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Abstract. We assume a scenario where an attacker can mount several
independent attacks on a single CPU. Each attack can be run several
times in independent ways. Each attack can succeed after a given num-
ber of steps with some given and known probability. A natural question
is to wonder what is the optimal strategy to run steps of the attacks in a
sequence. In this paper, we develop a formalism to tackle this problem.
When the number of attacks is infinite, we show that there is a magic
number of steps m such that the optimal strategy is to run an attack
for m steps and to try again with another attack until one succeeds. We
also study the case of a finite number of attacks.

We describe this problem when the attacks are exhaustive key
searches, but the result is more general. We apply our result to the learn-
ing parity with noise (LPN) problem and the password search problem.
Although the optimal m decreases as the distribution is more biased,
we observe a phase transition in all cases: the decrease is very abrupt
from m corresponding to exhaustive search on a single target to m = 1
corresponding to running a single step of the attack on each target. For
all practical biased examples, we show that the best strategy is to use
m = 1. For LPN, this means to guess that the noise vector is 0 and to
solve the secret by Gaussian elimination. This is actually better than all
variants of the Blum-Kalai-Wasserman (BKW) algorithm.

1 Introduction

We assume that there are an infinite number of independent keys K1,K2, . . . and
that we want to find at least one of these keys by trials with minimal complexity.
Each key search can be stopped and resumed. The problem is to find the optimal
strategy to run several partial key searches in a sequence. In this optimization
problem, we assume that the distributions Di for each Ki are known. We denote
D = (D1,D2, . . .). Consider the problem of guessing a key Ki, drawn following
Di, which is not necessarily uniform. We assume that we try all key values
exhaustively from the first to the last following a fixed ordering. If we stop the
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key search on Ki after m trials, the sequence of trials is denoted by ii · · · i = im.
It has a worst-case complexity m and a probability of success which we denote
by PrD(im).

Instead of running parallel key searches in sequence, we could consider any
other attack which decomposes in steps of the same complexity and in which
each step has a specific probability to be the succeeding one. We assume that
the ith attack has a probability PrD(im) to succeed within m steps and that
each step has a complexity 1. The fundamental problem is to wonder how to run
steps of these attacks in a sequence so that we minimize the complexity until
one attack succeeds. For instance, we could run attack 1 for up to m steps and
decide to give up and try again with attack 2 if it fails for attack 1, and so on.
We denote by s = 1m2m3m · · · this strategy. Unsurprisingly, when the Di’s are
the same, the average complexity of s is the ratio CD(1m)

PrD(1m) where CD(1m) is the
expected complexity of the strategy 1m which only runs attack 1 for m steps1

and PrD(1m) is its probability of success.
Traditionally, when we want to compare single-target attacks with different

complexity C and probability of success p, we use as a rule of the thumb to
compare the ratio C

p . Quite often, we have a continuum of attacks C(m) with
a number of steps limited to a variable m and we tune m so that p(m) is a
constant such as 1

2 . Indeed, the curve of m �→ C(m)
p(m) is often decreasing (so has

an L shape) or decreasing then increasing (with a U shape) and it is optimal to
target p(m) = 1

2 . But sometimes, the curve can be increasing with a Γ shape. In
this case, it is better to run an attack with very low probability of success and
to try again until this succeeds. In some papers, e.g. [14], we consider min C(m)

p(m)

as a complexity metric to compare attacks. Our framework justifies this choice.
LPN and Learning with Errors (LWE) [21] are two appealing problems in

cryptography. In both cases, the adversary receives a matrix V and a vector
C = V s+D where s is a secret vector and D is a noise vector. For LPN, the best
solving algorithm was presented in Asiacrypt 2014 [12]. It brings an improvement
over the well-known BKW [5] and its variants [11,15]. The best algorithm has a
sub-exponential complexity.

Assuming that V is invertible, by guessing D we can solve s and check it
with extra equations. So, this problem can be expressed as the one of guessing
a correct vector D of small weight, which defines a biased distribution. Here,
the distribution of D corresponds to the weighted concatenation of uniform
distributions among vectors of the same weight. We can thus study this problem
in our formalism. This was used in [8]. This algorithm is also cited in [6] and by
Lyubashevsky2.

Both LPN and LWE fall in the aforementioned scenario of guessing a k-bit
biased noise vector by a simple transformation. Work on breaking cryptosystems
with biased keys was also done in [18].

1 CD(1m) can be lower than m since there is a probability to succeed before reaching
the mth step.

2 http://www.di.ens.fr/∼lyubash/talks/LPN.pdf.

http://www.di.ens.fr/~lyubash/talks/LPN.pdf
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The guessing game that we describe in our paper also matches well the pass-
word guessing scenario where an attacker tries to gain access to a system by
hacking an account of an employee. There exists an extensive work on the crypt-
analytic time-memory tradeoffs for password guessing [2–4,13,19,20], but the
game we analyse here requires no pre-computation done by the attacker.

Our Results. We develop a formalism to compare strategies and derive some
useful lemmas. We show that when we can run an infinite number of independent
attacks of the same distribution, an optimal strategy is of the form 1m2m3m · · ·
and it has complexity

min
m

CD(1m)
PrD(1m)

for some “magic” value m. This justifies the rule of the thumb to compare attacks
with different probabilities of success.

When the probability that an attack succeeds at each new step decreases (e.g.,
because we try possible key values in decreasing order of likelihood), there are
two remarkable extreme cases: m = n (where n is the maximal number of steps)
corresponds to the normal single-target exhaustive search with a complexity
equal to the guesswork entropy [17] of the distribution; m = 1 corresponds to
trying attacks for a single step until it works, with complexity 2−H∞ , where H∞
is the min-entropy of the distribution.

When looking at the “magic” value m in terms of the distribution D, we
observe that in many cases there is a phase transition: when D is very close to
uniform, we have m = n. As soon as it becomes slightly biased, we have m = 1.
There is no graceful decrease from m = n to m = 1.

We also treat the case where we have a finite number |D| of independent
attacks to run. We show that there is an optimal “magic” sequence m1,m2, . . .
such that an optimal strategy has form

1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · ·

The best strategy is first to run all attacks for m1 steps in a sequence then to
continue to run them for m2 steps in a sequence, and so on.

Although our results look pretty natural, we show that there are distribu-
tions making the analysis counter-intuitive. Proving these results is actually non
trivial.

We apply this formalism to LPN by guessing the noise vector then performing
a Gaussian elimination to extract the secret. The optimal m decreases as the
probability τ to have an error in a parity bit decreases from 1

2 . For τ = 1
2 , the

optimal m corresponds to a normal exhaustive search. For τ < 1
2 − ln 2

2k , where k
is the length of the secret, the optimal m is 1: this corresponds to guessing that
we have no noise at all. So, there is a phase transition.

Furthermore, for LPN with τ = k− 1
2 , which is what is used in many crypto-

graphic constructions, the obtained complexity is poly ·e
√

k which is much better
than the usual poly ·2 k

log2 k that we obtain for variants of the BKW algorithm [6].
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More generally, we obtain a complexity of poly · e−k ln(1−τ). It is not better than
the BKW variants for constant τ but becomes interesting when τ < ln 2

log2 k .

When the number of samples is limited in the LPN problem with τ = k− 1
2 ,

we can still solve it with complexity eO(
√

k(ln k)2) which is better than eO( k
ln ln k )

with the BKW variants [16].
For LWE, the phase transition is similar, but the algorithm for m = 1 is not

better than the BKW variants. This is due to the 0 noise having a much lower
probability in LWE (which is 1−τ for LPN) in the discrete Gaussian distribution
in Zq.

For password search, we tried several empirical distributions of passwords
and obtained again that the optimal m is m = 1. So, the complexity is 2−H∞ .

Besides the 3 problems we study here, we believe that our results can prove
to be useful in other cryptographic applications.

Structure of the Paper. Section 2 formalizes the problem and presents a few
useful results. In Sect. 3 we characterize the optimal strategies and show they
can be given a special regular structure. We then apply this in Sect. 4 with LPN
and password recovery. Due to lack of space, we do the same for LWE in the full
version of this paper. We study the phase transition of the “magic” number m
in Sect. 5 and conclude in Sect. 6.

2 The STEP Game

In this section we introduce our framework through which we address the fun-
damental question of what is the best strategy to succeed in at least one attack
when we can step several independent attacks. Let D = (D1,D2, . . .) be a tuple
of independent distributions. If it is finite, |D| denotes the number of distrib-
utions. We formalize our framework as a game where we have a ppt adversary
A and an oracle that has a sequence of keys (K1,K2, . . .) where Ki ← Di. At
the beginning, the oracle assigns the keys according to their distribution. These
distributions are known to the adversary A. The adversary will test each key
Ki by exhaustive search following a given ordering of possible values. We can
assume that values are sorted by decreasing order of likelihood to obtain a mini-
mal complexity but this is not necessary in our analysis. We only assume a fixed
order. So, our framework generalizes to other types of attacks in which we can-
not choose the order of the steps. Each test on Ki corresponds to a step in the
exhaustive search for Ki. In general, we write “i” in a sequence to denote that
we run one new step of the ith attack. The sequence of “i”s defines a strategy
s. It can be finite or not. The sequence of steps we follow is thus a sequence
of indices. For instance, im means “run the Ki search for m steps”. The oracle
is an algorithm that has a special command: STEP(i). When queried with the
command STEP(i), the oracle runs one more step of the ith attack ( so, it incre-
ments a counter ti and tests if Ki = ti, assuming that possible key values are
numbered from 1). If this happens then the adversary wins. The adversary wins
as soon as one attack succeeds (i.e., he guesses one of the keys from the sequence
K1,K2, . . . ).
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Definition 1 (Strategies). Let D be a sequence of distributions D =
(D1, . . . , D|D|) (where |D| can be infinite or not). A strategy for D is a sequence
s of indices between 1 and |D|. It corresponds to Algorithm1. We let PrD(s) be
the probability that the strategy succeeds and CD(s) be the expected number of
STEP when running the algorithm until it stops. We say that the strategy is full
if PrD(s) = 1 and that it is partial otherwise.

Algorithm 1. Strategy s in the STEP game
1: initialize attacks 1, . . . , |D|
2: for j = 1 to |s| do
3: STEP(sj): run one more step of the attack sj and stop if succeeded
4: end for
5: stop (the algorithm fails)

For example for s = 11223344 · · · , Algorithm 1 tests the first two values for each
key.

Definition 2 (Distributions). A distribution Di over a set of size n is a
sequence of probabilities Di = (p1, . . . , pn) of sum 1 such that pj ≥ 0 for
j = 1, . . . , n. We assume without loss of generality that pn �= 0 (Otherwise, we
decrease n). We can equivalently specify the distribution Di in an incremental
way by a sequence Di = [p′

1, . . . , p
′
n] (denoted with square brackets) such that

p′
j =

pj

pj + · · · + pn
pj = p′

j(1 − p′
1) · · · (1 − p′

j−1)

for j = 1, . . . , n.

We have PrD(ij) = p1 + · · · + pj = 1 − (1 − p′
1) · · · (1 − p′

j), the probability of
the j first values under Di.

When considering the key search, it may be useful to assume that distribu-
tions are sorted by decreasing likelihood. We note that the equivalent condition
to pj ≥ pj+1 with the incremental description is 1

p′
j

+ j ≤ 1
p′

j+1
+ j + 1, for

j = 1, . . . , n − 1.
We define the distribution that the keys are not among the already tested

ones.

Definition 3 (Residual Distribution). Let D = (D1, . . . , D|D|) be a sequence
of distributions and let s be a strictly partial strategy for D (i.e., PrD(s) < 1).
We denote by “|¬s” the residual distribution in the case where the strategy s
does not succeed, i.e., the event ¬s occurs.

We let #occs(i) denote the number of occurrences of i in s. We have

D|¬s =
(
D1|¬1#occs(1), . . . , D|D||¬|D|#occs(|D|)

)
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where Di|¬iti = [p′
i,ti+1, . . . , p

′
i,ni

] if Di = [p′
i,1, . . . , p

′
i,ni

]. Hence, defining distri-
butions in the incremental way makes the residual distribution being just a shift
of the original one.

We write PrD(s′|¬s) = PrD|¬s(s′) and CD(s′|¬s) = CD|¬s(s′).
Next, we prove a list of useful lemmas in order to compute complexities,

compare strategies, etc.

Lemma 4 (Success Probability). Let s be a strategy for D. The success prob-
ability is computed by

Pr
D

(s) = 1 −
|D|∏
i=1

Pr
Di

(¬i#occs(i))

Proof. The failure corresponds to the case where for all i, Ki is not in
{1, . . . ,#occs(i)}. The independence of the Ki implies the result. �	
Lemma 5 (Complexity of Concatenated Strategies). Let ss′ be a strategy
for D obtained by concatenating the sequences s and s′. If PrD(s) = 1, we have
PrD(ss′) = PrD(s) and CD(ss′) = CD(s). Otherwise, we have

Pr
D

(ss′) = Pr
D

(s) +
(
1 − Pr

D
(s)

)
Pr
D

(s′|¬s)

CD(ss′) = CD(s) +
(
1 − Pr

D
(s)

)
CD(s′|¬s)

Proof. The first equation is trivial from the definition of residual distributions
and conditional probabilities.

The prefix strategy s succeeds with probability PrD(s). Let c be the com-
plexity of s conditioned to the event that s succeeds. Clearly, the complex-
ity of ss′ conditioned to this event is equal to c. The complexity of ss′ con-
ditioned to the opposite event is equal to |s| + CD(s′|¬s). So, CD(ss′) =
PrD(s)c + (1 − PrD(s))(|s| + CD(s′|¬s)). The complexity of s conditioned to
that s fails is equal to |s|. So, CD(s) = PrD(s)c + (1 − PrD(s))|s|. From these
two equations, we obtain the result. �	
Lemma 6 (Complexity with Incremental Distributions). Let Di =
[p′

i,1, . . . , p
′
i,ni

] and let s be a strategy for D = (D1,D2, . . .). We have

Pr
D

(s) = 1 −
|s|∏

t′=1

(1 − p′
st′ ,#occs1···s

t′ (st′ ))

CD(s) =
|s|∑
t=1

t−1∏
t′=1

(1 − p′
st′ ,#occs1···s

t′ (st′ ))

Proof. By induction, the probability that the strategy fails on the first t−1 steps
is qt =

∏t−1
t′=1(1 − p′

st′ ,#occs1···s
t′ (st′ )). We can express CD(s) =

∑|s|
t=1 qt. So, we

can deduce PrD(s) and CD(s). �	
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Example 7. For D1 = (p1, . . . , pn) = [p′
1, . . . , p

′
n] and m ≤ n, due to Lemma 6

we have
Pr
D

(1m) = p1 + · · · + pm = 1 − (1 − p′
1) · · · (1 − p′

m)

and

CD(1m) =
m∑

t=1

t−1∏
j=1

(1 − p′
j)

=
m∑

t=1

(pt + · · · + pn) = p1 + 2p2 + · · · + mpm + mpm+1 + · · · + mpn

The second equality uses the relations from Definition 2.

We want to concatenate an isomorphic copy w of a strategy v to another
strategy u. For this, we make sure that w and u have no index in common.

Definition 8 (Disjoint Copy of a Strategy). Two strategies v and w are
isomorphic if there exists an injective mapping ϕ such that wt = ϕ(vt) for all t
and Dϕ(i) = Di for all i. So, CD(v) = CD(w). Let u and v be two strategies for
D. Whenever possible, we define a new strategy w = newu(v) such that v and w
are isomorphic and w has no index in common with u.

We can define it by recursion: if w1 = ϕ(v1), . . . , wt−1 = ϕ(vt−1) are already
defined and ϕ(vt) is not, we set it to the smallest index i (if exists) which does
not appear in u nor in w1, . . . , wt−1 and such that Di = Dvt

.

For instance, if v = 1m, all Di are equal, and i is the minimal index which does
not appear in u, we have newu(v) = im.

Lemma 9 (Complexity of a Repetition of Disjoint Copies). Let s be
a non-empty strategy for D. We define new strategies s+1, s+2, . . ., disjoint
copies of s, by recursion as follows: s+r = newss+1···s+(r−1)(s). We assume that
s+1, s+2, . . . , s+(r−1) can be constructed. If PrD(s) = 0, then

CD(ss+1s+2 · · · s+(r−1)) = r · CD(s).

Otherwise, we have

CD(ss+1s+2 · · · s+(r−1)) =
1 − (1 − PrD(s))r

PrD(s)
CD(s)

For r going to ∞, we respectively obtain CD(ss+1s+2 · · · ) = +∞ and

CD(ss+1s+2 · · · ) =
CD(s)
PrD(s)

For instance, for s = 1m and Di all equal, the disjoint isomorphic copies of s are
s+r = (1+r)m. I.e., we run m steps the (1+r)th attack. So, ss+1s+2 · · · s+(r−1) =
1m2m · · · rm.



How to Sequentialize Independent Parallel Attacks? 711

Proof. We prove it by induction on r. This is trivial for r = 1. Let s̄r =
ss+1s+2 · · · s+r. If it is true for r − 2, then

CD(s̄r−1) = CD(s̄r−2) + (1 − Pr
D
(s̄r−2))CD(s+(r−1)|¬s̄r−2)

=

{
1−(1−PrD(s))r−1

PrD(s)
CD(s) + (1 − PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrS(s) > 0

(r − 1) · CD(s) + (1 − PrD(s̄r−2))CD(s+(r−1)|¬s̄r−2) if PrS(s) = 0

Clearly, we have 1 − PrD(s̄r−2) = (1 − PrD(s))r−1 and CD(s+(r−1)|¬s̄r−2) =
CD(s). So, we obtain the result. �	
Example 10. For all Di equal, if we let s = 1m, we can compute

CD(1m2m · · · rm) =
1 − (1 − PrD(1m))r

PrD(1m)
CD(1m)

=
1 − (pm+1 + · · · + pn)r

p1 + · · · + pm
(p1 + 2p2 + · · · + mpm + mpm+1 + · · · + mpn)

We now consider r = ∞. For an infinite number of i.i.d distributions we have

CD(1m2m · · · ) =
CD(1m)
PrD(1m)

=
p1 + 2p2 + · · · + mpm + mpm+1 + · · · ,mpn

p1 + · · · + pm

=
∑m

i=1 ipi + m(1 − p1 + · · · + pm)
p1 + · · · + pm

= Gm + m

(
1

PrDi
(1m)

− 1
)

where Gm = CD1|1m(1m) and D1|1m = ( p1
PrD1 (1

m) , . . . ,
pm

PrD1 (1
m) ). If D1 is

ordered, Gm corresponds to the guesswork entropy of the key with distribution
D1|1m.

We can see two extreme cases for s = 1m2m · · · . On one end we have a
strategy of exhaustively searching the key until it is found, i.e. take m = n. On
the other extreme we have a strategy where the adversary tests just one key
before switching to another key, i.e. m = 1. For the sequences s = 12 · · · and
s = 1n2n · · · , i.e. m = 1 and m = n, when D1 is ordered by decreasing likelihood,
we obtain the following expected complexity:

m = 1 ⇒ CD(12 · · · ) =
1
p1

= 2−H∞(D1)

m = n ⇒ CD(1n2n · · · ) = CD(1n) = Gn,

where H∞(D1) and Gn denote the min-entropy and the guesswork entropy of
the distribution D1, respectively.

We now define a way to compare partial strategies.
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Definition 11 (Strategy Comparison). We define

minCD(s) = inf
s′;PrD(ss′)=1

CD(ss′)

the infimum of CD(ss′), i.e. the greatest of its lower bounds. We write s ≤D s′

if and only if minCD(s) ≤ minCD(s′). A strategy s is optimal if minCD(s) =
minCD(∅), where ∅ is the empty strategy (i.e. the strategy running no step at
all).

So, s is better than s′ if we can reach lower complexities by starting with s
instead of s′. The partial strategy s is optimal if we can still reach the optimal
complexity when we start by s.

Lemma 12 (Best Prefixes are Best Strategies). If u and v are permuta-
tions of each other, we have u ≤D v if and only if CD(u) ≤ CD(v).

Proof. Note that PrD(u) = 1 is equivalent to PrD(v) = 1. If PrD(u) = 1, it
holds that minCD(u) = CD(u) and minCD(v) = CD(v). So, the result is trivial
in this case. Let us now assume that PrD(u) < 1 and PrD(v) < 1. For any s′,
by using Lemma 5 we have

CD(us′) = CD(u) +
(
1 − Pr

D
(u)

)
CD(s′|¬u)

So,

inf
s′;PrD(us′)=1

CD(us′) = CD(u) +
(
1 − Pr

D
(u)

)
inf

s′;PrD(us′)=1
CD(s′|¬u)

The same holds for v. Since u and v are permutations of each other, we have
D|¬u = D|¬v. So, PrD(us′) = PrD(vs′) and CD(s′|¬u) = CD(s′|¬v). Hence,
inf CD(s′|¬u) = inf CD(s′|¬v). Furthermore, we have PrD(u) = PrD(v). So,
minCD(u) ≤ minCD(v) is equivalent to CD(u) ≤ CD(v). �	

3 Optimal Strategy

The question we address in this paper is: what is the optimal strategy for the
adversary so that he obtains the best complexity in our STEP formalism? That
is, we try to find the optimal sequence s for Algorithm1. At a first glance, we
may think that a greedy strategy always making a step which is the most likely to
succeed is an optimal strategy. We show below that this is wrong. Sometimes, it
is better to run a series of unlikely steps in one given attack because we can then
run a much more likely one of the same attack after these steps are complete.
However, criteria to find this strategy are not trivial at all.

The greedy algorithm is based on looking at the i for which the next applica-
ble p′

j in Di is the largest. With our formalism, this defines as follows.

Definition 13 (Greedy Strategy). Let s be a strategy for D. We say that s
is greedy if

Pr
D

(st|¬s1 · · · st−1) = max
i

Pr
D

(i|¬s1 · · · st−1)

for t = 1, . . . , |s|.



How to Sequentialize Independent Parallel Attacks? 713

The following example shows that the greedy strategy is not always optimal.

Example 14. We take |D| = ∞ and all Di equal to Di = (23 , 7
36 , 5

36 ) = [23 , 7
12 , 1].

After testing the first key, we have D|¬1 = (D′,D2,D3, . . .) with D′ = ( 7
12 , 5

12 ) =
[ 7
12 , 1]. Since 2

3 > 7
12 , the greedy algorithm would then test a new key and

continue testing new keys. I.e., we would have s = 1234 · · · as a greedy strategy.
By applying Lemma 5, the complexity is solution to c = 1 + 1

3c, i.e., c = 3
2 .

However, the one-key strategy s = 111 has complexity

2
3

+ 2
7
36

+ 3
5
36

=
53
36

<
3
2

so the greedy strategy is not the best one.

Remark: The above counterexample works even when |D| is finite. If we take
D = (D1,D2) with Di = (23 , 7

36 , 5
36 ) = [23 , 7

12 , 1], the greedy approach would test
the strategy s = 1211 that has a complexity of

1 +
1
3

(
1 +

1
3

(
1 +

5
12

· 1
))

=
161
108

.

This is greater than 53
36 , the complexity of the strategy 111.

Next, we note that we may have no optimal strategy as the following example
shows.

Example 15 (Distribution with No Optimal Strategy). Let qi be an increasing
sequence of probabilities which tends towards 1 without reaching it. Let Di =
[qi, qi, . . . , qi, 1] of support n. We have C(in) = 1

qi
(1 − (1 − qi)n) which tends

towards 1 as i grows. So, 1 is the best lower bound of the complexity of full
strategies. But there is no full strategy of complexity 1.

When the number of different distributions is finite, optimal strategies exist.

Lemma 16 (Existence of an Optimal Full Strategy). Let D =
(D1,D2, . . .) be a sequence of distributions. We assume that we have in D a
finite number of different distributions. There exists a full strategy s such that
CD(s) is minimal.

Proof. Clearly, c = inf CD(s) over all full strategies s is well defined. Essentially,
we want to prove that c is reached by one strategy, i.e. that the infimum is a
minimum. First, if c = ∞, all full strategies have infinite complexity, and the
result is trivial. So, we now assume that c < +∞ and we prove the result by a
diagonal argument.

We now construct s = s1s2 · · · by recursion. We assume that s1s2 · · · sr is
constructed such that minC(s1s2 · · · sr) = c. We concatenate s1, . . . , sr to im

where m is such that PrD[im−1|¬s1 · · · sr] = 0 and PrD[im|¬s1 · · · sr] > 0. The
values of i to try are the ones such that i appears in s1, . . . , sr (we have a finite
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number of them), and the ones which do not appear, but we can try only one
for each different Di. We take the choice minimizing minC(s1s2 · · · sri

m) and set
sr+1 = im. So, we construct a strategy s.

If one key Ki is tested until exhaustion, we have PrD(s) = 1. If no key is
tested until exhaustion, there is an infinite number of keys with same distribution
Di which are tested. If p = PrD[im] is the nonzero probability with the smallest
m of this distribution, there is an infinite number of tests which succeed with
probability p. So, PrD(s) ≥ 1 − (1 − p)∞ = 1. In all cases, as s has a probability
to succeed of 1, s is a full strategy.

What remains to be proven is that CD(s) = c. We now denote by si the ith
step of s.

Let qt be the probability that s fails on the first t−1 steps. We have CD(s) =∑|s|
t=1 qt. Let ε > 0. For each r, by construction, there exists a tail strategy v such

that CD(s1 · · · sr−1v) ≤ c + ε. Since qt is also the probability that s1 · · · sr−1v
fails on the first t−1 steps for t ≤ r, we have

∑r
t=1 qt ≤ CD(s1 · · · sr−1v) ≤ c+ε.

This holds for all r. So, we have CD(s) ≤ c+ ε. Since this holds for all ε > 0, we
have CD(s) ≤ c. Consequently, CD(s) = c: s is an optimal and full strategy. �	

The following two results show what is the structure of an optimal strategy.

Theorem 17. Let D = (D1,D2, . . .) be a sequence of distributions. We assume
that we have in D a finite number of pairwise different distributions but an
infinite number of copies of each of them in D. There exists a sequence of indices
i1 < i2 < · · · and an integer m such that Di1 = Di2 = · · · and s = im1 im2 · · · is
an optimal strategy of complexity CD(im

1 )
PrD(im

1 ) .

Here are examples of optimal m for different distributions.

Example 18 (Uniform Distribution). For the uniform distribution pi = 1
n , with

1 ≤ i ≤ n. We get PrD(1m) = m
n and Gm = m+1

2 . With this we obtain
CD(1m2m · · · ) = n − m−1

2 . Thus, the value of m that minimizes the complexity
is m = n and CD(1m2m · · · ) = n−1

2 . The best strategy is to exhaustively search
the key until it is found.

Example 19 (Geometric Distribution). For the geometric distribution with para-
meter p, we have pi = (1 − p)i−1p, with i = 1, 2, . . . or Di = [p, p, . . .]. Due to
Lemma 5, we can see that for every infinite strategy s, CD(s) = 1

p .

In AppendixA we study concatenations of uniform distributions.
We note that Theorem 17 does not extend if some distribution has a finite

number of copies as the following example shows.

Example 20 (Distribution with No Optimal Strategy of the Form im1 im2 · · · ). Let
D1 = [1 − ε, ε, ε, . . . , ε, 1] of support n and D2 = D3 = · · · = [p, . . . , p, 1] for
ε < p ≤ 1

2 and n large enough. Given a full strategy s, the formula in Lemma5
defines a sequence qt(s) = p′

st,#occs1···st (st)
. We can see that for all full strategies

s and s′, if |s| ≤ |s′| and qt(s) ≥ qt(s′) for t = 1, . . . , |s|, then CD(s) ≤ CD(s′).
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With this, we can see that s = 12n is better than all full strategies with length
at least n + 1. There are only two full strategies with smaller length: 1n and
2n. We have CD(2n) = 1−(1−p)n

p ≈ 1
p ≥ 2 as n grows. We have CD(12n) =

1+ ε 1−(1−p)n

p ≈ 1+ ε
p as n grows, so CD(12n) < CD(2n) for n large enough. We

have CD(1n) = 1 + ε 1−(1−ε)n−1

ε = 2 − (1 − ε)n−1 ≈ 2 so CD(12n) < CD(1n) for
n large enough. For all strategies of length at least n + 1, s = 12n collected the
largest possible p′ values. So, the best strategy is s = 12n. It is better than any
strategy of form im1 im2 · · · .
When we have a finite number of distributions, we may have no optimal strategy
of the form in Theorem17. We may have multiple layers of repetition of im as
the following result shows.

Theorem 21. Let D1 be a distribution of finite support n. Let D =
(D1,D2, . . . , D|D|) be a finite sequence of length |D| in which D1 = D2 = · · · =
D|D|. There exists a sequence m1, . . . ,mr such that the strategy

s = 1m12m1 · · · |D|m11m22m2 · · · |D|m2 · · · 1mr

is optimal.

We provide toy examples below.

Example 22. We take D = (D1,D2) with D1 = D2 = (35 , 9
25 , 1

50 , 1
50 ) =

[35 , 18
20 , 1

2 , 1]. Here are the complexities of some full strategies.

CD(1111) =
146
100

= 1.46

CD(12111) =
792
500

= 1.584

CD(11211) =
732
500

= 1.464

CD(121211) =
7892
5000

= 1.5784

CD(112211) =
7292
5000

= 1.4584

so the last strategy is the best one. Notice that this is also a greedy strategy.

Example 23. We take D = (D1,D2) with D1 = D2 = ( 70
100 , 20

100 , 5
100 , 3

100 , 1
100 ,

1
100 ) = [ 70

100 , 2
3 , 1

2 , 3
5 , 1

2 , 1]. Here are the complexities of some full strategies.

CD(111111) = 1.48
CD(1211111) = 1.44

CD(12121111) = 1.438
CD(121212111) = 1.439
CD(121122111) = 1.444

so s = 12121111 is the best one. For this example we have that the optimal
strategy requires m1 = 1, m2 = 1 and m3 = 4. It is also greedy.
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3.1 Proof of Theorem17

To prove the result, we first state a useful lemma.

Lemma 24 (Is It Better to Do s or s′ First?). If s and s′ are non-empty
and have no index in common (i.e., if st �= s′

t′ for all t and t′), then ss′ ≤D s′s
if and only if CD(s)

PrD(s) ≤ CD(s′)
PrD(s′) in [0,+∞], with the convension that c

p = +∞ for
c > 0 and p = 0.

Proof. Due to Lemma 5, when PrD(s) < 1 we have

CD(ss′) = CD(s) +
(
1 − Pr

D
(s)

)
CD(s′|¬s)

Since s′ does not make use of the distributions which are dropped in D|¬s, we
have CD(s′|¬s) = CD(s′). So,

CD(ss′) = CD(s) +
(
1 − Pr

D
(s)

)
CD(s′)

This is also clearly the case when PrD(s) = 1. Similarly,

CD(s′s) = CD(s′) +
(
1 − Pr

D
(s′)

)
CD(s)

So, CD(ss′) ≤ CD(s′s) is equivalent to

CD(s) +
(
1 − Pr

D
(s)

)
CD(s′) ≤ CD(s′) +

(
1 − Pr

D
(s′)

)
CD(s)

So, this inequality is equivalent to CD(s)
PrD(s) ≤ CD(s′)

PrD(s′) . �	
We can now prove Theorem 17.

Proof (of Theorem 17). Due to Lemma 16, we know that optimal full strategies
exist. Let s be one of these. We let i be the index of an arbitrary key which is
tested in s. We can write s = u0i

m1u1i
m2 · · · imrur where i appears in no uj and

mj > 0 for all j, and u1, . . . , ur−1 are non-empty.
Since s is optimal, by permuting imj and either uj−1 or uj , we obtain larger

complexities. So, by applying Lemma24, we obtain

CD(im1)
PrD(im1)

≤ CD(u1|¬u0)
PrD(u1|¬u0)

≤ CD(im2 |¬im1)
PrD(im1 |¬im1)

≤ · · · ≤ CD(ur|¬u0 · · · ur−1)

We now want to replace ur in s by some isomorphic copy of s which is not
overlapping with u0i

m1u1i
m2 · · · imr . Due to the optimality of s, we would deduce

CD(ur|¬u0 · · · ur−1) ≤ CD(s|¬u0 · · · ur−1) = CD(s)

so CD(im1 )
PrD(im1 ) ≤ CD(s) which would imply that the repetition of isomorphic copies

of im1 are at least as good as s, so CD(im1 )
PrD(im1 ) = CD(s) due to the optimality of s.
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But to replace ur in s by the isomorphic copy of s, we need to rewrite the original s
containing ur by some isomorphic copy in which indices are left free to implement
another isomorphic copy of s.

For that, we split the sequence (1, 2, 3, . . .) into two subsequences v and v′

which are non-overlapping (i.e. vt �= vt′ for all t and t′), complete (i.e. for every
integer j, v contains j or v′ contains j), and representing each distribution with
infinite number of occurrences (i.e. for all j, there exist infinite sequences t1 <
t2 < · · · and t′1 < t′2 < · · · such that Dj = Dvt�

= Dv′
t′
�

for all �). For that, we

can just construct v and v′ iteratively: for each j, if the number of j′ < j such
that Dj′ = Dj in v or v′ is the same, we put j in v, otherwise (we may have
only one more instance in v), we put j in v′ (to balance again). For instance, if
all Di are equal, this construction puts all odd j in v and all even j in v′. Hence,
we can define s′ = newv(s) and s′′ = newv′(s). s′ will thus only use indices in v′

while s′′ will only use indices in v. Therefore, s′ and s′′ will be isomorphic, with
no index in common. So, CD(s) = CD(s′) = CD(s′′).

Following the split of s, the strategy s′ can be written s′ =
u′
0i

′m1u′
1i

′m2 · · · i′mru′
r with

CD(im1 )

PrD(im1 )
=

CD(i′m1 )

PrD(i′m1 )
≤ CD(u′

r|¬u′
0 · · · u′

r−1) = CD(u′
r|¬u′

0i′m1u′
1i′m2 · · · i′mr )

If we replace u′
r in s′ by s′′, since s′ is optimal, we obtain a larger complexity.

So,

CD(u′
0i

′m1u′
1i

′m2 · · · i′mru′
r) ≤ CD(u′

0i
′m1u′

1i
′m2 · · · i′mrs′′)

These two strategies have the prefix u′
0i

′m1u′
1i

′m2 · · · i′mr in common. We can
write their complexities by splitting this common prefix using Lemma5. By
eliminating the common terms, we deduce

CD(u′
r|¬u′

0i′m1u′
1i′m2 · · · i′mr ) ≤ CD(s′′|¬u′

0i′m1u′
1i′m2 · · · i′mr ) = CD(s′′) = CD(s)

We deduce
CD(im1)
PrD(im1)

≤ CD(s)

Let i1 < i2 < · · · be a sequence of keys using the distribution Di. By Lemma 9,
the strategy im1 im2 · · · has complexity CD(im1 )

PrD(im1 ) . Since s is optimal, we have
CD(im1 )
PrD(im1 ) ≥ CD(s). Therefore, CD(im1 )

PrD(im1 ) = CD(s). �	

3.2 Proof of Theorem21

For the proof of Theorem21 we need the result of the following lemma.
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Lemma 25. Let s = uiavjbw be an optimal strategy with n occurrences of each
key. We assume that i �= j, a < b, u does not end with i, v has no occurrence of
either i or j, and w has equal number of occurrences for i and j. Furthermore,
we assume that either a �= 0, or v is nonempty and starts with some k such that
u does not end with k. Then, CD(s) = CD(ujb−aiavjaw).

Lemma 25 will be used in two ways.

1. For s = u′jcvjbw with c > 0, b > 0, v with no i or j, and balanced occurrences
of i and j in w, which has the same complexity as s′ = u′jb+cvw (so, to
apply the lemma we define a = 0, u = u′jc, k = j, and s = u′jci0vjbw; all
hypotheses are verified except v non-empty, but the result is trivial for empty
v). This means that we can regroup jc and jb when there are separated by a
v with no i and followed by a balanced tail w.

2. For s = uiavjbw with 0 < a < b, v with no i or j, and balanced occurrences
of i and j in w, which has the same complexity as s′ = ujb−aiavjaw. This
means that we can balance ia and jb when there are separated by a v with
no i or j and followed by a balanced tail w.

The proof of Lemma 25 is given in AppendixB.
In what follows, we say that a strategy is in a normal form if for all t, i �→

#occs1···st
(i) is a non-increasing function, i.e. #occs1···st

(i) ≥ #occs1···st
(i + 1)

for all i. For instance, 1112322133 is normal as the number of STEP(1) is at no
time lower than the number of STEP(2) and the same for the number of STEP(2)
and STEP(3).

Since all distributions are the same, all strategies can be rewritten into an
equivalent one in a normal form: for this, for the smallest t such that there
exists i such that #occs1···st

(i) < #occs1···st
(i + 1), it must be that st = i + 1

and #occs1···st−1(i) = #occs1···st−1(i + 1). We can permute all values i and i + 1
in the tail stst+1 · · · and obtain an equivalent strategy on which the function
becomes non-increasing at step t and is unchanged before. By performing enough
such rewriting, we obtain an equivalent strategy in normal form. For instance,
12231332 is not normal. The smallest t is t = 3 when we make a second STEP(2)
while we only did a single STEP(1). So, we permute 1 and 2 at this time and
obtain 12132331. Then, we have t = 7 and permute 2 and 3 to obtain 12132321.
Then, again t = 7 to permute 1 and 2 to obtain 12132312 which is normal.

We now prove Theorem 21.

Proof (of Theorem 21). Let s be an optimal strategy. Due to the assumptions,
it must be finite. We assume w.l.o.g. that s is in normal form. We note that
we can always complete s in a form s2a23a3 · · · so that the final strategy has
exactly n occurrences of each i. So, we assume w.l.o.g. that s has equal number of
occurrences. We write s = 1m1x11m2x2 · · · 1mrxr where the xt’s are non-empty
and with no 1 inside.

As detailed below, we rewrite xr (and push some steps earlier in xr−1) so
that we obtain a permutation of the blocks 2mr , . . . , |D|mr . The rewriting is
done by preserving the probability of success (which is 1) and the complexity
(which is the optimal complexity). Then, we do the same operation in xr−1
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and continue until x1. When we are done, each xt becomes a permutation of
the blocks 2mt , . . . , |D|mt . Finally, we normalize the obtained rewriting of s and
obtain the result.

We assume that s has already been rewritten so that for each t′ = t+1, . . . , r,
the xt′ sub-strategy is a permutation of the blocks 2mt′ , . . . , |D|mt′ . Then, we
explain how to rewrite xt. We make a loop for j = 2 to |D|. In the loop, we
first regroup all blocks of j’s by using Lemma 25 with i = 1: while we can write
xt = u′jcvjbw′ where c > 0, b > 0, v is non-empty with no j, and w′ has no
j, we write u = 1m1x11m2x2 · · · 1mtu′ and w = w′1mt+1xt+1 · · · 1mrxr, and set
a = 0 and i = 1. This rewrites xt = u′jb+cvw′ by preserving the complexity and
making a permutation. When this while loop is complete, we can only find a
single block of j’s in xt and write xt = vjbw′, where v and w′ have no j. So, we
apply again Lemma 25 to balance 1mt and jb: we write u = 1m1x11m2x2 · · · xt−1

and w = w′1mt+1xt+1 · · · 1mrxr, and set a = mt and i = 1. This rewrites 1mtxt

to jb−mt1mtvjmtw′ by preserving the complexity and making a permutation.
So, this rewrites xt to vjmtw′ and xt−1 to xt−1j

b−mt . When the loop of j is
complete, xt is a permutation of the blocks 2mt , . . . , |D|mt .

Interestingly, the sequence m1, . . . ,mr is unchanged from our starting opti-
mal normal full strategy s. If we rather start from an optimal full strategy s
which is not in normal form, we can still see how to obtain this sequence: for
each t, m1 + · · · + mt is the next record number of steps for an attack i after
the m1 + · · · + mt−1 record. That is the number of steps for the attack i when
s decides to move to another attack. �	

3.3 Finding the Optimal m

We provide here a simple criterion for the optimal m of Theorem 17.

Lemma 26. We let D1 = (p1, . . . , pn) = [p′
1, . . . , p

′
n] be a distribution and define

D = (D1,D1, . . .). Let m be such that s = 1m2m · · · is an optimal strategy based
on Theorem17. We have 1

p′
m

≤ CD(1m2m · · · ) ≤ 1
p′

m+1
.

Proof. We let s = 2m3m · · · We know that CD(1m+1s) ≥ CD(1ms) since 1ms is
optimal. So,

0 ≤ CD(1m+1s) − CD(1ms)
= (1 − Pr

D
(1m))(CD(1s|¬1m) − CD(s))

= (1 − Pr
D

(1m))(1 − p′
m+1 · CD(s))

from which we deduce 1
p′

m+1
≥ CD(s). Similarly, we have

0 ≥ CD(1ms) − CD(1m−1s)
= (1 − Pr

D
(1m−1))(CD(1s|¬1m−1) − CD(s))

= (1 − Pr
D

(1m−1))(1 − p′
m · CD(s))

from which we deduce 1
p′

m
≤ CD(s). �	
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We note that if pm = pm+1, then

p′
m+1 =

pm+1

pm+1 + · · · + pn
=

pm

pm+1 + · · · + pn
>

pm

pm + pm+1 + · · · + pn
= p′

m

which is impossible (given the result from Lemma 26). Consequently, we must
have pm �= pm+1. So, in distributions when we have sequences of equal proba-
bilities pt, we can just look at the largest index t in the sequence as a possible
candidate for being the value m.

Lemma 26 has an equivalent for Theorem 21 (given in the full version of this
paper due to lack of space).

4 Applications

4.1 Solving Sparse LPN

We will model the Learning Parity with Noise (LPN) problem in our STEP game.
As we will see, we use the noise bits as the keys the adversary A is trying to
guess. First of all, we formally give the definition of the LPN problem.

Definition 27 (Search LPN). Let s
U←− Z

k
2 , let τ ∈]0, 1

2 [ be a constant noise
parameter and let Berτ be the Bernoulli distribution with parameter τ . Denote
by Ds,τ the distribution defined as

{(v, c) | v
U←− Z

k
2 , c = 〈v, s〉 ⊕ d, d ← Berτ} ∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples

according to Ds,τ .
Given queries from the oracle OLPN

s,τ , the search LPN problem is to find the
secret s.

As studied in [6], the LPN-solving algorithms which are based on BKW [5] have
a complexity poly · 2

k
log2 k . The naive algorithm guessing that the noise is 0 and

running a Gaussian elimination until this finds the correct solution works with
complexity poly · (1 − τ)−k. So, the latter is much better as soon as τ < ln 2

log2 k ,

and in particular for τ = k− 1
2 which is the case for some applications [1,9].

Experiments reported in [6] also show that for τ = k− 1
2 , the Gaussian elimination

outperforms the BKW variants for k > 500.
The Gaussian elimination algorithm just reduces to finding a k-bit noise

vector. It guesses that this vector is 0. If this does not work, the algorithm
tries again with new LPN queries. We can see this as guessing at least one
k-bit biased vector Ki which follows the distribution Di = Berkτ defined by
Pr[Ki = v] = τHW(v)(1− τ)k−HW(v) in our framework. The most probable vector
is v = 0 which has probability Pr[Ki = 0] = (1 − τ)k. The above algorithm
corresponds to trying K1 = 0 then K2 = 0, ... i.e., the strategy 123 · · · in our
framework. We can wonder if there is a better 1m2m3m · · · . This is the problem
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we study below. We will see that the answer is no: using m = 1 is the best option
as soon as τ is less than 1

2 − ε for ε = ln 2
2k which is pretty small.

For instance, for LPN768, 1√
768

we obtain CD(12 · · · ) = 241. I.e., 241 calls to
the STEP command which corresponds to collecting k LPN queries and making
a Gaussian elimination to recover the secret based on the assumption that the
error bits are all 0. If we add up the cost of running Gaussian elimination in
order to recover the secret, we obtain a complexity of 270. This outperforms all
the BKW variants and proves that LPN768, 1√

768
is not a secure instance for a

80-bit security. Furthermore, this algorithm outperforms even the covering code
algorithm [12]. Our results are strengthened by the results from [6] where we see
that there is a big difference between the performance of CD(12 · · · ) and the one
of the covering code algorithm.

Di is a composite distribution of uniform ones in the sense defined in
AppendixA. Namely, Di =

∑k
w=0 τk(1 − τ)k−wUw where Uw is uniform of sup-

port
(

k
w

)
. By Theorem 17, we know that there exists a magic m for which the

strategy s = 1m2m · · · is optimal. The analysis of composite distributions fur-
ther says that m must be of form m = Bw =

∑w
i=0

(
k
i

)
for some magic w. Let

cm be the complexity of 1m2m · · · . A value w = k, i.e. m = n corresponds to the
exhaustive search of the noise bits. For w = 0, i.e. m = 1, the adversary assumes
that the noise is 0 every time he receives k queries from the LPN oracle.

We first computed experimentally the optimal m for the LPN100,τ instance
where we take 0 < τ < 1

2 . The magic m takes the value 1 for a τ which is
not close to 1

2 . As shown on Fig. 1, it changes to n = 2100 around the value
τ = 0.4965. This boundary between two different strategies corresponds to the
value τ = 1

2 − ln 2
2k computed in our analysis below. Interestingly, there is no

intermediate optimal m between 1 and n.

Fig. 1. The change of optimal m for solving LPN100,τ

For Cryptographic Parameters, c1 is Optimal. The optimal w depends on τ . The
case when τ is lower than 1

k is not interesting as it is likely that no error occurs
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so all w lead to a complexity which is very close to 1. Conversely, for τ = 1
2 , the

exhaustive search has a complexity of cn = 1
2 (2k +1) and w = 0 has a complexity

of c1 = 2k. Actually, Di is uniform in this case and we know that the optimal m
completes batches of equal consecutive probabilities. So, the optimal strategy is
the exhaustive search.

We now show that for τ < 0.16, the best strategy is obtained for w = 0.
Below, we use pBw

= τw(1 − τ)k−w and c1 = (1 − τ)−k.
Let wc be a threshold weight and let α = Pr(1Bwc ). For 0 < w ≤ wc, due to

Lemma 26, if cBw
is optimal we have

cBw
≥ 1

p′
Bw

=
PrD(¬1Bw−1)

pBw

≥ PrD(¬1Bwc )
pBw

=
1 − α

pBw

=
1 − α(

τ
1−τ

)w c1 ≥ 1 − α
τ

1−τ

c1

For τ < 0.16, we have τ
1−τ < 0.20. So, if α ≤ 4

5 we obtain cBw
> c1. This

contradicts that w is optimal. For wc = τk, the Central Limit Theorem gives us
that α ≈ 1

2 which is less than 4
5 . So, no w such that 0 < w ≤ τk is optimal.

Now, for w ≥ wc, we have

cw =
CD(1Bw )

PrD(1Bw )
≥ CD(1Bw ) =

Bw∑
i=1

ipi + Bw Pr
D
(¬1Bw ) ≥ Bwc Pr

D
(¬1Bwc ) = (1 − α)Bwc

By using the bound Bwc
≥

(
k

wc

)wc

, for wc = τk we have α ≈ 1
2 and we

obtain cw ≥ 1
2τ−τk. We want to compare this to c1 = (1 − τ)−k. We look at

the variations of the function τ �→ −kτ ln τ − ln 2 + k ln(1 − τ). We can see by
derivating twice that for τ ∈ [0, 1

2 ], this function increases then decreases. For
τ = 0.16, it is positive. For τ = 1

k , it is also positive. So, for τ ∈ [ 1k , 0.16], we
have cBw

≥ c1.
Therefore, for all τ < 0.16, c1 is the best complexity so m = 0 is the magic

value. Experiment shows that this remains true for all τ < 1
2 − ln 2

2k . Actually, we
can easily see that c1 becomes lower than 2k+1

2 for τ ≈ 1
2 − ln 2

2k . We will discuss
this in Sect. 5.

Solving LPN with O(k) Queries. We now concentrate on the m = n case to
limit the query complexity to O(k). (In our framework, we need only k queries
but we would practically need more to check that we did find the correct
value). So, we estimate the complexity of the full exhaustive search on one
error vector x of k bits for LPN, i.e., CD(1n). If pt is the probability that
x is the t-th enumerated vector, we have CD(1n) =

∑n
t=1 tpt. For t between

Bw−1 + 1 and Bw, the sum of the pt’s is the probability that we have exactly
w errors. So, CD(1n) ≤ ∑k

w=0 Bw Pr[w errors]. We approximate Pr[w errors] to
the continuous distribution. So, the Hamming weight has a normal distribution,
with mean kτ and standard deviation σ =

√
kτ(1 − τ). We do the same for
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Bw ≈ 2k√
2π

∫ 2w−k√
k

−∞ e− v2
2 dv. With the change of variables w = kτ + tσ, we have

CD(1n) ≤
k∑

w=0

Bw Pr[w errors]

≈ 2k

2π

∫ +∞

−∞

(∫ 2w−k√
k

−∞
e− v2

2 dv

)
1
σ

e− (w−kτ)2

2σ2 dw

=
2k

2π

∫∫

v≤ 2kτ−k+2tσ√
k

e− t2+v2
2 dv dt

The distance between the origin (t, v) = (0, 0) and the line v = 2kτ−k+2tσ√
k

is

d =
√

k
1 − 2τ√

1 + 4τ(1 − τ)

By rotating the region on which we sum, we obtain

CD(1n) ≈ 2k

2π

∫∫

x≥d

e− x2+y2

2 dx dy =
2k

√
2π

∫ +∞

d

e− x2
2 dx ∼ 2k

d
√

2π
e− d2

2

On Fig. 2 we can see that this approximation of CD(1n) is very good for τ = k− 1
2 .

So, the complexity CD(1n) is asymptotically 2k(1− 1
2 ln 2 )+O(

√
k). Interestingly,

the dominant part of log2 CD(1n) is 0.2788×k and does not depend on τ as long
as 1

k � τ � 1
2 . Although very good for the low k that we consider, this approx-

imation of CD(1n) deviates, probably because of the imprecise approximation
of the Bw’s. Next, we derive a bound which is much higher but asymptotically
better (the curves crossing for k ≈ 50 000). We now use the bound Bw ≤ kw

and do the same computation as before. We have

CD(1n) ≤
k∑

w=0

kw Pr[w errors]

≈ 1√
2π

∫ +∞

−∞
kkτ+tσe− t2

2 dw

=
e

1
2 (σ ln k)2+kτ ln k

√
2π

∫ +∞

−∞
e− (t−σ ln k)2

2 dw

= e
1
2 (σ ln k)2+kτ ln k

So, CD(1n) = e
1
2

√
k(ln k)2+O(

√
k ln k) for τ = k− 1

2 . It is better than the eO( k
ln ln k )

of Lyubashevsky [16] in the sense that it is asymptotically better and that we
use O(k) queries instead of k1+ε. However, this new bound for CD(1n) is very
loose.

Outside the scenario of a sparse LPN, we display in Fig. 3 the logarithmic
complexity to solve LPN in our STEP game when the noise parameter is constant.



724 S. Bogos and S. Vaudenay

0

200

400

600

800

1000

0 500 1000 1500 2000

L
og
ar
ith

m
ic
tim

e
co
m
pl
ex
ity

k

CD(1n) log2(
2k

d
√
2π
e−

d2

2 )

Fig. 2. log2(CD(1n)) vs. log2

(
2k

d
√
2π

e− d2
2

)
for τ = k− 1

2

0

500

1000

1500

2000

0 500 1000 1500 2000

L
og
ar
ith

m
ic
tim

e
co
m
pl
ex
ity

k

τ = 0.1
τ = 0.125

τ = 0.25
τ = 0.4

Fig. 3. log2(CD(1n)) for constant τ

Table 1. log2(CD(1n)) vs. log2

(
2k

d
√
2π

e− d2
2

)
for k = 2000

τ log2(CD(1n)) log2

(
2k

d
√
2π

e− d2
2

)

0.1 1350.04 1314.81

0.125 1458.86 1429.33

0.25 1794.57 1788.49

0.4 1966.67 1966.55
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Comparing log2(CD(1n)) with the approximation we obtained, i.e.
log2

(
2k

d
√
2π

e− d2
2

)
, we obtain the following results which validate our approxi-

mations (See Table 1).

4.2 Password Recovery

There are many news nowadays with attacks and leaks of passwords from dif-
ferent famous companies. From these leaks the community has studied what are
the worst passwords used by the users. Having in mind these statistics, we are
interested to see what is the best strategy of an outsider that tries to get access
to a system having access to a list of users. The goal of the attacker is to hack
one account. He can try to hack several accounts in parallel. Within our frame-
work, we compute to see what is the optimal m for the strategy 1m2m · · · . In
this given scenario, the strategy corresponds to making m guesses for each user
until it reaches the end of the list and starting again with new guesses.

We consider the statistics that we have found for the 10 000 Top Passwords3

and the one done for the database with passwords in clear from the RockYou
hack4. Studies on the distribution of user’s passwords were also done in [7,10,
22,23]. The first case-study analyses what are the top 10 000 passwords from a
total 6.5 million username-passwords leaked. The most frequent passwords are
the following:

password p1 = 0.00493
123456 p2 = 0.00400
12345678 p3 = 0.00133
1234 p4 = 0.00089

In the case of the RockYou hack, where 32 million of passwords were leaked,
we have that the most frequent passwords and their probability of usage is:

123456 p1 = 0.009085
12345 p2 = 0.002471
123456789 p3 = 0.002400
Password p4 = 0.000194

Moreover, approximately 20% of the users used the most frequent 5 000 pass-
words. What these statistics show is that users frequently choose poor and pre-
dictable passwords. While dictionary attacks are very efficient, we study here
the case where the attacker wants to minimize the number of trials until he
gets access to the system, with no pre-computation done. By using our formulas
of computing CD(1m2m · · · ), we obtain in both of the above distributions that
m = 1 is the optimal one. This means that the attacker tries for each username
the most probable password and in average after couple of hundred of users (for
the two studies we obtain CD to be ≈ 203 and ≈ 110), he will manage to access

3 https://xato.net/passwords/more-top-worst-passwords/#.VNiORvnF-xW.
4 http://www.imperva.com/docs/WP Consumer Password Worst Practices.pdf.

https://xato.net/passwords/more-top-worst-passwords/#.VNiORvnF-xW
http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
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the system. We note that having m = 1 is very nice as for the typical password
guessing scenario, we need to have a small m to avoid complications of blocking
accounts and triggering an alarm that the system is under an attack.

5 On the Phase Transition

Given the experience of the previous applications, we can see that for “regular”
distributions, the optimal m falls from m = n to the minimal m as the bias of
the distribution increases. We let n1 be such that p1 = p2 = · · · = pn1 �= pn1+1

and n2 be such that pn1+1 = · · · = pn1+n2 �= pn1+n2+1. Due to Lemma 26, the
magic value m can only be n1, n1 +n2, or more. We study here when the curves
of CD(1n12n1 · · · ), CD(1n1+n22n1+n2 · · · ), and CU (1n) = n+1

2 cross each other.

Lemma 28. We consider a composite distribution D1 = αU1 + βU2 + (1 − α −
β)D′, where U1 and U2 are uniform of support n1 and n2. For U uniform, we
have

CD(1n12n1 · · · ) ≤ CD(1n1+n22n1+n2 · · · ) ⇐⇒ α − β
n1

n2
≥ α

(
α + β

1 − n1/n2

2

)

CD(1n12n1 · · · ) ≤ CU (1n) ⇐⇒ n/n1 + 1

2
≥ 1

α

Note that for 2−H∞ ≥ 2
n , we have α

n1
≥ 2

n so the second property is satisfied.
As an example, for n1 = n2 = 1, the first condition becomes α − β ≥ α2

which is the case of all the distribution we tried for password recovery. The
second condition becomes 2−H∞ ≥ 2

n+1 , which is also always satisfied.
For LPN, we have n1 = 1, n2 = k, α = (1 − τ)k, and β = n2τ(1 − τ)k−1. The

first and second conditions become

(1 − τ)k ≤ 1 − 2τ

1 + k−3
2 τ

and (1 − τ)k ≥ 2
2k + 1

respectively. They are always satisfied unless τ is very close to 1
2 : by letting

τ = 1
2 −ε with ε → 0, the right-hand term of the first condition is asymptotically

equivalent to 8ε
k+1 and the left-hand term tends towards 2−k. The balance is thus

for τ ≈ 1
2 − k+1

8 2−k. The second condition gives

τ ≤ 1 −
(

2k + 1
2

)− 1
k

=
1
2

− ln 2
2k

− o

(
1
k

)

So, we can explain the phase transition in LPNk,τ as follows: if we make τ decrease
from 1

2 , for each fixed m, the complexity of all possible CD(1m) smoothly
decrease. The function for m = n1 crosses the one of m = n1 + n2 before it
crosses n+1

2 which is close to the value of the one for m = n. So, the curve for
m = n1 becomes interesting after having beaten the curve for m = n1+n2. This
proves that we never have a magic m equal to n1 +n2. Presumably, it is the case
for all other curves as well. This explains the abrupt fall from m = n to m = 1
which we observed on Fig. 1.
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Proof. We have

CD(1n12n1 · · · ) =
CD(1n1)
PrD(1n1)

=
αn1+1

2 + (1 − α)n1

α

and

CD(1n1+n22n1+n2 · · · ) = CD(1n1+n2 )

PrD(1n1+n2 )
=

α n1+1
2

+ β
(
n1 + n2+1

2

)
+ (1 − α − β)(n1 + n2)

α + β

so

CD(1n1)
PrD(1n1)

≤ CD(1n1+n2)
PrD(1n1+n2)

⇐⇒

αn1+1
2 + (1 − α)n1

α
≤ αn1+1

2 + β
(
n1 + n2+1

2

)
+ (1 − α − β)(n1 + n2)

α + β
⇐⇒

α − β
n1

n2
≥ α

(
α + β

1 − n1/n2

2

)

For the second property, we have

CD(1n12n1 · · · ) ≤ CU (1n) ⇐⇒ CD(1n1)
PrD(1n1)

≤ CU (1n)

⇐⇒ αn1+1
2 + (1 − α)n1

α
≤ n + 1

2

⇐⇒ n/n1 + 1
2

≥ 1
α

�	

6 Conclusions

Our framework enables the analysis of different strategies to sequentialize algo-
rithms when the objective is to make one succeed as soon as possible.

When the algorithms have the same distribution and are unlimited in num-
ber, the optimal strategy is of form 1m2m · · · for some magic m. As the distri-
bution becomes biased, we observe a phase transition from the regular single-
algorithm run 1n (i.e., m = n) to the single-step multiple algorithms 123 · · ·
(i.e., m = 1) which is very abrupt in the application we considered: LPN and
password recovery.

The phase transition phenomenon is further studied. In particular, we show
that the fall from m = n to m = 1 does not go through any m ∈ {2, . . . , k(k+1)

2 }.
For LPN, the solving algorithm we obtain outperforms the classical ones.
When we have a limited number of algorithms, the optimal strategy has

the form 1m1 · · · |D|m11m2 · · · |D|m2 · · · . For LPN, this simple algorithm outper-
forms the classical ones, even the one from Asiacrypt 2014 [12] for the relevant
parameters using τ ∼ k− 1

2 .



728 S. Bogos and S. Vaudenay

A Composite Distributions

We give a formula to compute the optimal strategies for distributions obtained by
composing several distributions. The formula is useful when we want to regroup
equal consecutive pj ’s in a distribution D1 so that D1 appears as a composition
of uniform distributions.

Lemma 29. Let U1, . . . , Uk be independent distributions of support n1, . . . , nk,
respectively. Let Ui = (pi,1, . . . , pi,ni

). Given a distribution (α1, . . . , αk)
of support k, we define D1 = α1U1 + α2U2 + . . . + αkUk by D1 =
(α1p1,1, . . . , α1p1,n1 , α2p2,1, . . . , αkpk,nk

).
Let m =

∑i
j=1 nj. We have

Pr
D1

(1n11n2 · · · 1ni) = α1 + · · · + αi

CD1(1
n11n2 · · · 1ni) =

i∑
j=1

αjCUj
(1nj ) +

i∑
j=1

nj

(
1 −

j∑
k=1

αk

)

We note that if all Ui are ordered and if αipi,ni
≥ αi+1pi+1,1 for all 1 ≤ i < k,

then D1 is ordered as well.
We let D = (D1,D1, . . .). If we assume that Ui are uniform distributions,

we can use the observation following Lemma 26 to deduce from Theorem 17 that
the optimal strategy is 1m2m · · · for m =

∑i
j=1 nj and i minimizing

minCD(∅) = min
i

⎛
⎝

∑i
j=1 αjCUj

(1nj ) +
∑i

j=1 nj

(
1 − ∑j

k=1 αk

)

∑i
j=1 αj

⎞
⎠

Proof. We prove it by induction on i. It is trivial for i = 0. We assume the result
holds for i − 1. By induction, we have

CD1 (1
n1 · · · 1ni ) = CD1 (1

n1 · · · 1ni−1 ) + (1 − Pr
D1

(1n1 · · · 1ni−1 ))CD1 (1
ni |¬(1n1 · · · 1ni−1 ))

=

i−1∑
j=1

αjCUj
(1nj ) +

i−1∑
j=1

nj

⎛
⎝1 −

j∑
k=1

αk

⎞
⎠+ αiCUi

(1ni ) + ni

(
1 −

i∑
k=1

αk

)

=
i∑

j=1

αjCUj
(1nj ) +

i∑
j=1

nj

⎛
⎝1 −

j∑
k=1

αk

⎞
⎠

The second equality is obtained from the fact that

CD1 (1
ni |¬(1

n1 · · · 1ni−1 )) =
αi

αi + · · · + αk

(pi,1 + 2pi,2 + . . . + nipi,ni
) + ni(

αi+1 + · · · + αk

αi + · · · + αk

)

=
αi

1 − PrD1 (1
n1 · · · 1ni−1 )

CUi
(1

ni ) + ni(
1 − PrD1 (1

n1 · · · 1ni−1 ) − αi

1 − PrD1 (1
n1 · · · 1ni−1 )

)

�	
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B Proof of Lemma25

Proof. We will show below that there exists d > 0 such that a ≤ b − d and
CD(s) = CD(ujdiavjb−dw). Hence, we can rewrite s by replacing u by ujd and b
by b−d. Since d > 0 and a ≤ b−d, we can just apply this rewriting rule enough
time until b is lowered down to a. Hence, we obtain the result.

To find d, we first write s = u0i
m1u1i

m2 · · · imruri
avjbw where i appears in no

ut, the mt are nonzero, and u1, . . . , ur are non-empty. (Note that since a < b, we
must have m1+· · ·+mr > 0 so r ≥ 1.) Let n′ be the equal number of occurrences
of i and j in uiavjb. Let t be the smallest index such that m1 + · · ·+mt > n′ −b.
(For t = 0, the left-hand term is 0 but n′ ≥ b; for t = r, the left-hand term is
n′−a and we know that a < b; so, t exists and t > 0.) We write mt = m′+d such
that m1 + · · · + mt−1 + m′ = n′ − b. So, d > 0. Note that b − d = b − mt + m′ =
n′ − m1 − · · · − mt = mt+1 + · · · + mr + a. So, b − d ≥ a. Clearly, d ≤ b.
We write s = HidBiavjdT with head H = u0i

m1u1i
m2 · · · ut−1i

m′
, body B =

uti
mt+1 · · · imrur, and tail T = jb−dw. Clearly, H has n′ − b occurrences of i and

HidBiav has n′−b occurrences of j. Since s is optimal for D, idBiavjd is optimal
for D|¬H. We note that B does not start with i (t is between 1 and r and ut is
nonempty and with no i) and that iav is non-empty and with no j (either a �= 0
or v is nonempty and with no j). We split idBiavjd = idx1 · · · x�i

ay1 · · · y�′jd

where two consecutive blocks in the list id, x1, . . . , x�, i
a, y1, . . . , y�′ , jd have no

key in common. (For a = 0, we can always split so that x� and y1 have no key
in common by using the first term k of v which is not the last of u: we just take
y1 as a block of k’s and x� as a block with no k.) We can apply Lemma 24 and
obtain

CD(id|¬in
′−b)

PrD(id|¬in
′−b)

≤ CD(ia|¬in
′−a)

PrD(ia|¬in
′−a)

≤ CD(y1|¬ · · · )
PrD(y1|¬ · · · ) ≤ CD(y�′ |¬ · · · )

PrD(y�′ |¬ · · · ) ≤ CD(jd|¬jn′−b)

PrD(jd|¬jn′−b)

Since the first and the last terms are equal, all of them are equal. So, we can
permute two consecutive blocks which have no index in common. Hence, we can
propagate jd earlier until it is stepped before ia, since we know there is no other
occurrence of j in the exchanged blocks. We obtain that

CD(HidBiavjdT ) = CD(HidBjdiavT )

as announced. �	
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