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Abstract. Multilinear maps have become popular tools for designing
cryptographic schemes since a first approximate realisation candidate
was proposed by Garg, Gentry and Halevi (GGH). This construction was
later improved by Langlois, Stehlé and Steinfeld who proposed GGHLite
which offers smaller parameter sizes. In this work, we provide the first
implementation of such approximate multilinear maps based on ideal lat-
tices. Implementing GGH-like schemes naively would not allow instan-
tiating it for non-trivial parameter sizes. We hence propose a strategy
which reduces parameter sizes further and several technical improve-
ments to allow for an efficient implementation. In particular, since find-
ing a prime ideal when generating instances is an expensive operation,
we show how we can drop this requirement. We also propose algorithms
and implementations for sampling from discrete Gaussians, for inverting
in some Cyclotomic number fields and for computing norms of ideals in
some Cyclotomic number rings. Due to our improvements we were able
to compute a multilinear jigsaw puzzle for κ = 52 (resp. κ = 38) and
λ = 52 (resp. λ = 80).

Keywords: Algorithms · Implementation · Lattice-based cryptogra-
phy · Cryptographic multilinear maps

1 Introduction

Multilinear maps, starting with bilinear ones, are popular tools for designing
cryptosystems. When pairings were introduced to cryptography [Jou04], many
previously unreachable cryptographic primitives, such as identity-based encryp-
tion [BF03], became possible to construct. Maps of higher degree of linearity
were conjectured to be hard to find – at least in the “realm of algebraic geom-
etry” [BS03]. But in 2013, Garg, Gentry and Halevi [GGH13a] proposed a con-
struction, relying on ideal lattices, of a so-called “graded encoding scheme” that
approximates the concept of a cryptographic multilinear map.
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As expected, graded encoding schemes quickly found many applications in
cryptography. Already in [GGH13a] the authors showed how to generalise the
3-partite Diffie-Hellman key exchange first constructed with cryptographic bilin-
ear maps [BS03] to N parties: the protocol allows N users to share a secret key
with only one broadcast message each. Furthermore, a graded encoding scheme
also allows constructing very efficient broadcast encryption [BS03,BWZ14]: a
broadcaster can encrypt a message and send it to a group where only a part of
it (decided by the broadcaster before encrypting) will be able to read it. More-
over, [GGH+13b] introduced indistinguishability obfuscation (iO) and functional
encryption based on a variant of multilinear maps — multilinear jigsaw puz-
zles — and some additional assumptions.

The GGH Scheme. For a multilinearity parameter κ, the principle of the sym-
metric GGH graded encoding scheme is as follows: given a ring R and a principal
ideal I generated by a small secret element g ∈ R, a plaintext is a small ele-
ment of R/I and is viewed as a level-0 encoding. Given a level-0 encoding, it is
easy increase the level to a higher level i � κ, but it is assumed hard to come
back to an inferior level. The encodings are additively homomorphic at the same
level, and multiplicatively homomorphic up to κ operations. The multiplication
of a level-i and a level-j encoding gives a level-(i + j) encoding. Additionally,
a zero-testing parameter pzt allows testing if a level-κ element is an encoding
of 0, and hence also allows testing if two level-κ encodings are encoding the same
elements. Finally, the extraction procedure uses pzt to extract � bits which are
a “canonical” representation of a ring element given its level-κ encoding.

More precisely, in GGH we are given R = Z[X]/(Xn + 1), where n is a
power of 2, a secret element z uniformly sampled in Rq = R/qR (for a certain
prime number q), and a public element y which is a level-1 encoding of 1 of the
form [a/z]q for some small a in the coset 1 + I. We are also given m level-i

encodings of 0 named x
(i)
j , for all 1 � i � κ, and a zero-testing parameter pzt.

To encode an element of R/I at level-i (for i � κ), we multiply it by yi in Rq

(which give an element of the form
[
c/zi

]
q
, where c is an arbitrary small coset

representative). Then, we add a linear combination of encodings of 0 at level-i
of the form

∑
j ρjx

(i)
j to it where the ρj are sampled from a certain discrete

Gaussian. This last step is the re-randomisation process and ought to ensure
that the analogue of the discrete logarithm problem is hard: going from level-i
to level-0, for example by multiplying the encoding by y−i. We will see later that
the encodings of zero made public for this step are a problem for the security of
the scheme.

The asymmetric variant of this scheme replaces levels by “groups” which are
identified with subsets of {1, . . . , κ}. Addition of two elements in the same group
stays within the group, multiplying two elements of different groups with disjoint
index sets produces an element in the group defined by the union of their index
sets. These groups are realised by defining one zi for each index 1 � i � κ and
then dividing by the appropriate product of zi. Given a group characterised by
S ⊆ {1, . . . , κ} we call the cardinality of S its level.
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We can distinguish between GGH instances where encodings of zero are made
publicly available to allow anyone to encode elements and those where this is
not the case. The latter are also called “Multilinear Jigsaw Puzzles” and were
introduced in [GGH+13b] as a building block for indistinguishability obfusca-
tion. Such instances can be thought of as secret-key graded encoding schemes.
To distinguish the two cases, we denote those instances where no encodings of
zero x

(i)
j are published as GGHs. In such instances the secret elements g and zi

are required to encode elements at levels above zero.

Security. Already in [GGH13a] it was shown that an attacker can recover the
ideal (g) and the coset of (g) for any encoding at level � κ if encodings of
zero are made available. However, since these representatives of either (g) or the
cosets are not small, it was believed that these “weak discrete log” attacks would
not undermine the central security goal of GGH – the analogue of the BDDH
assumption. However, in [HJ15] it was shown that these attacks can be extended
to recover short representatives of the cosets. As a consequence, if encodings of
zero are published, then [HJ15] breaks the GGH security goals in many scenarios
and it is not clear, at present, if and how GGH-like graded encoding schemes can
be defended against such attacks. A candidate proposal to prevent weak discrete
logarithm attacks was proposed in [CLT15, Appendix G], where the strategy is
to change zero testing to make it non-linear in the encodings such that the attack
does not work anymore. However, no security analyses was provided in [CLT15]
and revision 20150516:083005 of [CLT15] drops any mention of this candidate
fix. Hence, the status of GGH-like schemes where encodings of zero are published
is currently unclear. However, we note that GGHs, where no encodings of zero
are made available, does not appear to be vulnerable to weak discrete log attacks
if the freedom of an attacker to produce encodings of zero at the higher levels
is also severely restricted to prevent generalisations of “zeroizing” attacks such
as [CGH+15]. Such variants are the central building block of indistinguishability
obfuscation, i.e. this case has important applications despite being more limited
in functionality. Indeed, at present no known attack threatens the security of
indistinguishability obfuscation constructed from graded encoding schemes such
as GGH.

Alternative Constructions. An alternative instantiation of graded encoding
schemes over the integers promising practicality was proposed by Coron, Lep-
oint and Tibouchi [CLT13]. This first proposal was also broken in polynomial
time using public encodings of zero in [CHL+15]. The attack was later gener-
alised in [CGH+15] and a candidate defence against these attacks was proposed
in [CLT15]. The authors of [CLT15] also provided a C++ implementation of a
heuristic variant of this scheme. They report that the Setup phase of an 7-partite
Diffie-Hellman key exchange takes 4528 s (parallelised on 16 cores), publishing a
share (Publish) takes 7.8 s per party (single core) and the final key derivation
(KeyGen) takes 23.9 s per party (single core) for a level of security λ = 80.
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Instantiation. The implementation reported in [CLT15] is to date the only imple-
mentation of a candidate graded encoding scheme. This is partly because instan-
tiating the original GGH construction is too costly in practice for anything but
toy instances. In 2014, Langlois, Stehlé and Steinfeld [LSS14a] proposed a vari-
ant of GGH called GGHLite, improving the re-randomisation process of the
original scheme. It reduces the number m of re-randomisers, public encodings of
zero, needed from Ω(n log n) to 2 and also the size of the parameter σ�

i of the
Gaussian used to sample multipliers ρj during the re-randomisation phase from
Õ(2λ λ n4.5κ) to Õ(n5.5

√
κ). These improvements allow reducing the size of the

public parameters and improving the overall efficiency of the scheme. But even
though [LSS14a] made a step forward towards efficiency and in some cases no
public re-randomisation is required at all (GGHs), GGH-like schemes are still
far from being practical.

Our contribution. Our main contribution is a first and efficient implementation
of improved GGH-like schemes which we make publicly available under an open-
source license. This implementation covers symmetric and asymmetric flavours
and we allow encodings of zero to be published or not. However, since the security
of GGH-like constructions is unclear when encodings of zero are published, we do
not discuss this variant in this paper. We note, however, that our implementation
provides a good basis for implementing any future fixes and improvements for
GGH-based graded encoding schemes.

Implementing GGH-like schemes efficiently such that non-trivial levels of
multilinearity and security can be achieved is not straight forward and to obtain
an implementation we had to address several issues. In particular, we contribute
the following improvements to make GGH-like multilinear maps instantiable:

• We show that we do not require (g) to be a prime ideal for the existing
proofs to go through. Indeed, sampling an element g ∈ Z[X]/(Xn + 1) such
that the ideal it generates is prime, as required by GGH and GGHLite, is a
prohibitively expensive operation. Avoiding this check is then a key step to
allow us to go beyond toy instances.

• We give a strategy to choose practical parameters for the scheme and extend
the analysis of [LSS14a] to ensure the correctness of all the procedures of the
scheme. Our refined analysis reduces the bitsize of q by a factor of about 4,
which in turn reduces the required dimension n.

• We apply the analyses from [CS97] to pick parameters to defend against lattice
attacks.

• For all steps during the instance generation we provide implementations and
algorithms which work in quasi-linear time and efficiently in practice. In par-
ticular, we provide algorithms and implementations for inverting in some
Cyclotomic number fields, for computing norms of ideals in some Cyclotomic
number rings, for producing short representatives of elements modulo (g) and
for sampling from discrete Gaussians in Õ(n). For the latter we use Ducas
and Nguyen’s strategy [Duc13] Our implementation of these operations might
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Table 1. Computing a κ-level asymmetric multilinear maps with our implementation
without encodings of zero. Column λ gives the minimum security level we accepted,
column λ′ gives the actually expected security level based on the best known attacks for
the given parameter sizes. Timings produced on Intel Xeon CPU E5–2667 v2 3.30 GHz
with 256 GB of RAM, parallelised on 16 cores, but not all operations took full advantage
of all cores. Setup gives the time for generating the GGH instance. Encode lists the time
it takes to reduce an element ∈ Zp with p = N (I) to a small element in Z[X]/ (Xn + 1)
modulo (g). Mult lists the time to multiply κ elements. All times are wall times.

λ κ λ′ n log q Setup Encode Mul ‖enc‖
52 6 64.4 215 2117 114 s 26 s 0.05 s 8.3 MB

52 9 53.5 215 3086 133 s 25 s 0.12 s 12.1 MB

52 14 56.6 216 4966 634 s 84 s 0.62 s 38.8 MB

52 19 56.6 216 6675 762 s 75 s 1.38 s 52.2 MB

52 25 59.6 217 9196 2781 s 243 s 5.78 s 143.7 MB

52 52 62.7 218 19898 26695 s 1016 s 84.1 s 621.8 MB

80 6 155.2 216 2289 415 s 74 s 0.13 s 17.9 MB

80 9 86.7 216 3314 445 s 72 s 0.27 s 25.9 MB

80 14 120.9 217 5288 1525 s 252 s 1.38 s 82.6 MB

80 19 80.4 217 7089 1821 s 268 s 3.07 s 110.8 MB

80 25 138.8 218 9721 9595 s 967 s 13.52 s 303.8 MB

80 38 80.3 218 14649 20381 s 947 s 16.21 s 457.8 MB

be of independent interest (cf. [LP15] for recent work on efficient sampling
from a discrete Gaussian distribution), which is why they are available as a
separate module in our code.

• We discuss our implementation and report on experimental results.

Our results (cf. Table 1) are promising, as we manage to compute up to mul-
tilinearity level κ = 52 (resp. κ = 38) at security level κ = 52 (resp. λ = 80) in
the asymmetric GGHs case. We note that much smaller levels of multilinearity
have been used to realise non-trivial functionality in the literature. For exam-
ple, [BLR+15] reports on comparisons between 16-bit encrypted values using a
9-linear map (however, this result holds in a generic multilinear map model). We
note that the results in Table 1, where no encodings of zero are made available,
are not directly comparable with those reported in [CLT15].

Technical Overview. Our implementation relies on FLINT [HJP14]. However,
we provide our own specialised implementations for operations in the ring of
integers of Cyclotomic number fields where the degree is a power of two and
related rings as listed above.

Our variant of GGH foregoes checking if g generates a prime ideal. Dur-
ing instance generation [GGH13a,LSS14a] specify to sample g such that (g) is a
prime ideal. This condition is needed in [GGH13a,LSS14a] to ensure that no non-
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zero encoding passes the zero-testing test and to argue that the non-interactive
N -partite key exchange produces a shared key with sufficient entropy. We show
that for both argumentswe candrop the requirement that g generates aprime ideal.
This was already mentioned as a potential improvement in [Gar13, Section 6.3] but
not shown there. As rejection sampling until a prime ideal (g) is found is pro-
hibitively expensive due to the low density of prime ideals in Z[X]/(Xn + 1),
this allows speeding-up instance generation such that non-trivial instances are
possible. We also provide fast algorithms and implementations for checking if
(g) ⊂ Z[X]/(Xn + 1) is prime for applications which still require prime (g).

We also improve the size of the two parameters q and � compared to [LSS14a].
We first perform a finer analysis than [LSS14a], which allows us to reduce the size
of the parameter q by a factor 2. Then, we introduce a new parameter ξ, which
controls what fraction of q is considered “small”, i.e. passes the zero-testing test,
which reduces the size of q further. This also reduces the number of bits extracted
from each coefficient �. Indeed, instead of setting � = 1/4 log q −λ where λ is the
security parameter, we set � = ξ log q − λ with 0 < ξ � 1/4. We then show that
for a good choice of ξ this is enough to ensure the correctness of the extraction
procedure and the security of the scheme. Overall, our refined analysis allows

us to reduce the size of q ≈ (3n
3
2 σ�

1σ
′)
8κ

in [LSS14a] to q ≈ (3n
3
2 σ�

1σ
′)
(2+ε)κ

which, in turn, allows reducing the dimension n. When no encodings of zero are
published we simply set σ�

1 = 1 and apply the same analysis.

Open Problems. The most pressing question at this point is whether GGH-like
constructions are secure. There exist no security proofs for any variant and recent
cryptanalysis results recommend caution. Even speculating that secure variants
of GGH-like multilinear maps can be found, performance is still an issue. While
we manage to compute approximate multilinear maps for relatively high levels of
κ in this work, all known schemes are still at least quadratic in κ which presents
a major obstacle to efficiency. Any improvement which would reduce this to
something linear in κ would mean a significant step forward. Finally, establishing
better estimates for lattice reduction and tuning the parameter choices of our
schemes are areas of future work.

Roadmap. We give some preliminaries in Sect. 2. In Sect. 3 we describe the
GGH-like asymmetric graded encoding schemes and the multilinear jigsaw puz-
zles used for iO. In Sect. 4, we explain our modifications to GGH-like schemes,
especially concerning the parameter q. We also recall a lattice attack to derive
the parameter n and show that we do not require (g) to be prime. In Sect. 5, we
give the details of our implementation.

2 Preliminaries

Lattices and Ideal Lattices. An m-dimensional lattice L is an additive subgroup
of R

m. A lattice L can be described by its basis B = {b1, b2, . . . , bk}, with
bi ∈ R

m, consisting in k linearly independent vectors, for some k � m, called
the rank of the lattice. If k = m, we say that the lattice has full-rank. The
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lattice L spanned by B is given by L = {∑k
i=1 ci · bi, ci ∈ Z}. The volume of the

lattice L, denoted by vol(L), is the volume of the parallelepiped defined by its
basis vectors. We have vol(L) =

√
det(BT B), where B is any basis of L.

For n a power of two, let f(X) ∈ Z[X] be a monic polynomial of degree
n (in our case, f(X) = Xn + 1). Then, the polynomial ring R = Z[X]/f(X)
is isomorphic to the integer lattice Z

n, i.e. we can identify an element u(X) =∑n−1
i=0 ui ·Xi ∈ R with its corresponding coefficient vector (u0, u1, . . . , un−1). We

also define Rq = R/qR = Zq[X]/(Xn + 1) (isomorphic to Z
n
q ) for a large prime

q and K = Q[X]/(Xn + 1) (isomorphic to Q
n).

Given an element g ∈ R, we denote by I the principal ideal in R generated
by g: (g) = {g · u : u ∈ R}. The ideal (g) is also called an ideal lattice and
can be represented by its Z-basis (g,X · g, . . . , Xn−1 · g). We denote by N (g) its
norm. For any y ∈ R, let [y]g be the reduction of y modulo I. That is, [y]g is
the unique element in R such that y − [y]g ∈ (g) and [y]g =

∑n−1
i=0 yiX

ig, with
yi ∈ [−1/2, 1/2),∀i, 0 � i � n− 1. Following [LSS14a] we abuse notation and let
σn(b) denotes the last singular value of the matrix rot(b) ∈ Z

n×n, for any b ∈ I.
For z ∈ R, we denote by MSB� ∈ {0, 1}�·n the � most significant bits of each of
the n coefficients of z in R.

Gaussian Distributions. For a vector c ∈ R
n and a positive parameter σ ∈

R, we define the Gaussian distribution of centre c and width parameter σ as
ρσ,c(x) = exp(−π ||x−c||2

σ2 ), for all x ∈ R
n. This notion can be extended to ellip-

soid Gaussian distribution by replacing the parameter σ with the square root
of the covariance matrix Σ = BBt ∈ R

n×n with det(B) �= 0. We define it
by ρ√

Σ,c(x) = exp(−π · (x − c)t(BtB)−1(x − c)), for all x ∈ R
n. For L a

subset of Z
n, let ρσ,c(L) =

∑
x∈L ρσ,c(x). Then, the discrete Gaussian distri-

bution over L with centre c and standard deviation σ (resp.
√

Σ) is defined as
DL,σ,c(y) = ρσ,c(y)

ρσ,c(L) , for all y ∈ L. We use the notations ρσ (resp. ρ√
Σ) and DL,σ

(resp. DL,
√

Σ) when c is 0.

Finally, for a fixed Y = (y1, y2) ∈ R2, we define: ẼY,s = y1DR,s + y2DR,s

as the distribution induced by sampling u = (u1, u2) ∈ R2 from a discrete
spherical Gaussian with parameter s, and outputting y = y1u1+y2u2. It is shown
in [LSS14a, Theorem 5.1] that if Y ·R2 = I and s � max(‖g−1y1‖∞, ‖g−1y2‖∞) ·
n · √

2 log(2n(1 + 1/ε))/π for ε ∈ (0, 1/2), this distribution is statistically close
to the Gaussian distribution DI,sY T .

3 GGH-like Asymmetric Graded Encoding Scheme

We now recall the definitions given in [GGH+13b, Section 2.2] for the notions of
Jigsaw specifier, Multilinear Form and Multilinear Jigsaw puzzle.

Definition 1 ([GGH+13b, Definition 5]). A Jigsaw specifier is a tuple (κ, �, A)
where κ, � ∈ Z

+ are parameters and A is a probabilistic circuit with the following
behavior: On input a prime number q, A outputs the prime q and an ordered set
of � pairs (S1, a1), . . . , (S�, a�) where each ai ∈ Zq and each Si ⊆ [κ].
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Definition 2 ([GGH+13b, Definition 6 and 7]). A Multilinear Form is a
tuple F = (κ, �,Π, F ) where κ, � ∈ Z

+ are parameters and Π is a circuit with �
input wires, made out of binary and unary gates. F is an assignment of an index
set I ⊆ [κ] to every wire of Π. A multilinear form must satisfies constraints given
in the original definition (on gates, and the output wire is assigned to [κ]).

We say that a Multilinear Form F = (κ′, �′,Π, F ) is compatible with X =
((S1, a1), . . . , (S�, a�)) if κ = κ′, � = �′ and the input wires of Π are assigned to
the sets S1, . . . , S�. The evaluation of F on X is then doing arithmetic operations
on the inputs depending on the gates. We say that the evaluation succeeds if the
final output is ([κ], 0).

We now define the Multilinear Jigsaw Puzzles.

Jigsaw Generator: JGen(λ, κ, �, A) → (q,X, puzzle). This algorithm takes
as input λ, and a Jigsaw specifier (κ, �, A). It outputs a prime q, a private
output X and a public output puzzle. The generator is using a pair of PPT
algorithms JGen = (InstGen,Encode).

InstGen(λ, κ) → (q, params, s). This algorithm takes λ and κ as inputs and
outputs (q, params, s), where q is a prime of size at least 2λ, params is a
description of public parameters, and s is a secret state to pass to the
encoding algorithm.

Encode(q, params, s, (S, a)) → (S, u). The encoding algorithm takes as inputs
the prime q, the parameters params, the secret state s, and a pair (S, a)
with S ⊆ [κ] and a ∈ Zq and outputs u, an encoding of a relative to S.

More precisely, the algorithm runs the Jigsaw specifier on input q to get �
pairs (S1, a1), . . . , (S�, a�). Then encodes all the plaintext elements by using
the Encode algorithm on each (Si, ai) which return (Si, ui). We have:

X = (q, (S1, a1), . . . , (S�, a�)) and puzzle = (params, (S1, u1), . . . , (S�, u�)).

Jigsaw Verifier: JVer(puzzle,F) → {0, 1}. This algorithm takes as input the
public output of a Jigsaw Generator puzzle, and a multilinear form F . It
outputs either accept (1) or reject (0).

Correctness. For an output (q,X, puzzle) and a form F compatible with X, we
say that the verifier JVer is correct if either the evaluation of F on X succeeds
and JVer(puzzle,F) = 1 or the evaluation fails and JVer(puzzle,F) = 0. We
require that with high probability over the randomness of the generator, the
verifier will be correct on all forms.

Security. Thehardness assumptions for theMultilinear Jigsawpuzzle requires that
for two different polynomial-size families of Jigsaw Specifier {(κλ, �λ, Aλ)}λ∈Z+

and {(κλ, �λ, A′
λ)}λ∈Z+ the public output of the Jigsaw Generator on (κλ, �λ, Aλ)

will be computationally indistinguishable from the public output of the Jigsaw
Generator on (κλ, �λ, A′

λ).
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3.1 Using GGH to Construct Jigsaw Puzzles

In Fig. 1, we describe a GGH-like asymmetric graded encoding scheme without
encodings of zero based on the definition of GGHLite from [LSS14a]. Below, we
explain how to use those procedures to construct the Jigsaw Generator, described
in [GGH+13b, Appendix A].

Instance generation. InstGen 1λ, 1κ : Given security parameter λ and multilinear-
ity parameter κ, determine scheme parameters n, q, σ, σ , �g 1 , �b, � as in [LSS14a].
Then proceed as follows:

Sample g DR,σ until g 1 �g 1 and I g is a prime ideal. Define
encoding domain Rg R g .
Sample zi U Rq for all 0 i κ.

Sample h DR, q and define the zero-testing parameter pzt
h
g

κ
i 1 zi

q
.

Return public parameters params n, q, � and pzt.

Encode at level-0 Enc0 params, g, e : Compute a small representative e e g

and sample an element e De I,σ . Output e .
Encode in group i . Enc params, zi, e : Given parameters params, zi, and a
level-0 encoding e R, output e zi q.

Adding encodings. Add params, u1, u2 : Given encodings u1 c1 i S zi q

and u2 c2 i S zi q
with S 1, . . . , κ :

Return u u1 u2 q, an encoding of c1 c2 q in the group S.
Multiplying encodings. Mult params, u1, u2 : Let S1 κ , S2 κ with

S1 S2 , given an encoding u1 c1 i S1
zi

q
and an encoding

u2 c2 i S2
zi

q
:

Return u u1 u2 q, an encoding of c1 c2 q in S1 S2.
Zero testing at level κ. isZero params, pzt, u : Given parameters params, a zero-
testing parameter pzt, and an encoding u c κ 1

i 0 zi q
in the group κ ,

return 1 if pztu q q3 4 and 0 else.

Fig. 1. GGH-like asymmetric graded encoding scheme adapted from [LSS14a].

Jigsaw Generator. The Jigsaw Generator uses InstGen to generate all the
public (params and pzt) and secret parameters of the multilinear map. Each
level of the multilinear map will be associated with a subset of the set [κ].
To create the puzzle pieces, which are encodings of some elements of R at
different level, the Generator simply encodes some random elements at level
S ⊂ [1, κ], those are given as puzzle.

Jigsaw Verifier. The verifier is given the public parameters params and pzt,
a valid form Π (which is defined [GGH+13b, Def. 6] in as a circuit made
of binary and unary gates) and puzzle, an input for Π (which are some
encodings). The verifier is then evaluating Π on these input using Add for
addition gates and Mult for multiplication gates. The verifier must succeeds
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if the evaluation of F on X succeeds, which means that the final output of
the evaluation is an encoding of zero at level κ. The verifier is invoking the
zero-testing procedure, and outputs 1 if the test passes, 0 otherwise.

4 Modifications to and Parameters for GGH-like Schemes

In this section, we first show that we do not require a prime (g) and then describe
a method which allows to reduce the size of two parameters: the modulus q and
the number � of extracted bits. In Sect. 4.3 then we describe the lattice-attack
against the scheme which we use to pick the dimension n. Finally, we describe
our strategy to choose parameters that satisfy all these constraints.

4.1 Non-prime (g)

Both GGHLite and GGH-like jigsaw puzzles as specified in Fig. 1 require to
sample a g such that (g) is a prime ideal. However, finding such a g is pro-
hibitively expensive. While checking each individual g whether (g) is a prime
ideal is asymptotically not slower than polynomial multiplication, finding such
a g requires to run this check often. The probability that an element generates
a prime ideal is assumed to be roughly 1/(nc) for some constant c > 1 [Gar13,
Conjecture 5.18], so we expect to run this check nc times. Hence, the overall
complexity is at least quadratic in n which is too expensive for anything but toy
instances.

Primality of (g) is used in two proofs. Firstly, to ensure that after multiplying
κ+1 elements in Rg the product contains enough entropy. This is used to argue
entropy of the N -partite non-interactive key exchange. Secondly, to prove that
c · h/g is big if c, h �∈ g (cf. Lemma 2). Below, we show that we can relax the
conditions on g for these two arguments to still go through, which then allows
us to drop the condition that (g) should be prime. We note, though, that some
other applications might still require g to be prime and that future attacks might
find a way to exploit non-prime (g).

Entropy of the Product. The next lemma shows that excluding prime factors
� 2N and guaranteeing N (g) � 2n is sufficient to ensure 2λ bits of entropy in
a product of κ + 1 elements in Rg with overwhelming probability. We note that
both conditions hold with high probability, are easy to check and are indeed
checked in our implementation.

Lemma 1. Let κ � 2, λ be the security parameter and g ∈ Z[X]/(Xn + 1) with
norm p = N (g) � 2n such that p has no prime factors � 2κ + 2, and such
that n � κ · λ · log(λ). Then, with overwhelming probability, the product of κ + 1
uniformly random elements in Rg has at least κ · λ · log(λ)/4 bits of entropy.

Proof. Write p =
∏r

i=1 pei
i where pi are distinct primes and ei ≥ 1 for all i. Let

us consider the set S = {i ∈ {1, . . . , r} : ei = 1}. Then, following [CDKD14] we
define ps =

∏
i∈S pi as the square-free part of p. Asymptotically, it holds that
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#{p � x : p/ps > ps} is cx3/4 for some computable constant c (cf. [CDKD14]).
Since in our case we have x � 2n, this implies that with overwhelming probability
it holds that ps � √

p and hence log(ps) � n/2.
By the Chinese Remainder Theorem, Rg is isomorphic to F1 ×· · ·×Fr where

each “slot” Fi = Zp
ei
i

. The set of Fi, for i ∈ S corresponds to the square-free
part of p. Those Fi are fields, and each of them has order pi � 2N which means
that a random element in such Fi is zero with probability 1/pi. In those slots,
the product of N elements has Es bits of entropy, where

Es =
∑

i∈S

(
1 − N

pi

)
log(pi).

First, as pi � 2N for all i ∈ S, the quotient N/pi � 1/2 and then
(
1 − N

pi

)
� 1/2

for all i ∈ S. This implies that

Es � 1/2
∑

i∈S
log(pi) = 1/2 log

( ∏

i∈S
pi

)
= 1/2 log(ps).

Because log(ps) � n/2, we conclude that Es � n
4 � κ·λ·log(λ)

4 . �


Probability of False Positive. It remains to be shown that we can ensure that
there are no false positives even if (g) is not prime. In [GGH13a, Lemma 3] false
positives are ruled out as follows. Let u = [c/zκ]q where c is a short element in
some coset of I, and let w = [pzt · u]q, then we have w = [c · h/g]q. The first step
in [GGH13a] is to suppose that ‖g · w‖ and ‖c · h‖ are each at most q/2, then,
since g · w = c · h mod q we have that g · w = c · h exactly. We also have an
equality of ideals: (g) · (w) = (c) · (h), and then several cases are possible. If (g)
is prime as in [GGH13a, Lemma 3], then (g) divides either (c) or (h) and either
c or h is in (g). As, by construction, none of them is in (g) if c is not in I, either
‖g · w‖ or ‖c · h‖ is more than q/2. Using this, they conclude that there is no
small c (not in I) such that w is small enough to be accepted by the zero-test.

Our approach is to simply notice that all we require is that (g) and (h)
are co-prime. Checking if (g) and (h) are co-prime can be done by checking
gcd(N (g),N (h)) = 1. However, computing N (h) is rather costly because h is
sampled from DZn,

√
q and hence has a large norm. To deal with this issue we

notice that if gcd(N (g),N (h)) �= 1 then we also have gcd(N (g),N (h mod g)) �=
1 which can be verified with a simple calculation. Now, interpreting h mod g as
“a small representative of h modulo g”, we can compute h mod g as h−g ·�g−1 ·
h�, which produces an element of size ≈ √

n ·‖g‖. We can use this observation to
reduce the complexity of checking if (g) and (h) are co-prime to computing two
norms for elements of size ‖g‖ and ≈ √

n·‖g‖ and taking their gcd. Furthermore,
this condition holds with high probability, i.e. we only have to perform this test
O(1) times. Indeed, by ruling out likely common prime factors first, we expect
to run this test exactly once. Hence, checking co-primality of (g) and (h) is much
cheaper than finding a prime (g) but still rules out false positives.
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Finally, we note that recent proposals of indistinguishability obfuscation from
multilinear maps [Zim15,AB15] requires composite order maps. These are not
the maps we are concerned with here as in [Zim15,AB15] it is assumed that
the factorisation of (g) is known. However, we note that our techniques and
implementation easily extend to this case by considering g = g1 · g2 for known
co-prime g1 and g2.

4.2 Reducing the Size of q

In this section, we show how to reduce q for which we consider the case where
re-randomisers are published for level-1 but no other levels. This matches the
requirements of the N -partite Diffie-Hellman key exchange but not the Jigsaw
puzzle case. However, when no re-randomisers are published we may simply set
σ�
1 = 1 and apply the same analysis. Hence, assuming that re-randomisers are

published fits our framework in all cases and makes our analysis compatible with
previous work. We note that the analysis can be easily generalised to accommo-
date re-randomisers at higher levels than one by increasing q to accommodate
“numerator growth”.

The size of q is driven from both correctness and security considerations. To
ensure the correctness of the zero-testing procedure, [LSS14a] showed the two
following lower bounds on q. Equation 1 implies that false negatives do not exist,
and Eq. 2 implies that the probability of false positive occurrence is negligible:

q > max
(
(n�g−1)8, (3n

3
2 σ�

1σ
′)
8κ

)
, (1)

q > (2nσ)4. (2)

The strongest constraint for q is given by the inequality q > (3n
3
2 σ�

1σ
′)
8κ

. It
comes from the fact that for any level-κ encoding u of 0, the inequality ‖pztu‖∞ <
q3/4 has to hold. The condition is needed for the correctness of zero-testing and
extraction.

New parameter ξ. The choice suggested in [LSS14a] is to extract � = log(q)/4 −
λ bits from each element of the level-κ encoding. We show that this supplies
much more entropy than needed and that we can sample a smaller fraction,
� = ξ log(q)−λ bits. The equation for q can be rewritten in terms of the variable
ξ, by setting the initial condition ‖pzt u‖∞ < q1−ξ.

Lemma 2 (Adapted from Lemma A.1 in [LSS14b]). Let g ∈ R and
I = (g), let c, h ∈ R such that c /∈ I, (g) and (h) are co-prime, ‖c · h‖ < q/2 and
q > (2tnσ)1/ξ for some t � 1 and any 0 < ξ � 1/4. Then ‖[c · h/g]q‖ > t · q1−ξ.

Proof. From [GGH13a, Lemma 3] and the discussion in Sect. 4.1 we know that
since ‖c · h‖ < q/2 we must have

∥
∥
∥g · [c · h/g]q

∥
∥
∥ > q/2 if (g) and (h) are co-

prime (note that c ·h �= g · [c · h/g]q in R/(Xn +1)). So we have
∥
∥
∥g · [c · h/g]q

∥
∥
∥ >

q/2 =⇒ √
n ‖g‖·

∥
∥
∥[c · h/g]q

∥
∥
∥ > q/2 =⇒

∥
∥
∥[c · h/g]q

∥
∥
∥ > q/(2nσ). We have t·q1−ξ =

t · q/qξ < t · q/(2tnσ) = q/(2nσ) and the claim follows. �
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Correctness of Zero-Testing. We can obtain a tighter bound on q by refining
the analysis in [LSS14a]. Recall that ‖[pzt u]q‖∞ = ‖[hc/g]q‖∞ = ‖h · c/g‖∞ �
‖h‖ · ‖c/g‖ � ‖h‖ · ‖c‖ · ‖g−1‖√

n. The first inequality is a direct application of
the inequalities between the infinity norm of a product and the product of the
Euclidean norms, the second comes from [Gar13, Lemma 5.9].

Since h ← DR,
√

q, we have ‖h‖ � √
nq1/2. Moreover, c can be written as

a product of κ level-1 encodings ui, for i = 1, . . . , κ, i.e., c =
∏κ

i=1 ui. Thus,
‖c‖ � (

√
n)κ−1(maxi=1,...,κ ‖ui‖)κ since each of the κ − 1 multiplications brings

an extra
√

n factor. Let umax be one of the ui of largest norm. It can be written
as umax = e · a + ρ1 · b1(1) + ρ2 · b2(1). As we sampled the polynomial g such that∥
∥g−1

∥
∥ � lg−1 the inequality ‖[pzt u]q‖∞ < q1−ξ holds if:

nlg−1(
√

n)κ−1‖(e · a + ρ1 · b
(1)
1 + ρ2 · b

(1)
2 )‖κ < q1/2−ξ. (3)

Then, since

‖e ·a+ρ1 ·b(1)1 +ρ2 ·b(1)2 ‖κ � (‖e‖ · ‖a‖√n + ‖ρ1‖ · ‖b
(1)
1 ‖√

n + ‖ρ2‖ · ‖b
(1)
2 ‖√

n)
κ
,

e ← DR,σ′ , a ← D1+I,σ′ , b
(1)
1 , b

(1)
2 ← DI,σ′ and ρ1, ρ2 ← DR,σ�

1
, we can bound

each of these values as ‖e‖, ‖a‖, ‖b
(1)
1 ‖, ‖b

(1)
2 ‖ � σ′√n, ‖ρ1‖, ‖ρ2‖ � σ�

1

√
n to get:

nlg−1(
√

n)κ−1(σ′√n · σ′√n · √
n + 2 · σ�

1

√
n · σ′√n · √n)κ

< q1/2−ξ,

(
nlg−1(

√
n)κ−1((σ′)2n

3
2 + 2σ�

1σ
′n

3
2 )

κ
) 2

1−2ξ

< q. (4)

In [LSS14a], we had ξ = 1/4 (which give 2/(1 − 2ξ) = 4), we hence have that
this analysis allows to save a factor of 2 in the size of q even for the same ξ. If
we additionally consider ξ < 1/4 bigger improvements are possible. For practical
parameter sizes we reduce the size of q by a factor of almost 4 because ξ tends
towards zero as κ and λ grow.

Correctness of Extraction. As in [LSS14a], we need that two level-κ encodings
u and u′ of different elements have different extracted elements, which implies
that we need: ‖[pzt(u − u′)]q‖∞ > 2L−�+1 with L = �log q�. This condition
follows from Lemma 2 with t satisfying t · q1−ξ > 2L−�+1, which holds for t =
qξ · 2−�+1. As a consequence, the condition q > (2tnσ)1/x is still satisfied if we
have � > log2(8nσ), and to ensure that t > 1 we need that � < ξ log q + 2.
Finally, to ensure that εext, the probability of the extraction to be the same for
two different elements, is negligible, we need that � � ξ log2 q − log2(2n/εext).

Picking ξ and q. Putting all constraints together, we let � = log(8nσ) and

q̃ = nlg−1(
√

n)κ−1
(

(σ′)2n
3
2 + 2σ�

1σ
′n

3
2

)κ

.

To find ξ we solve � + λ = 2ξ
1−2ξ · log q̃ for ξ and set q = q̃

2
1−2ξ .
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4.3 Lattice Attacks

To pick a dimension n we rely on lattice attacks. The most efficient lattice
attacks described [GGH13a] rely on computing weak discrete logarithms and
hence do not seem to be applicable to either the case where no encodings of
zero are published or the case where such attacks are ruled out in some other
way. However, we may mount the attack from [CS97] against GGH-like graded
encoding schemes. We explain it in the symmetric setting. Assume two encodings
of random elements: u1 = [e1/z]q and u2 = [e2/z]q. We have

[
u1

u2

]

q

=
[
e1/z

e2/z

]

q

=
[
e1
e2

]

q

with e1 and e2 small. We set up the lattice Λ =
(

qI 0
X I

)
where I is the n × n

identity matrix, 0 is the n×n zero matrix, and U a rotational basis for [u1/u2]q.
By construction Λ contains the vector (e1, e2) which is short. We have det(Λ) =
qn and ‖(e1, e2)‖ ≈ √

2nσ′. In contrast, a random lattice with determinant qn

and dimension 2n is expected to have a shortest vector of norm ≈ qn/2n =
√

q
which is much longer than ‖(e1, e2)‖. While Λ does not constitute a Unique-
SVP instance because there are many short elements of norm roughly

√
2nσ′

we may consider all of these “interesting”. Clearly, there is a gap between those
“interesting” vectors and the expected length of short vectors for random lattices.
To hedge against potential attacks exploiting this gap, we may hence want to
ensure that finding those “interesting” short vectors is hard. The hardness of
Unique-SVP instances is determined by the ratio of the second shortest λ2(Λ)
and the shortest vector λ1(Λ) of the lattice. We assume that the complexity of
finding a short element in Λ depends on the gap between (e1, e2) and

√
q in a

similar way.
In order to succeed, an attacker needs to solve something akin of a Unique-

SVP instance with gap λ2(Λ)/λ1(Λ). We need to pick parameters such that
this problem takes at least 2λ operations. The most efficient technique known
in the literature to produce short lattice vectors is to run lattice reduction.
The quality of lattice reduction is typically expressed as the root-Hermite factor
σ0. An algorithm with root-Hermite factor σ0 is expected to output a vector
v in a lattice L such that ‖v‖ = σn

0 vol(L)1/n. Hence, in our case we require
τ · σ2n

0 � λ2(Λ)/λ1(Λ) and thus

σ0 �
( √

q√
2n · σ′ · τ

)1/(2n)

, (5)

where τ is a constant which depends on the lattice structure and on the reduction
algorithm used. Typically τ ≈ 0.3 [APS15], which we will use as an approxima-
tion.

Currently, the most efficient algorithm for lattice reduction is a variant of the
BKZ algorithm [SE94] referred to as BKZ 2.0 [CN11]. However, its running time
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and behaviour, especially in high dimensions, is not very well understood: there
is no consensus in the literature as to how to relate a given σ0 to computational
cost. We estimate the cost of lattice reduction as in [APS15].

We stress, though, that these assumptions requires further scrutiny. Firstly,
this attack does not use pzt which means we expect that better lattice attacks
can be found eventually. Secondly, we are assuming that the lattice reduction
estimates in [APS15] are accurate. However, should these assumptions be falsi-
fied, then this part of the analysis can simply be replaced by refined estimates.

4.4 Putting Everything Together

Our overall strategy is as follows. Pick an n and compute parameters σ, σ′, σ�
1 as

in [LSS14a] and �g and q as in Sect. 4.2. Now, establish the root-Hermite factor
required to carry out the attack in Sect. 4.3 using Equation (5). If this σ0 is small
enough to satisfy security level λ terminate, otherwise double n and restart the
procedure.

We give choices of parameters in Table 2.

Table 2. Parameter choices for multilinear jigsaw puzzles.

λ κ n q ‖ enc ‖ ‖ params ‖ σ0 BKZ Enum BKZ Sieve

52 2 214 ≈ 2781.5 ≈ 223.6 ≈ 223.6 1.006855 ≈ 2112.2 ≈ 2101.8

52 4 215 ≈ 21469.0 ≈ 225.5 ≈ 225.5 1.007031 ≈ 2110.4 ≈ 2102.3

52 6 215 ≈ 22114.9 ≈ 226.0 ≈ 226.0 1.010477 ≈ 264.4 ≈ 283.3

52 10 215 ≈ 23406.8 ≈ 226.7 ≈ 226.7 1.017404 ≈ 253.5 ≈ 268.6

52 20 216 ≈ 27014.8 ≈ 228.8 ≈ 228.8 1.018311 ≈ 256.6 ≈ 271.7

52 40 217 ≈ 214599.3 ≈ 230.8 ≈ 230.8 1.019272 ≈ 259.6 ≈ 274.8

52 80 218 ≈ 230508.4 ≈ 232.9 ≈ 232.9 1.020258 ≈ 262.7 ≈ 277.8

52 160 218 ≈ 260827.8 ≈ 233.9 ≈ 233.9 1.040912 ≈ 254.0 ≈ 254.0

80 2 214 ≈ 2837.5 ≈ 223.7 ≈ 223.7 1.007451 ≈ 298.2 ≈ 294.5

80 4 215 ≈ 21525.0 ≈ 225.6 ≈ 225.6 1.007330 ≈ 2103.7 ≈ 298.8

80 6 216 ≈ 22287.2 ≈ 227.2 ≈ 227.2 1.005661 ≈ 2160.9 ≈ 2128.3

80 10 217 ≈ 23844.7 ≈ 228.9 ≈ 228.9 1.004882 ≈ 2209.0 ≈ 2150.9

80 20 218 ≈ 27824.9 ≈ 230.9 ≈ 230.9 1.005074 ≈ 2198.9 ≈ 2148.5

80 40 219 ≈ 216152.9 ≈ 233.0 ≈ 233.0 1.005294 ≈ 2188.4 ≈ 2145.7

80 80 220 ≈ 233546.4 ≈ 235.0 ≈ 235.0 1.005528 ≈ 2179.7 ≈ 2143.6

80 160 221 ≈ 269810.9 ≈ 237.1 ≈ 237.1 1.005769 ≈ 2171.3 ≈ 2141.4

5 Implementation

Our implementation relies on FLINT [HJP14]. We use its data types to encode
elements in Z[X], Q[X], and Zq[X] but re-implement most non-trivial opera-
tions for the ring of integers of a Cyclotomic number field where the degree is a
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power of two. Other operations — such as Gaussian sampling or taking approx-
imate inverses — are not readily available in FLINT and are hence provided
by our implementation. For computation with elements in R we use MPFR’s
mpfr t [The13] with precision 2λ if not stated otherwise. Our implementation is
available under the GPLv2+ license at https://bitbucket.org/malb/gghlite-flint.
We give experimental results for computing multilinear maps using our imple-
mentation in Table 1.

For all operations considered in this section naive algorithms are available in
O (

n2 log q
)

or O (
n3 log n

)
bit operations. However, the smallest set of parame-

ters we consider in Table 1 is n = 215 which implies that if implemented naively
each operation would take 249 bit operations for the smallest set of parameters
we consider. Even quadratic algorithms can be prohibitively expensive. Hence, in
order to be feasible, all algorithms should run in quasi-linear time in n, or more
precisely in O (n log n) or O (

n log2 n
)
. All algorithms discussed in this section

run in quasi-linear time.

5.1 Polynomial Multiplication in Zq[X]/(Xn + 1)

During the evaluation of a GGH-style graded encoding scheme multiplications of
polynomials in Zq[X]/(Xn+1) are performed. Naive multiplication takes O (

n2
)

time in n, Asymptotically fast multiplication in this ring can be realised by first
reducing to multiplication in Z[X] and then to the Sch?nehage-Strassen algo-
rithm for multiplying large integers in O(n log n log log n). This is the strategy
implemented in FLINT, which has a highly optimised implementation of the
Sch?nehage-Strassen algorithm. Alternatively, we can get an O(n log n) algo-
rithm by using the Number-Theoretic Transform (NTT). Furthermore, using a
negative wrapped convolution we can avoid reductions modulo (Xn + 1):

Theorem 1 (Adapted from [Win96]). Let ωn be a nth root of unity in Zq

and ϕ2 = ωn. Let a =
∑n−1

i=0 aiX
i and b =

∑n−1
i=0 biX

i ∈ Zq[X]/(Xn + 1). Let
c = a · b ∈ Zq[X]/(Xn +1) and let a = (a0, ϕa1, . . . , ϕ

n−1an−1) and define b and
c analogously. Then c = 1/n · NTT−1

ωn
(NTTωn

(a) � NTTωn
(b)).

The NTT with a negative wrapped convolution has been used in lattice-based
cryptography before, e.g. [LMPR08]. We note that if we are doing many opera-
tions in Zq[X]/(Xn + 1) we can avoid repeated conversions between coefficient
and “evaluation” representations,

(
f(1), f(ωn), . . . , f(ωn−1

n )
)
, of our elements,

which reduces the amortised cost from O(n log n) to O(n). That is, we can con-
vert encodings to their evaluation representation once on creation and back only
when running extraction. We implemented this strategy. We observe a consider-
able overall speed-up with the strategy of avoiding the conversions where possi-
ble. We also note that operations on elements in their evaluation representation
are embarrassingly parallel.

5.2 Computing Norms in Z[X]/(Xn + 1)

During instance generation we have to compute several norms of elements in
Z[X]/(Xn + 1). The norm N (f) of an element f in Z[X]/(Xn + 1) is equal to

https://bitbucket.org/malb/gghlite-flint
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the resultant res(f,Xn + 1). The usual strategy for computing resultants over
the integers is to use a multi-modular approach. That is, we compute resul-
tants modulo many small primes qi and then combine the results using the
Chinese Remainder Theorem. Resultants modulo a prime qi can be computed
in O(M(n) log n) operations where M(n) is the cost of one multiplication in
Zqi

[X]/(Xn + 1). Hence, in our setting computing the norm costs O(n log2 n)
operations without specialisation.

However, we can observe that res(f,Xn + 1) mod qi can be rewritten as∏
(Xn+1)(x)=0 f(x) mod qi as Xn + 1 is monic, i.e. as evaluating f on all roots

of Xn + 1. Picking qi such that qi ≡ 1 mod 2n this can be accomplished using
the NTT reducing the cost mod qi to O(M(n)) saving a factor of log n, which
in our case is typically > 15.

5.3 Checking if (g) is a Prime Ideal

While we show in Sect. 4.1 that we do not necessarily require a prime (g), some
applications might still rely on this property. We hence provide an implementa-
tion for sampling such g.

To check whether the ideal generated by g is prime in Z[X]/(Xn + 1) we
compute the norm N (g) and check if it is prime which is a sufficient but not
necessary condition. However, before computing full resultants, we first check if
res(g,Xn + 1) = 0 mod qi for several “interesting” primes qi. These primes are
2 and then all primes up to some bound with qi ≡ 1 mod n because these occur
with good probability as factors. We list timings in Table 3.

Table 3. Average time of checking primality of a single (g) on Intel Xeon CPU E5–2667
v2 3.30 GHz with 256 GB of RAM using 16 cores.

n log σ wall time n log σ wall time n log σ wall time

1024 15.1 0.54 s 2048 16.2 3.03 s 4096 17.3 20.99 s

5.4 Verifying that (b(1)1 b
(1)
2 ) = (g)

If re-randomisation elements are required, then it is necessary that they generate
all of (g), i.e. (b(1)1 , b

(1)
2 ) = (g). If b

(1)
i = b̃

(1)
i · g for 0 < i � 2 then this condition

is equivalent to (b̃(1)1 ) + (b̃(1)2 ) = R. We check the sufficient but not necessary
condition gcd(res(b̃(1)1 ,Xn + 1), res(b̃(1)2 ,Xn + 1)) = 1, i.e. if the respective ideal
norms are co-prime. This check, which we have to perform for every candidate
pair (b̃(1)1 , b̃

(1)
2 ), involves computing two resultants and their gcd which is quite

expensive. However, we observe that gcd(res(b̃(1)1 ,Xn +1), res(b̃(1)2 ,Xn +1)) �= 1
when res(b̃(1)1 ,Xn+1) = 0 = res(b̃(1)2 ,Xn+1) mod qi for any modulus qi. Hence,
we first check this condition for several “interesting” primes and resample if this
condition holds. These “interesting” primes are the same as in the previous
section. Only if these tests pass, we compute two full resultants and their gcd.
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Indeed, after having ruled out small common prime factors it is quite unlikely
that the gcd of the norms is not equal to one which means that with good
probability we will perform this expensive step only once as a final verification.
However, this step is still by far the most time consuming step during setup even
with our optimisations applied. We note that a possible strategy for reducing
setup time is to sample m > 2 re-randomisers b

(1)
i and to apply some bounds on

the probability of m elements b̃
(1)
i sharing a prime factor (after excluding small

prime factors).

5.5 Computing the Inverse of a Polynomial Modulo Xn + 1

Instance generation relies on inversion in Q[X]/(Xn + 1) in two places. Firstly,
when sampling g we have to check that the norm of its inverse is bounded
by �g. Secondly, to set up our discrete Gaussian samplers we need to run many
inversions in an iterative process. We note that for computing the zero-testing
parameter we only need to invert g in Zq[X]/(Xn + 1) which can be realised in
n inversions in Zq in the NTT representation.

In both cases where inversion in Q[X]/(Xn + 1) is required approximate
solutions are sufficient. In the first case we only need to estimate the size of g−1

and in the second case inversion is a subroutine of an approximation algorithm
(see below). Hence, we implemented a variant of [BCMM98] to compute the
approximate inverse of a polynomial in Q[X]/(Xn + 1), with n a power of two.

The core idea is similar to the FFT, i.e. to reduce the inversion of f to
the inversion of an element of degree n/2. Indeed, since n is even, f(X) is
invertible modulo Xn + 1 if and only if f(−X) is also invertible. By setting
F (X2) = f(X)f(−X) mod Xn + 1, the inverse f−1(X) of f(X) satisfies

F (X2) f−1(X) = f(−X) (mod Xn + 1). (6)

Let f−1(X) = g(X) = Ge(X2) + XGo(X2) and f(−X) = Fe(X2) + XFo(X2)
be split into their even and odd parts respectively. From Eq. 6, we obtain F (X2)
(Ge(X2)+XGo(X2)) = Fe(X2)+XFo(X2) (mod Xn+1) which is equivalent to

{
F (X2)Ge(X2) = Fe(X2) (mod Xn + 1)
F (X2)Go(X2) = Fo(X2) (mod Xn + 1).

From this, inverting f(X) can be done by inverting F (X2) and multiplying
polynomials of degree n/2. It remains to recursively call the inversion of F (Y )
modulo (Xn/2 + 1) (by setting Y = X2). This leads to an algorithm for approx-
imately inverting elements of Q[X]/(Xn + 1) when n is a power of 2 which can
be performed in O(n log2(n)) operations in Q. We give experimental results in
Table 4.

We give experimental results comparing Algorithm 1 with FLINT’s extended
GCD algorithm in Table 4 which highlights that computing approximate inverses
instead of exact inverses is necessary for anything but toy instances.
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Algorithm 1. Approximate inverse of f(X) mod Xn + 1 using prec bits of
precision

if n = 1 then
g0 ← f−1

0

else
F (X2) ← f(X)f(−X) mod Xn + 1
F̃ (Y ) = F (Y ) truncated to prec bits of precision
G(Y ) ← InverseMod(F̃ (Y ), q, n/2)
Set Fe(X

2), Fo(X
2) such that f(−X) = Fe(X

2) + XFo(X
2)

Te(Y ), To(Y ) ← G(Y ) · Fe(Y ), G(Y ) · Fo(Y )
f−1(X) ← Te(X

2) + XTo(X
2)

f̃−1(X) = f−1(X) truncated to prec bits of precision
return f̃−1(X)

end if

Table 4. Inverting g ←↩ DZn,σ with FLINT’s extended Euclidean algorithm (“xgcd”),
our implementation with precision 160 (“160”), iterating our implementation until
‖f̃−1(X)·f(X)‖ < 2−160 (“160iter”) and our implementation without truncation (“∞”)
on Intel Core i7–4850HQ CPU at 2.30 GHz, single core.

n log σ xgcd 160 160iter ∞
4096 17.2 234.1 s 0.067 s 0.073 s 121.8 s

8192 18.3 1476.8 s 0.195 s 0.200 s 755.8 s

5.6 Small Remainders

The Jigsaw Generator as defined in [GGH+13b, Definition 8] takes as input ele-
ments ai in Zp where p = N (I) and produces level encodings with respect to
some source group Si. In particular, this algorithm produces some small rep-
resentative of the coset ai modulo (g) from large integers of size ≈ (σ

√
n)n if

we represents elements in Zp as integers 0 � ai < p. This can be accomplished
by using Babai’s trick and that g is small, i.e. by computing ai − g · �g−1 · ai�
in Q[X]/(Xn + 1). However, in order for this operation to produce sufficiently
small elements, we need g−1 either exactly or with high precision. Computing
such a high quality approximation of g−1 can be prohibitively expensive in terms
of memory and time. Our strategy for computing with a lower precision is to
rewrite ai as

ai =
�log2(ai)/B�∑

j=0

2B·j · aij

where aij < 2B for some B. Then, we compute small representatives for all 2B·j

and aij using an approximation of g−1 with precision B. Finally, we multiply the
small representatives for 2B·j and aij and add up their products. This produces
a somewhat short element which we then reduce using our approximation of g−1

with precision B until its size does not decrease any more.
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5.7 Sampling from a Discrete Gaussian

While the strategy in Sect. 5.6 produces short elements it does not necessar-
ily produce elements which follow a spherical Gaussian distribution and hence
do not leak geometric information about g. To produce such samples we need
to sample from the discrete Gaussian D(g),σ′,c where c is a small representa-
tive of a coset of (g). Furthermore, if encodings of zero are published, we are
required to sample from D(g),σ′,0 and D(g),σ′,1. For this, a fundamental building
block is to sample from the integer lattice. We implemented a discrete Gaussian
sampler over the integers both in arbitrary precision – using MPFR — and
in double precision — using machine doubles. For both cases we implemented
rejection sampling from a uniform distribution with and without table (“online”)
lookups [GPV08] and Ducas et al’s sampler which samples from DZ,kσ2 where
σ2 is a constant [DDLL13, Algorithm 12]. Our implementation automatically
chooses the best algorithm based on σ, c and τ (the tail cut). In our case σ is
typically relatively large, so we call the latter whenever sampling with a cen-
tre c ∈ Z and the former when c �∈ Z. We list example timings of our discrete
Gaussian sampler in Table 5. We note that in our implementation we — con-
servatively — only make use of the arbitrary precision implementation of this
sampler with precision 2λ.

Table 5. Example timings for discrete Gaussian sampling over Z on Intel Core i7–
4850HQ CPU at 2.30 GHz, single core.

Algorithm σ c double mpfr t

prec samp./s prec samp./s

Tabulated [GPV08, SampleZ] 10000 1.0 53 660.000 160 310.000

Tabulated [GPV08, SampleZ] 10000 0.5 53 650.000 160 260.000

Online [GPV08, SampleZ] 10000 1.0 53 414.000 160 9.000

Online [GPV08, SampleZ] 10000 0.5 53 414.000 160 9.000

[DDLL13, Algorithm 12] 10000 1.0 53 350.000 160 123.000

Using our discrete Gaussian sampler over the integers we implemented dis-
crete Gaussian samplers over lattices. Implemented naively this takes O(n3 log n)
operations even if we ignore issues of precision. Following [Duc13], we imple-
mented a variant of [Pei10] which we reproduce in Algorithm 2. Namely, we
first observe that D(g),σ′,0 = g · DR,σ′·g−T and then use [Pei10, Algorithm 1] to
sample from DR,σ′·g−T where g−T is the conjugate of g−1. That is, gT

0 = g0 and
gT

n−i = −gi for 1 � i < n for deg(g) = n − 1. We then proceed as follows. We
first compute an approximate square root (see below) of Σ′

2 = g−T · g−1 up to
λ bits of precision. We perform operations with log(n) + 4 (log(

√
n ‖ σ ‖)) bits

of precision. If the square root does not converge for this precision, we double
it and start over. We then use this value, scaled appropriately, as the initial
value from which to start computing a square-root of Σ2 = σ′2 · g−T · g−1 − r2

with r = 2 · �√log n �. We terminate when the square of the approximation
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Algorithm 2. Computing an approximate square root of σ′2 · g−T · g−1 − r2.
p, s′ ← log n + 4 log(

√
n ‖ σ ‖), 1

Σ′
2 ← g−T · g−1

while ‖s′2 − Σ′
2‖ > 2−λ do

s′ ←≈√Σ′
2 computed at prec. p until ‖s′2 − Σ2‖ < 2−λ or no more convergence

p ← 2p
end while
p, r ← p + 2 log σ′, 2 · �√log n	
Σ2 ← σ · g−T · g−1 − r2

s ←≈ √
Σ2 computed at precision p using s′ as initial approximation until ‖s2 −

Σ2‖ < 2−2λ

return s

Algorithm 3. Sampling from D(g),σ′
√

Σ2
′ ←≈

√
σ′2 · g−T · g−1 − r2

x′ ∈ R
n ←↩ ρ1,0

x ← x′ considered as an element ∈ Q[X]/(Xn + 1)
y ← √

Σ2
′ · x

return g · (
y	r)

is within distance 2−2λ to Σ2. This typically happens quickly because our initial
candidate is already very close to the target value.

Given an approximation
√

Σ2
′ of

√
Σ2 we then sample a vector x ←↩ Rn from

a standard normal distribution and interpret it as a polynomial in Q[X]/(Xn+1).
We then compute y =

√
Σ2

′ · x in Q[X]/(Xn + 1) and return g · (�y�r), where
�y�r denotes sampling a vector in Z

n where the i-th component follows DZ,r,yi
.

This algorithm is then easily extended to sample from arbitrary centres c. The
whole algorithm is summarised in Algorithm 3 and we give experimental results
in Table 6.

5.8 Approximate Square Roots

Our Gaussian sampler requires an (approximate) square root in Q[X]/(Xn +1).
That is, for some input element Σ we want to compute some element

√
Σ

′ ∈
Q[X]/(Xn + 1) such that ‖√Σ

′ · √
Σ

′ − Σ‖ < 2−2λ. We use iterative methods
as suggested in [Duc13, Section 6.5] which iteratively refine the approximation
of the square root similar to Newton’s method. Computing approximate square
roots of matrices is a well studied research area with many algorithms known in
the literature (cf. [Hig97]). All algorithms with global convergence invoke approx-
imate inversions in Q[X]/(Xn + 1) for which we call our inversion algorithm.

We implemented the Babylonian method, the Denman-Beavers iteration
[DB76] and the Padé iteration [Hig97]. Although the Babylonian method only
involves one inversion which allows us to compute with lower precision, we used
Denman-Beavers, since it converges faster in practice and can be parallelised
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Table 6. Approximate square roots of Σ2 = σ′2 · g−T · g − r2 · I for discrete Gaussian
sampling over g with parameter σ′ on Intel Core i7–4850HQ CPU at 2.30 GHz, 2 cores
for Denman-Beavers, 4 cores for estimating the scaling factor, one core for sampling.
The last column lists the rate (samples per second) of sampling from D(g),σ′ .

Square root

prec n log σ′ Iterations Wall time log ‖(
√

Σ2
′
)
2 − Σ2‖ D(g),σ′/s

160 1024 45.8 9 0.4 s −200 26.0

160 2048 49.6 9 0.9 s −221 12.0

160 4096 53.3 10 2.5 s −239 5.1

160 8192 57.0 10 8.6 s −253 2.0

160 16384 60.7 10 35.4 s −270 0.8

on two cores. While the Padé iteration can be parallelised on arbitrarily many
cores, the workload on each core is much greater than in the Denman-Beavers
iteration and in our experiments only improved on the latter when more than 8
cores were used.

Most algorithms have quadratic convergence but in practice this does not
assure rapid convergence as error can take many iterations to become small
enough for quadratic convergence to be observed. This effect can be mitigated,
i.e. convergence improved, by scaling the operands appropriately in each loop
iteration of the approximation [Hig97, Section 3]. A common scaling scheme is
to scale by the determinant which in our case means computing res(f,Xn + 1)
for some f ∈ Q[X]/(Xn +1). Computing resultants in Q[X]/(Xn +1) reduces to
computing resultants in Z[X](Xn+1). As discussed above, computing resultants
in Z[X]/(Xn + 1) can be expensive. However, since we are only interested in an
approximation of the determinant for scaling, we can compute with reduced
precision. For this, we clear all but the most significant bit for each coefficient’s
numerator and denominator of f to produce f ′ and compute res(f ′,Xn + 1).
The effect of clearing out the lower order bits of f is to reduce the size of the
integer representation in order to speed up the resultant computation. With this
optimisation scaling by an approximation of the determinant is both fast and
precise enough to produce fast convergence. See Table 6 for timings.
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