1. Let n and q be positive integers with q prime, and let m ≥ 2n log q.
Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and for any σ ≥ ω(

√
log m),

the distribution of the syndrome u = Ae mod q is statistically close to uniform
over Z

n
q , where e is distributed according to DZm,σ.

Randomness Extraction. We will use the leftover hash lemma (see [3] e.g. for an
even stronger statement):
Lemma 2. Suppose that � > (j + 1) log q + ω(log j) and q > 2 is prime (for
integers q, j, �). Let R be an � × 1 vector chosen uniformly in {1,−1}� mod q.
Let A and B be matrices chosen uniformly in Z

j×�
q and Z

j×1
q respectively. Then,

the distribution (A,AR) is statistically close to the distribution (A,B).

3 Security Definitions

In this work, we will focus on public key encryption schemes that admit a global
setup algorithm.

Definition 1 (Public Key Encryption). A public key encryption scheme
Π = (Setup,KeyGen,Enc,Dec) for a message space M and secret key space S4

is a tuple of algorithms specified as follows:

– Setup(1λ) → PP. The Setup algorithm takes as input the security parameter
λ and outputs common public parameters PP.

– KeyGen(PP) → (pk , sk). The Key Generation algorithm takes as input the
public parameters PP and outputs a public pk and secret key sk ∈ S.

– Enc(pk ,m ∈ M) → C. The Encryption algorithm takes as input a public key
pk and a message m ∈ M and outputs a ciphertext C.

– Dec(sk , C) → m. The Decryption algorithm takes as input a secret key sk and
a ciphertext C and outputs either an error message ⊥ or a value m ∈ M .

By negl(k) we denote some negligible function, i.e., one such that, for all
c > 0 and all sufficiently large k, negl(k) < 1/kc. We abbreviate probabilistic
polynomial time as PPT.
4 Technically, the output of the Setup algorithm may be required to establish the

message and secret key spaces. For instance, the setup algorithm may output a
prime p and the message space might be set as Z

∗
p. For simplicity, we provide a

name for these sets at the scheme level, even though the elements in these sets may
not be defined until after Setup.
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Perfect Correctness. An encryption scheme Π = (Setup,KeyGen,Enc,Dec) for
message space M is said to be perfectly correct if for all λ ∈ N, m ∈ M , and
(pk , sk) ∈ KeyGen(Setup(1λ)), it holds that Dec(sk ,Enc(pk ,m)) = m.

Security. We recall the notion of indistinguishability of encryptions under a
chosen-plaintext attack [22].

Definition 2 (IND-CPA Security). Let Π = (Setup,KeyGen,Enc,Dec) be a
public-key encryption scheme. For scheme Π, adversary A, and λ ∈ N, let
the random variable IND-CPA(Π,A, λ) be defined by the probabilistic algorithm
described on the left side of Fig. 1. We denote the IND-CPA advantage of A by
AdvcpaΠ,A(λ) = 2·Pr[IND-CPA(Π,A, λ) = 1]−1. We say that Π is IND-CPA secure
if AdvcpaΠ,A(λ) is negligible for all PPT A.

We also consider the indistinguishability of encryptions under a chosen-ciphertext
attack [19,30,32].

Definition 3 (IND-CCA Security). Let Π = (Setup,KeyGen,Enc,Dec) be a
public-key encryption scheme. Let the random variable IND-CCA(Π,A, λ) be
defined by an algorithm identical to IND-CPA(Π,A, λ) above, except that A has
access to an oracle Dec(sk , ·) that returns the output of the decryption algorithm
and A cannot query this oracle on input y. We denote the IND-CCA advantage of
A by AdvccaΠ,A(λ) = 2 ·Pr[IND-CCA(Π,A, λ) = 1]−1. We say that Π is IND-CCA
secure if AdvccaΠ,A(λ) is negligible for all PPT A.

3.1 Circular Security

We next define circular security of public-key encryption. This definition is
derived from the Key-Dependent Message (KDM) security notion of Black et al.
[12]. We follow prior counterexample definitions [1,18] which restrict the adver-
sary’s power (e.g., cannot ask for any affine function of the secret keys). The
adversary is asked to distinguish between an encryption cycle or encryptions of
zero as in [14,18]. The bit string zero is not actually in the message spaces we
consider, but this value can be encoded to be in the space; equivalently, one can
follow the approach of Acar et al. [1] which instead of zero, encrypts a fresh
random message.

Definition 4 (IND-CIRC-CPAn). Let Π = (Setup,KeyGen,Enc,Dec) be a public-
key encryption scheme. For integer n > 0, scheme Π, adversary A and λ ∈ N,
let the random variable IND-CIRC-CPAn(Π,A, λ) be defined by the probabilistic
algorithm in the middle of Fig. 1. We denote the IND-CIRC-CPAn advantage of
A by

Advn-circ-cpa
Π,A (λ) = 2 · Pr[IND-CIRC-CPAn(Π,A, λ) = 1] − 1.

We say that Π is IND-CIRC-CPAn secure if Advn-circ-cpa
Π,A (λ) is negligible for all

PPT A.
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IND-CPA(Π, A, λ)

b
r← {0, 1}

PP ← Setup(1λ)
(pk , sk) ← KeyGen(PP)
(m0, m1) ← A(pk)
y ← Enc(pk , mb)

b̂ ← A(y)

Output (b̂
?
= b)

IND-CIRC-CPAn(Π, A, λ)

b
r← {0, 1}

PP ← Setup(1λ)
For i = 1 to n:

(pk i, sk i) ← KeyGen(PP)
If b = 1 then

y ← EncCycle(pk, sk)
Else

y ← EncZero(pk, sk)

b̂ ← A(pk,y)

Output (b̂
?
= b)

EncCycle(pk, sk)

For i = 1 to n
mi ← sk (i mod n)+1

yi ← Enc(pk i, mi)
Output y

EncZero(pk, sk)

For i = 1 to n

mi ← 0|sk(imod n)+1|

yi ← Enc(pk i, mi)
Output y

Fig. 1. Experiments for Definitions 2 and 4, each for a message space M , and we assume
that m0, m1, sk i ∈ M . We write pk, sk, and y for (pk1, . . . , pkn), (sk1, . . . , skn) and
(y1, . . . , yn) respectively.

Discussion. Cash et al. [18] made a distinction between whether an adversary
could distinguish an encryption cycle from encryptions of zero (as in the standard
game above), or whether an adversary could actually recover the secret keys
(and provided the latter type of counterexample). Recently, Koppula et al. [25]
showed that if there exists (an IND-CPA secure) scheme with a PPT adversary
that can distinguish an encryption cycle (in the standard game), then it can
be transformed into another scheme with a corresponding adversary that can
extract the secret keys from the cycle. Thus, in this work, we can focus exclusively
on the standard definition.

4 A Framework for Generating Circular Counterexamples

We now present a general framework for creating circular security counterexam-
ples, which we will instantiate under a variety of different assumptions in the
subsequent sections. At the center of our framework is an abstraction called a
“cycle tester”. Like an encryption scheme, a cycle tester must be able to encode a
message in an IND-CPA secure manner. However, unlike an encryption scheme,
the cycle tester need not support a decryption operation, instead it must support
a testing operation which can detect the presence of an encryption cycle.

After formalizing this abstraction, we provide two results that use it. First, we
show how our tester can be combined with any IND-CPA encryption scheme (of
appropriate message length) to provide a full blown counterexample. Second,
we extend this idea to show how to combine any tester with any IND-CCA
encryption scheme to get an IND-CCA counterexample.

In addition to letting us focus on a narrower primitive for our counterex-
ample, this separation avoids duplication of work and minimizes assumptions.
In particular, we can design a single tester and then both the IND-CPA and
IND-CCA counterexamples follow. Most prior works did not address IND-CCA
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counterexamples. While Cash et al. [18] did, their IND-CCA counterexample
required the use of NIZKs, which is a stronger assumption than simply assum-
ing the existence of IND-CCA encryption schemes as we do here. Our abstraction
and transformation essentially show that designing IND-CCA counterexamples
is no harder than designing IND-CPA ones.

We remark that Koppula et al. [25] have a IND-CPA counterexample with
structure similar to our general transformation, however, no generic or IND-CCA
theorems are proven.

Definition 5 (n-Cycle Tester). A cycle tester Γ = (Setup,KeyGen,Enc,Test)
for message space M and secret key space S is a tuple of algorithms specified as
follows:

– Setup(1λ) → PP. The Setup algorithm takes as input the security parameter
λ and outputs common public parameters PP.

– KeyGen(PP) → (pk , sk). The Key Generation algorithm takes as input the
public parameters PP and outputs a public key pk and secret key sk ∈ S.

– Enc(pk ,m ∈ M) → C. The Encryption algorithm takes as input a public key
pk and a message m ∈ M and outputs a ciphertext C.

– Test(pk,y) → {0, 1}. On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn),
the Testing algorithm outputs a bit in {0, 1}.

It also must possess the following properties. Let Π = (Setup,KeyGen,Enc, ·) be
an encryption scheme formed from the first three algorithms of the tester with
an empty decryption algorithm. Then, it must hold that:

1. (IND-CPA security) Π is IND-CPA secure according to Definition 2.
2. (Testing Correctness) the Testing algorithm’s advantage in distinguishing

encryption cycles, denoted Advn-circ-cpa
Π,Test (λ) from Definition 4, is non-negligible.

We now prove two theorems.

Theorem 1 (CPA Counterexample from Cycle Testers). If there exists
an IND-CPA-secure encryption scheme Π for message space M = (M1 × M2)
and secret key space S1 ⊆ M1 and an n-cycle tester Γ for message space M2

and secret key space S2 ⊆ M2, then there exists an IND-CPA-secure encryption
scheme Π ′ for message space M = (M1×M2) and secret key space S = (S1×S2)
that is n-circular insecure.

Proof. Let Π = (Setup1,KeyGen1,Enc1,Dec1) and Γ = (Setup2,KeyGen2,Enc2,
Test2). We construct an IND-CPA Π ′ = (Setup,KeyGen,Enc,Dec), together with
its IND-CIRC-CPA2 test algorithm Test, as follows.

Setup(1λ): On input 1λ, run PP1 ← Setup1(1λ) and PP2 ← Setup2(1λ). Output
PP = (PP1,PP2).

KeyGen(PP): On input PP = (PP1,PP2), run (pk1, sk1) ← KeyGen1(PP1) and
(pk2, sk2) ← KeyGen2(PP2). Output pk = (pk1, pk2) and sk = (sk1, sk2).

Enc(pk ,m): On input pk = (pk1, pk2) and m = (m1,m2) ∈ M , run c1 ←
Enc1(pk1, (m1,m2)) and c2 ← Enc2(pk2,m2). Output C = (c1, c2).
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Dec(sk , C): On input sk = (sk1, sk2) and C = (c1, c2), output Dec1(sk1, c1).
Test(pk,y): On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), parse pk i =

(ai, bi) and Ci = (ci, di) and output the bit Test2((b1, . . . , bn), (d1, . . . , dn)).

The correctness of Test follows directly from that of Test2. If (pk,y) con-
tains an encryption cycle (or encryptions of zero, respectively), then so will
((b1, . . . , bn), (d1, . . . , dn)), and thus by definition of the cycle tester, the test will
distinguish between these cases with non-negligible advantage.

It remains to argue that Π ′ is an IND-CPA secure encryption scheme. This
follows by a simple hybrid argument based on the fact that an encryption in Π ′

is a pair of encryptions from two different IND-CPA-secure schemes, Γ and Π.
We omit this proof as it is a simplified version of the IND-CCA proof that we
provide next.

Theorem 2 (CCA Counterexample from Cycle Testers). Let k, � be secu-
rity parameters and p(·) be a polynomial. If there exists an IND-CCA-secure
encryption scheme Π (with k-bit secret keys and (p(�) + 2k)-bit messages) and
an n-cycle tester Γ (with k-bit secret keys, k-bit messages, and p(�)-bit cipher-
texts), then there exists an IND-CCA-secure encryption scheme Π ′ for 2k-bit
messages that is n-circular insecure.

Proof. Let Π = (Setup1,KeyGen1,Enc1,Dec1) and Γ = (Setup2,KeyGen2,Enc2,
Test2) with the length constraints above. We construct an IND-CCA Π ′ =
(Setup,KeyGen,Enc,Dec), together with its IND-CIRC-CPA2 test algorithm Test,
as follows. We can no longer simply append the cycle-tester encryption to the
regular encryption, because changes to the cycle-testing portion might be lever-
aged to obtain a decryption of a portion of the challenge ciphertext. Instead, we
encrypt this cycle-testing portion using the regular CCA-secure scheme.

Setup(1λ): On input 1λ, run PP1 ← Setup1(1λ) and PP2 ← Setup2(1λ). Output
PP = (PP1,PP2).

KeyGen(PP): On input PP = (PP1,PP2), run (pk1, sk1) ← KeyGen1(PP1) and
(pk2, sk2) ← KeyGen2(PP2). Output pk = (pk1, pk2) and sk = (sk1, sk2).

Enc(pk , (ma,mb)): On input pk = (pk1, pk2) and message (ma,mb) ∈ {0, 1}k ×
{0, 1}k, run c2 ← Enc2(pk2,mb) and c1 ← Enc1(pk1, (ma,mb, c2)). Output
C = (c1, c2).

Dec(sk , C): On input sk = (sk1, sk2) and C = (c1, c2), run Dec1(sk1, c1). If
it does not return a message of the form (ma,mb,mc) ∈ {0, 1}k × {0, 1}k ×
{0, 1}p(λ) or if mc 	= c2, then output ⊥ (invalid ciphertext). Otherwise, output
the message (ma,mb) ∈ {0, 1}k × {0, 1}k.

Test(pk,y): On input pk = (pk1, . . . , pkn) and y = (C1, . . . , Cn), parse pk i =
(ai, bi) and Ci = (ci, di) and output the bit Test2((b1, . . . , bn), (d1, . . . , dn)).
Same as before.

As before, the correctness of Test follows directly from that of Test2. If (pk,y)
contains an encryption cycle (or encryptions of zero, respectively), then so will
((b1, . . . , bn), (d1, . . . , dn)), and thus by definition of the cycle tester, the test will
distinguish between these cases with non-negligible advantage.
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4.1 Proving IND-CCA Security via a Sequence of Games

It remains to argue that Π ′ is an IND-CCA secure encryption scheme. This
proof is significantly more involved than the IND-CPA case. We prove this using
a sequence of games from an encryption of a message M0 to an encryption of
M1 (where these messages come from the IND-CCA game). The public and
secret keys are always distributed as in the real scheme, but the structure of
the challenge ciphertext changes in each hybrid. We underline these changes for
the reader. Let the challenge messages be described as M0 = (m0,a,m0,b) and
M1 = (m1,a,m1,b). Then the hybrids are as follows:

Game 1. This corresponds to the original security game IND-CCA(Π ′,A, λ)
in which the challenger interacts with adversary A, except that the challenge
ciphertext is always an encryption of message M0.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1,
(m0,a, m0,b, c

∗
2)) and c∗

2 = Enc2(pk2,m0,b). This is a valid encryption of M0.
4. On decryption query Ci 	= C∗ from A, output Dec(sk , Ci).

Game 2. This is the same as Game 1, except that we change how the second
decryption queries to reject all requests where the first portion of the query
matches the first portion of the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m0,a,
m0,b, c

∗
2)) and c∗

2 = Enc2(pk2,m0,b). This is a valid encryption of M0.
4. On decryption query Ci = (ci,1, ci,2) 	= C∗ from A, if ci,1 = c∗

1 output ⊥, oth-
erwise output Dec(sk , Ci).

Game 3. This is the same as Game 2, except that we now encrypt M1 in
the cycle tester portion and continue to encrypt M0 in the regular encryption
portion. We continue to reject all decryption queries where the regular encryption
portion matches the challenge.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m0,a,
m0,b, c

∗
2)) and c∗

2 = Enc2(pk2,m1,b).
4. On decryption query Ci = (ci,1, ci,2) 	= C∗ from A, if ci,1 = c∗

1 output ⊥,
otherwise output Dec(sk , Ci).

Game 4. This is the same as Game 3, except that now the entire challenge
ciphertext is an encryption of M1. As before, we continue to reject all decryption
queries where the regular encryption portion matches the challenge.
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1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m1,a,
m1,b, c

∗
2)) and c∗

2 = Enc2(pk2,m1,b).
4. On decryption query Ci = (ci,1, ci,2) 	= C∗ from A, if ci,1 = c∗

1 output ⊥,
otherwise output Dec(sk , Ci).

Game 5. This is the same as Game 4, except now all decryption queries are
answered as normal. The challenge ciphertext always contains an encryption of
M1.

1. Run Setup(1λ) to produce PP and then KeyGen(PP) to produce (pk , sk).
2. On decryption query Ci from A, output Dec(sk , Ci).
3. Provide the challenge ciphertext as C∗ = (c∗

1, c
∗
2), where c∗

1 = Enc1(pk1, (m1,a,
m1,b, c

∗
2)) and c∗

2 = Enc2(pk2,m1,b).
4. On decryption query Ci 	= C∗ from A, output Dec(sk , Ci).

4.2 Adversary’s Probability of Outputting 1 in These Games

Let Probi
A denote the probability that adversary A outputs a 1 in Game i. We

will now show, by a series of steps, that for any adversary A the difference in
its probability of outputting 1 between Game 1 (encryption of M0) and Game 5
(encryption of M1) is negligible. Thus, it cannot distinguish between these two
games.

Claim. For any adversary A, Prob2
A = Prob1

A.

Proof. These games are identical except that in Game 1 all decryption queries
Ci = C∗ are rejected whereas in Game 2 all decryption queries Ci = (ci,1, ci,2)
such that ci,1 = c∗

1 for C∗ = (c∗
1, c

∗
2) are rejected. This results, however, in

identical behavior on the decryption queries. Whenever ci,1 	= c∗
1, both games

answer the queries normally. Whenever Ci = C∗, neither game answers this
illegal challenge query. On ci,1 = c∗

1 but ci,2 	= c∗
2, Game 2 will output ⊥.

However, Game 1’s response is also to reject this query with the message ⊥ for
being a non-valid ciphertext, since the decryption of c∗

1 results in an intermediate
tuple of the form (m0,a,m0,b, c

∗
2) and the decryption algorithm checks that c∗

2 =
ci,2, which won’t be true in this case. Thus, the adversary gets identical responses
to its decryption queries (and everything else) in both games. Since the games
are identical, from the adversary’s viewpoint, it will output 1 with the same
probability.

Claim. If Γ is an IND-CPA-secure n-cycle tester with security parameter λ, then
for any adversary A, Prob3

A − Prob2
A ≤ negl(λ).

Proof. We show that an attacker’s probability of outputting 1 cannot be non-
negligibly different in Games 2 and 3, because that would imply an attack on
the IND-CPA security of the cycle tester. More formally, suppose there exists an
adversary A such that Prob3

A −Prob2
A = ε. Then we can construct an adversary

B that uses A to show that Γ is not an IND-CPA-secure n-cycle tester. B works
as follows:



792 A. Bishop et al.

1. B runs Setup1(1λ) → PP1 and KeyGen1(PP1) → (pk1, sk1).
2. B obtains the public key pk2 from the IND-CPA encryption challenger.
3. B sends pk = (pk1, pk2) to A.
4. A returns two messages M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b).
5. B sends (m0,b,m1,b) to the cycle tester encryption challenger and obtains the

challenge c∗
2.

6. B forms the challenge ciphertext by computing c∗
1 = Enc1(pk1, (m0,a,m0,b, c

∗
2))

and sending C∗ = (c∗
1, c

∗
2) to A.

7. Eventually, A returns a bit b̂ and B outputs b̂ to its challenger.

In the above, B perfectly simulates Game 2 for adversary A if the challenge
ciphertext c∗

2 contains an encryption of m0,b and, in the other case, B perfectly
simulates Game 3 for adversary A when the challenge ciphertext c∗

2 contains
an encryption of m1,b. Moreover, B succeeds if and only if A succeeds. Thus, if
Prob3

A −Prob2
A = ε, then we have Pr[B is correct] = 1

2 Pr[B is correct | IND-CPA
challenger chose 0] + 1

2 Pr[B is correct | IND-CPA challenger chose 1] = 1
2 Pr[A

is correct | Game 2] + 1
2 Pr[A is correct | Game 3] = 1

2 (1 − Prob2
A) + 1

2 (Prob3
A)

= 1
2 (1 −Prob2

A) + 1
2 (Prob2

A + ε) = 1
2 + ε

2 . Since we assumed the cycle tester was
IND-CPA secure, it must hold that ε ≤ negl(λ).

Claim. If Π is an IND-CCA-secure encryption scheme with security parameter
λ, then for any adversary A, Prob4

A − Prob3
A ≤ negl(λ).

Proof. Suppose there exists an adversary A such that Prob4
A −Prob3

A = ε. Then
we can construct an adversary B that uses A to show that Π is not an IND-
CCA-secure encryption scheme. B works as follows:

1. B obtains the public key pk1 from the IND-CCA encryption challenger.
2. B runs Setup2(1λ) → PP2 and KeyGen2(PP2) → (pk2, sk2).
3. B sends pk = (pk1, pk2) to A.
4. On receiving a decryption query for ciphertext Ci = (ci,1, ci,2) from A, B

sends ci,1 to its IND-CCA encryption challenger to obtain a message M . B
returns M to A.

5. A returns two messages M0 = (m0,a,m0,b) and M1 = (m1,a,m1,b).
6. B computes c∗

2 = Enc2(pk2,m1,b) and sends M ′
0 = (M0, c

∗
2) and M ′

1 = (M1, c
∗
2)

to the IND-CCA challenger and obtains the challenge c∗
1.

7. B sends the challenge ciphertext C∗ = (c∗
1, c

∗
2) to A.

8. On receiving a decryption query for ciphertext Ci = (ci,1, ci,2) where ci,1 	=
c∗
1 from A, B sends ci,1 to its IND-CCA encryption challenger to obtain a

message M . B returns M to A
9. Eventually, A returns a bit b̂ and B outputs b̂ to its challenger.

In the above, B perfectly simulates Game 3 for adversary A if the challenge
ciphertext c∗

1 contains an encryption of M ′
0 and, in the other case, B perfectly

simulates Game 4 for adversary A when the challenge ciphertext c∗
1 contains

an encryption of M ′
1. Moreover, B succeeds if and only if A succeeds. Thus, if

Prob4
A−Prob3

A = ε, then B’s probability of success in the IND-CCA security game
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is Pr[B is correct] = 1
2 Pr[B is correct | IND-CCA challenger chose 0] + 1

2 Pr[B is
correct | IND-CCA challenger chose 1] = 1

2 Pr[A is correct | Game 3] + 1
2 Pr[A

is correct | Game 4] = 1
2 (1 −Prob3

A) + 1
2 (Prob4

A) = 1
2 (1 −Prob3

A) + 1
2 (Prob3

A + ε)
= 1

2 + ε
2 . Since we assumed that Π was IND-CCA secure, it must hold that

ε ≤ negl(λ).

Claim. For any adversary A, Prob5
A = Prob4

A.

Proof. These games are identical except that in Game 4 all decryption queries
Ci = (ci,1, ci,2) such that ci,1 = c∗

1 for C∗ = (c∗
1, c

∗
2) are rejected in Game 5

whereas all decryption queries Ci = C∗ are rejected. This results, however, in
identical behavior on the decryption queries. This case is the mirror image of
the argument in the proof of Claim 4.2.

Conclusion of the Proof of Theorem 2. Given the above claims, we can con-
clude that if Γ is an IND-CPA-secure n-cycle tester and Π is an IND-CCA-
secure encryption scheme (with the appropriate length constraints), then for
any adversary A, it holds that Prob5

A − Prob1
A is negligible, implying that Π ′ is

an IND-CCA-secure encryption scheme.

5 A 2-Cycle Tester from the k-DLIN Assumption

We now present a 2-cycle tester from the decision k-Linear assumption in pairing
groups for any constant k (where this assumption is believed to hold for k ≥ 2
in this bilinear setting and the assumption grows weaker as k increases). We will
use a message space of {0, 1}λ. In our exposition we will use boldface to denote
a matrix such as M. We also use gM as shorthand to denote the group elements
corresponding to the raising g to each individual element of M.

Setup(1λ) → PP. The setup algorithm first runs G(1λ) to generate a (Type-1)
group G of prime order p with generator g. Next it defines a pseudorandom
generator PRG : {0, 1}λ → Z

k×k
p , which maps strings from {0, 1}λ to invertible

k ×k matrices over Zp. Finally, it chooses a random invertible matrix A ∈ Z
k×k
p

and computes gA. The public parameters, PP consist of the group description
G, the description of PRG and gA.

KeyGen(PP) → (pk , sk). The key generation algorithm first chooses random
w ∈ {0, 1}λ. The secret key sk = w. Next, it computes PRG(w) → W ∈ Z

k×k
p

and chooses a bit β ∈ {0, 1}. Finally, in addition to implicitly including PP, it
defines the public key as

pk =

{

(0,K = gAW) ∈ {0, 1} × G
k×k if β = 0;

(1,K = gWA) ∈ {0, 1} × G
k×k if β = 1.

Enc(pk = (β,K),m ∈ {0, 1}λ) → ct .
The encryption algorithm first computes computes PRG(m) → M ∈ Z

k×k
p

and then computes M−1. Note that since PRG maps to invertible matrices, M
will have an inverse.
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If the type bit β = 0 the key K = gAW for some W. The algorithm chooses
r as a random row vector of length k in Zp (i.e. a random matrix of dimension
1 × k). The ciphertext is computed and output as

C1 = grAW, C2 = grAM−1
.

Thus, the ciphertext will consist of two row vectors in the exponent. We observe
all terms are computable from the public keys and public parameters.

If the type bit β = 1 the key K = gWA for some W. The algorithm chooses r
as a random column vector of length k in Zp (i.e. a random matrix of dimension
k × 1). The ciphertext ct is computed and output as

C1 = gWAr, C2 = gM
−1Ar.

Test(pk,y) → {0, 1}. Since we are testing for 2-cycles, parse y = (C = (C1, C2),
C ′ = (C ′

1, C
′
2)). If the key types are identical i.e. β = β′ then just output a

random bit as a guess.
Otherwise, presume that β = 0, β′ = 1 (if it is the other way around just

flip the order). Then compute e(C1, C
′
2)

?= e(C ′
1, C2) and output the result. Note

here we overload notation so that the pairing operator e is over a matrix of group
elements and means matrix multiplication in the exponent. (Or in this case a
dot product in the exponent.)

Analysis of Test Algorithm. We analyze the correctness of the test algorithm.
Let’s consider two secret keys w,w′ where PRG(w) = W and PRG(w′) = W′.
Again, presume that β = 0, β′ = 1. The corresponding public keys will be
pk = gAW and pk = gW

′A. Now consider an encryption of m under pk and
m′ under pk ′ where PRG(m) = M and PRG(M ′) = M′. Let r and r′ be the
respective randomness used for each encryption.

The test equations outputs 1 iff e(C1, C
′
2)

?= e(C ′
1, C2) this is equivalent to

testing
rAWM′−1Ar′ ?= rAM−1W′Ar′. (1)

Let’s first consider the case where we have an encryption of a cycle. This
means that m′ = w and m = w′ so we have that M′−1 = W−1 and M−1 =
W′−1. Substituting these in we see that

rAWM′−1Ar′ ?= rAM−1W′Ar′

rAIAr′ ?= rAIAr′

rA2r′ ?= rA2r′.

Thus, on a cycle the test will output 1.
We now turn to the case of showing that an encryption of 0’s will output 0

(when the keys have different β types) with all but negligible probability.
First, we first let Z = PRG(0λ)−1 which is the matrix used to encrypt the

all 0’s string. Second, we consider the probability of the tester outputting 1,
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when W and W′ are chosen uniformly at random (and independently from Z)
from the set of full rank matrices, as opposed to being the output of a pseudo-
random generator. If there, was more than a negligible difference of the test in
outputting 1 in these two cases, it would lead to an attack on the security of the
pseudorandom generator.

We can now observe that the matrices X = AWZA and X′ = AZW′A are
distributed independently and uniformly random from full rank matrices. Note
we substituted Z for both M′−1 and M−1 in Eq. 1. Then u = rX and u′ = rX′

are independently distributed as uniformly at random row vectors of length k.
Finally, it follows that the probability that

ur′ ?= u′r′

is negligible in the security parameter. Thus, with probability negligibly close to
1 the test algorithm will output 0 when given an encryption of all 0’s.
IND-CPA Security of the Tester

Theorem 3. The above encryption scheme Π = (KeyGen,Enc,Test) (where the
decryption algorithm is ignored) is IND-CPA-secure under the k-Linear Assump-
tion in G.

The proof of this theorem can be found in the full version [11].

6 A 2-Cycle Tester from Learning with Errors

We now present a 2-Cycle Tester whose IND-CPA security follows from the Learn-
ing with Errors Assumption. We note that our construction is similar to multi-bit
Regev encryption.

6.1 Construction

Setup(1n) → PP. The setup algorithm chooses m, q, �, σ, r, α. These parameters
are chosen to satisfy the following constraints: m ≥ 2n log q, σ ≥ Lω(

√
log m),

q ≥ 5σ(m+1), � > (n+m+1) log q +ω(log(n+m)), r := σ�, α ≤ 1/(r
√

m + 1 ·
ω(

√
log n)), and q > 2 is prime. Here, L is defined as follows. We let z denote

the number of uniform random bits employed by TrapGen to generate a matrix
B in Z

n×m
q along with a trapdoor basis TB . L is a bound such that ||TB ||GS ≤ L

with overwhelming probability. (We note that this range of parameters allows
us to set α so that n/α is polynomial, and LWE is believed to be hard in this
parameter regime.) The public parameters are PP = (m, q, �, σ, r, α, z).

KeyGen(PP) → (pk , sk). The key generation algorithm chooses a uniformly
random secret key sk in {0, 1}z and runs TrapGen(sk) to produce a matrix
B ∈ Z

n×m
q and a corresponding trapdoor basis TB . It then chooses independent

and uniformly random vectors c1, . . . , c� ∈ Z
n
q and noise vectors γ1, . . . , γ� from

χm, where χ is distributed as �qΨα� mod q, where Ψα is a distribution on T of a
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normal variable with mean 0 and standard deviation α/
√

2π reduced modulo 1.
(We think of these vectors as row vectors.) In addition to implicitly including
the PP, it sets

pk = {c1, . . . , c�, y1 := c1B + γ1, . . . , y� := c�B + γ�}.

Enc(pk ,m ∈ {0, 1}z) → ct . The encryption algorithm runs TrapGen(m) to pro-
duce a matrix Z ∈ Z

n×m
q and a corresponding trapdoor basis TZ . It chooses

random signs r1, . . . , r� ∈ {−1, 1} and computes s :=
∑�

i=1 rici. It then uses TZ

to sample a short (column) vector v such that Zv = st, by calling the algorithm
SampleD. It computes C =

∑�
i=1 riyi, and sets the ciphertext as ct = (C, v).

Test((pk0, pk1), ((C0, v0), (C1, v1))) → {0, 1}. The cycle test algorithm compares
C0v1 to C1v0 and checks if there are close modulo q (if their distance is ≤ 2q/5).
If so, it outputs 1. If not, it outputs 0.

Analysis of Test Algorithm. We let B0, Z0, s0 be the B, Z and s values cor-
responding to ciphertext (C0, v0) and B1, Z1, s1 be the analogous values for
(C1, v1). When there is a cycle, we then have Z0 = B1 and Z1 = B0. We then
have B0v1 = st

1 and B1v0 = st
0. Noting that C0 = s0B0 + ψ0 for some small

vector ψ0, we see that

C0v1 = s0B0v1 + ψ0v1 = s0s
t
1 + ψ0v1.

Similarly, C1 = s1B1 + ψ1 for some small vector ψ1, so we have that

C1v0 = s1B1v0 + ψ1v0 = s1s
t
0 + ψ1v0.

We consider the size of ψ0v1 −ψ1v0 modulo q. First, |ψ0v1| is at most � times
the maximal size of |γjv1|. Using the same analysis as in the proof of Lemma
8.2 of [21], each of these is ≤ q

5� with high probability. Thus, |ψ0v1 − ψ1v0| ≤ 2q
5

with high probability.
Since all of v0, v1, ψ0, ψ1 are short, this will cause these values to be close

modulo q, so the cycle test will output 1 with high probability.
When there is no cycle, the matrices B0 and B1 are (statistically close) to

independent, uniformly random matrices. Thus the probability that s0B0v1 and
s1B1v0 will be within 2

5q modulo q is negligibly close to 2
5 . Thus the cycle test

wins the distinguishing game with probability negligibly close to 1
2 + 1

2 · 3
5 = 4

5 .

6.2 IND-CPA Security of the Tester

To prove that this construction satisfies IND-CPA, we define a sequence of secu-
rity games.

Game0 This is the regular IND-CPA security game for our construction:

1. The challenger runs Setup(1n) → PP = (m, q, �, σ, r, α, z).
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2. The challenger chooses a uniformly random secret key sk in {0, 1}z and runs
TrapGen(sk) to produce a matrix B ∈ Z

n×m
q and a corresponding trap-

door basis TB . It then chooses independent and uniformly random vectors
c1, . . . , c� ∈ Z

n
q and noise vectors γ1, . . . , γ� from χm. It sets

pk = {c1, . . . , c�, y1 := c1B + γ1, . . . , y� := c�B + γ�}.

The challenger gives the parameters PP and key pk to the attacker.
3. A The attacker submits two messages m0,m1 to the challenger.
4. The challenger flips a coin b ∈ {0, 1}. It runs TrapGen(mb) to produce a

matrix Z ∈ Z
n×m
q and a corresponding trapdoor basis TZ . It chooses random

signs r1, . . . , r� ∈ {−1, 1} and computes s :=
∑�

i=1 rici. It then uses TZ to
sample a short (column) vector v such that Zv = st, by calling the algorithm
SampleD. It computes C =

∑�
i=1 riyi, and sets the ciphertext as (C, v).

5. The attacker receives the challenge ciphertext. It then outputs a guess b′ and
wins if b′ = b.

Game1

2. The challenger chooses a uniformly random secret key sk in {0, 1}z and
runs TrapGen(sk) to produce a matrix B ∈ Z

n×m
q and a corresponding

trapdoor basis TB. It then chooses independent and uniformly random vec-
tors c1, . . . , c� ∈ Z

n
q and uniformly random vectors y1, . . . , y� ∈ Z

m
q . It sets

pk = {c1, . . . , c�, y1, . . . , y�}.

Game2

4. The challenger flips a coin b ∈ {0, 1}. It runs TrapGen(mb) to produce a
matrix Z ∈ Z

n×m
q and a corresponding trapdoor basis TZ . It chooses s ran-

domly in Z
n
q . It then uses TZ to sample a short (column) vector v such that

Zv = st, by calling the algorithm SampleD. It chooses C randomly from Z
m
q

and sets the ciphertext as (C, v).

Game3

4. The challenger samples the vector v from DZm,σ. It chooses C randomly from
Z

m
q and sets the ciphertext as (C, v).

At this point, the distribution of the ciphertext is independent of the message,
and it is clear that no PPT adversary can obtain a non-zero advantage.

Lemma 3. Under the LWE assumption for the noise distribution χ, no PPT
attacker can obtain a non-negligible difference in advantage between Game0 and
Game1.

Proof. We can collect the column vectors ct
1, . . . , c

t
� into a n × � matrix we call

D. We can collect the row vectors y1, . . . , ym into a � × m matrix we call Y and
the row vectors γ1, . . . , γ� into a � × m matrix we call Γ. We can then write the
public key as D,DtB + Γ. Since B is never published, each column of B is a
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fresh, uniform vector in Z
n
q , and therefore each column of DtB +Γ is distributed

as an LWE sample with D playing the role of the n×m matrix A and the column
of B playing the role of the random vector s. By a hybrid argument over the
columns, we can thus rely on LWE to change each yi to be uniformly distributed
in Z

m
q .

Lemma 4. No PPT attacker can obtain a non-negligible difference in advantage
between Game1 and Game2.

Proof. For this, we will argue that the distributions of s, C in Game1 and Game2

are statistically close. This is a direct application of Lemma 2 with j set to be
n+m. To see this, we consider the random signs r1, . . . , r� ∈ {−1, 1} as a column
vector R of length �. We then consider the (vertical) concatenation of st and Ct

into a n+m length column vector. In Game1, this is produced as MR, where M
is a (n + m) × � matrix formed by vertically concatenating D and Y t as defined
in the proof of the previous lemma. Since the matrices D,Y are now uniformly
chosen, replacing MR by a uniformly random (n+m)× 1 matrix (as in Game2)
is a statistically close distribution by Lemma 2.

Lemma 5. No PPT attacker can obtain a non-negligible difference in advantage
between Game2 and Game3.

Proof. We will argue that the distributions of v in Game2 and Game3 are sta-
tistically close. We first observe that in Game2, v is chosen so that Zv = st for
a uniformly random s that is now independent of the rest of the ciphertext. The
distribution of v here produced by SampleD is statistically close to DΛs

q(Z),σ.
Now by Lemma 1, if we consider the distribution DZm,σ, the probability mass
on the preimages of st under the mapping Zv = st is (up to a negligible statis-
tical distance) the same for each s. Thus, the distribution of v in both Game2

and in Game3 is statistically close to DZm,σ.
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