
Optimized Interpolation Attacks on LowMC

Itai Dinur1(B), Yunwen Liu2, Willi Meier3, and Qingju Wang2,4

1 Département d’Informatique, École Normale Supérieure, Paris, France
dinur@di.ens.fr

2 Department of Electrical Engineering,
ESAT/COSIC, KU Leuven and iMinds, Leuven, Belgium

3 FHNW, Windisch, Switzerland
4 Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, China

Abstract. LowMC is a collection of block cipher families introduced at
Eurocrypt 2015 by Albrecht et al. Its design is optimized for instanti-
ations of multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. A unique feature of LowMC is that its internal
affine layers are chosen at random, and thus each block cipher family
contains a huge number of instances. The Eurocrypt paper proposed
two specific block cipher families of LowMC, having 80-bit and 128-bit
keys.

In this paper, we mount interpolation attacks (algebraic attacks intro-
duced by Jakobsen and Knudsen) on LowMC, and show that a practically
significant fraction of 2−38 of its 80-bit key instances could be broken 223

times faster than exhaustive search. Moreover, essentially all instances
that are claimed to provide 128-bit security could be broken about 1000
times faster. In order to obtain these results we optimize the interpo-
lation attack using several new techniques. In particular, we present an
algorithm that combines two main variants of the interpolation attack,
and results in an attack which is more efficient than each one.

Keywords: Block cipher · LowMC · High-order differential
cryptanalysis · Interpolation attack

1 Introduction

LowMC is a collection of block cipher families designed by Albrecht et al. and
presented at Eurocrypt 2015. The cipher is specifically optimized for practical
instantiations of multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. In such applications, non-linear operations result in a
heavy computational penalty compared to linear ones. The designers of LowMC

Q.Wang—The fourth author is in part supported by the National Natural Science
Foundation of China (no. 61472250), Major State Basic Research Development Pro-
gram (973 Plan, no. 2013CB338004).

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 535–560, 2015.
DOI: 10.1007/978-3-662-48800-3 22

536 I. Dinur et al.

took an extreme approach, combining very dense affine layers with simple non-
linear layers that have algebraic degree of 2.

Perhaps the most distinctive feature of LowMC is that its affine layers are
chosen at random, and thus each block cipher family contains a huge number
of instances. As this may enable a malicious party to instantiate LowMC with
a hidden backdoor, its designers propose to use the Grain stream cipher [3] as
a source of pseudo-random bits in order to restrict the freedom available in the
LowMC instantiation. The designers also mention that it is possible to use any
sufficiently random source to generate the affine layers, and this source does not
necessarily need to be cryptographically secure.

The Eurocrypt paper proposed two specific block cipher families of LowMC,
having 80-bit and 128-bit keys. The internal number of rounds in each family
was set in order to guarantee a security level that corresponds to its key size.
For this purpose, the resistance of LowMC was evaluated against a variety of
well-known cryptanalytic attacks. One of the main considerations in setting the
internal number of rounds was to provide resistance against algebraic attacks
(such as high-order differential cryptanalysis [7]). Indeed, LowMC is potentially
susceptible to algebraic attacks due to the low algebraic degree of its internal
round, but the designers argue that LowMC has sufficiently many rounds to
resist such attacks.

In this paper, we evaluate the resistance of LowMC against algebraic attacks
and refute the designers’ claims regarding its security level. Our results are given
in Table 1, and show that a fraction of 2−38 of the LowMC 80-bit key instances
could be broken in about 257 time, using 239 chosen plaintexts. The probability
of 2−38 is practically significant, namely, a malicious party can easily find weak
instances of LowMC by running its source of pseudo-random bits with sufficiently
many seeds, and checking whether the resultant instance is weak (which can be
done efficiently using basic linear algebra).

For LowMC with 128-bit keys, we describe an attack that breaks a fraction
of 2−122 of its instances in time 286 using 270 chosen plaintexts. We note that
this specific attack does not violate the formal security claims of the LowMC
designers, as they do not consider attacks that apply to less than 2−100 of the
instances as valid. Nevertheless, the designers of LowMC allow to instantiate it
using a pseudo-random source that is not cryptographically secure. Our result
shows that this is risky, as using an over-simplified source for pseudo-randomness
may give a malicious party additional control over the LowMC instantiation, and
allow finding weak instances much faster than exhaustively searching for them
in 2122 time.

Finally, we describe an attack that can break essentially all LowMC instances
with 128-bit keys. Although the attack is significantly slower than the weak-
instance attack, it is still about 1000 times faster than exhaustive search, and
uses 273 chosen plaintexts.

All of our results were obtained using the interpolation attack, which is an
algebraic attack introduced by Jakobsen and Knudsen in 1997 [4]. In an inter-
polation attack, the attacker considers some intermediate encryption value b as

Optimized Interpolation Attacks on LowMC 537

Table 1. Attacks on LowMC

Instance
Family

Number of
Rounds

Section Rounds
Attacked

Fraction of
Instances

Data† Time†† Memory†††

LowMC-80 11 6.1 9 1 235 238 235

6.2 10 1 239 257 239

6.3 all (11) 2−38 239 257 239

LowMC-128 12 7.1 11 1 270 286 270

7.1 all (12) 2−122 270 286 270

7.2 all (12) 1 273 2118 280

† Given in chosen plaintexts.
†† Given in LowMC encryptions.
††† Given in 256-bit words.

a polynomial in the ciphertext bits. The aim of the attacker is to interpolate the
algebraic normal form (ANF) of b by recovering its unknown coefficients, and
this typically allows to recover the secret key using ad-hoc techniques.

In order to recover the unknown coefficients, the attacker allocates a variable
for each one of them. Assuming that b has a low-degree representation in terms of
the plaintext bits, the attacker collects linear equations on the variables, typically
by using high-order differentials in a chosen plaintext attack. After obtaining
sufficiently many equations, the unknown variables are recovered by solving the
resultant linear equation system. The efficiency of the attack depends on the
algebraic degree of b in terms of the plaintext, but also on the number of allocated
variables which is determined by the number of unknown coefficients in the ANF
representation of b in terms of the ciphertext.

Although our results were obtained using the well-known interpolation
attack, its straightforward application does not seem to threaten the security
of LowMC. Therefore, we had to develop new techniques such as using carefully
chosen plaintext structures which allow to efficiently derive the linear system of
equations. However, our main new contribution is described next by considering
two variants of the interpolation attack.

In the original variant of the interpolation attack over GF (2) (which we refer
to as variant 1), the attacker views the ANF of some intermediate encryption bit
b as an initially unknown polynomial FK(C) in the ciphertext bits C = c1, . . . , cn,
where K = x1, . . . , xκ is the unknown (fixed) secret key. In a dual approach to the
interpolation attack, which we refer to as variant 2 (used, for example, in [8]), the
attacker interpolates the full polynomial F (K,C) by considering each monomial
in the key bits x1, . . . , xκ with a non-zero coefficient as a separate (linearized)
variable. For example, consider the polynomial

F (c1, c2, x1, x2, x3) = c1c2x1 + c1c2x2 + c1x1 + c1x2 + c2x1 + x1x2 + x3 + 1.

We can write

F(x1,x2,x3)(c1, c2) = α1c1c2 + α2c1 + α3c2 + α4,

538 I. Dinur et al.

and thus in the first variant we have 4 variables: α1, α2, α3, α4. In this variant,
the actual representation of the variables in terms of the key is not considered.
In the dual variant, we write

F (c1, c2, x1, x2, x3) = x1x2(1) + x1(c1c2 + c1 + c2) + x2(c1c2 + c1) + x3(1) + 1,

and we have 4 variables: x1x2, x1, x2, x3.
The advantage of variant 2 over the first variant is that it directly recovers the

secret key, and furthermore, in some cases it may result in a smaller number of
variables in the equation system. At the same time, in order to derive the actual
equation system the attacker has to evaluate the polynomial F for each cipher-
text. This process is less efficient in variant 2, since each evaluation of F (K,C) is
expensive (it requires evaluating all the complex ciphertext expressions that are
multiplied with the variables), whereas in variant 1 each evaluation of FK(C)
is relatively simple (it requires evaluating simple monomials in the ciphertext).
Therefore, the choice of which variant to use in order to optimize the attack
depends on the underlying cryptosystem.

Our main idea is to combine the two dual variants of interpolations attacks:
we first derive the equation system efficiently using the original variant of [4].
Then, we transform a carefully chosen variable subset to variables which are
linearized monomials in the key bits, as in variant 2. This results in a mixed
variable set that is smaller than the variable sets of each variant. Consequently,
we obtain an attack which is more efficient than each one of the two variants.

In our example above, we can express α1 = x1 + x2, α2 = x1 + x2 and
α3 = x1, resulting in only 3 variables: x1, x2, α4. Obviously, our toy example
merely demonstrates the idea at a very high level, and the actual choice of
which variables to transform as well as the analysis of the resultant algorithm
are more involved.

The paper is organized as follows. In Sect. 2 we give some preliminaries, while
in Sect. 3 we give a brief description of LowMC. Our basic attack on 9-round
LowMC with an 80-bit key is described in Sect. 4, while our generic framework
for optimized interpolation attacks is described in Sect. 5. In Sects. 6 and 7 we
apply our optimized attack to LowMC with 80 and 128-bit keys, respectively.
Finally, we conclude the paper in Sect. 8.

2 Preliminaries

In this section, we describe preliminaries that are used in the rest of the paper.

2.1 Boolean Algebra

For a finite set S, denote by |S| its size. Given a vector u = (u1, . . . , un) ∈
GF (2n), let wt(u) denote its Hamming weight.

Any function F from GF (2n) to GF (2) can be described as a multivari-
ate polynomial, whose algebraic normal form (ANF) is unique and given as

Optimized Interpolation Attacks on LowMC 539

F (x1, . . . , xn) =
∑

u=(u1,...,un)∈GF (2n)

αuMu, where αu ∈ {0, 1} is the coefficient of

the monomial Mu =
n∏

i=1

xui
i , and the sum is over GF (2). The algebraic degree of

the function F is defined as deg(F) � max{wt(u)|αu �= 0}. Therefore, a function

F with a degree bounded by d ≤ n can be described using
d∑

i=0

(
n
i

)
coefficients.

To simplify our notations, we define
(

n
≤d

)
�

d∑

i=0

(
n
i

)
.

The ANF coefficient αu of F can be interpolated by summing (over GF (2))
over 2wt(u) evaluations of F : define the set of inputs S to contain all the 2wt(u)

n-bit vectors whose bits set to 1 is a subset of the bits set to 1 in u1, . . . , un.
More formally, let S = {x = (x1, . . . , xn)|ū ∧ x = 0} (where ū is bitwise NOT
applied to u, and ∧ is bitwise AND), then αu =

∑

(x1,...,xn)∈S

F (x1, . . . , xn). Note

that this implies that a function F with a degree bounded by d ≤ n can be fully
interpolated given its evaluations on the set of

(
n

≤d

)
inputs whose Hamming

weight is at most d, namely {x = (x1, . . . , xn)|wt(x) ≤ d}.
Given the truth table of an arbitrary function F (as a bit vector of 2n entries),

the ANF of F can be represented as a bit vector of 2n entries, corresponding
to its 2n coefficients αu. This ANF representation can be efficiently computed
using the Moebius transform, which is an FFT-like algorithm. The Moebius
transform performs n iterations on its input vector (the truth table of F), where
in each iteration, half of the array entries are XORed into the other half. In total,
its complexity is about n · 2n bit operations. For more details on the Moebius
transform, refer to [5].

2.2 High-Order Differential Cryptanalysis and Interpolation
Attacks

In this section, we give a brief summary of high-order differential cryptanalysis
and interpolation attacks.

High-Order Differential Cryptanalysis. High-order differential cryptanaly-
sis was introduced in [7] as an algebraic attack that is particularly efficient
against ciphers of low algebraic degree. The basic variant of high-order differen-
tial cryptanalysis over GF (2) considers some target bit b (which can be either a
ciphertext or an intermediate encryption value) and analyzes its ANF represen-
tation in terms of the plaintext P , denoted by FK(P) (where K is the unknown
secret key). Given that deg(FK(P)) ≤ dg independently of K for dg (relatively)
small, then the attacker chooses an arbitrary linear subspace S of dimension
dg + 1, and evaluates the cipher (in a chosen plaintext attack) over its 2dg+1

inputs. Since every differentiation reduces the algebraic degree of the target bit
by 1 and deg(FK(P)) ≤ dg, the value of the high-order differential over S for
the target bit b (namely, the sum of evaluations of b over GF (2)) is equal to

540 I. Dinur et al.

zero (refer to [7] for details). High-order differential properties may be used in
key recovery attacks, depending on the specification of the cipher (refer to [6]).
However, such key recovery methods are not part of the framework described in
this section.

Interpolation Attacks. The interpolation attack was introduced in 1997 by
Jakobsen and Knudsen as an algebraic attack on block ciphers [4]. The attack
is closely related to high-order differential cryptanalysis1 and (similarly to high-
order differential cryptanalysis) is particularly efficient against block ciphers
whose round function is of low algebraic degree. The interpolation attack has
several variants, and can be applied over a general finite field, exploiting known
or chosen plaintexts. Here, we give a high-level description of the chosen plaintext
interpolation attack over GF (2), as this is the variant we apply to LowMC.

The attack considers some intermediate encryption target bit b of the block
cipher, whose ANF representation can be expressed from the decryption side
in terms of the ciphertext and key as F (C,K). The key K is viewed as
an unknown constant, and thus we can write FK(C) = FK(c1, . . . , cn) =∑

u=(u1,...,un)∈GF (2n)

αuMu, where αu ∈ {0, 1} is the coefficient of the monomial

Mu =
n∏

i=1

cui
i . Therefore, the coefficients αu of FK(C) generally depend on the

secret key and are unknown in advance. The goal of the interpolation attack is
to recover (interpolate) the unknown coefficients of FK(C), and then use var-
ious ad-hoc techniques (which are not part of the framework described in this
section) in order to recover the actual secret key.

In order to deduce the unknown coefficients of FK(C), they are considered
as variables (i.e., linearized), and recovered by solving a linear equation system.
For the purpose of constructing the equation system, the attacker assumes that
the algebraic degree dg of the bit b in terms of the bits of the plaintext is
relatively small, which allows to use high-order differential cryptanalysis (as
described above). More specifically, a high-order differential property is devised
by encrypting a subspace S of plaintexts of dimension dg + 1, and performing
high-order differentiation with respect to this subspace, whose outcome is zero
on the bit b.

When expressed in terms of the ciphertexts C1, . . . , C2dg+1 (obtained by

encrypting the plaintexts of S), this gives the equation
2d+1
∑

t=1
FK(Ct) = 0. For

each ciphertext Ct, FK(Ct) is merely a linear expression in the variables αu (the
coefficient of αu in this expression is easily deduced by evaluating Mu on Ct),
and thus the subspace S gives rise to one linear equation in the variables αu.
In order to solve for the unknown variables αu, the attacker considers several
such subspaces, each giving one equation. In total, the number of equations (and

1 In fact, some of its variants directly exploit high-order differential properties, as we
describe next.

Optimized Interpolation Attacks on LowMC 541

subspaces considered) needs to be roughly equal to the number of the unknown
αu variables, assuming the equations are sufficiently “random”.

From the high-level description above, it is easy to conclude that the data
and time complexities of the attack depend on the value of the degree dg and
the number of unknown variables αu. Therefore, in order to mount efficient
interpolation attacks, the attacker tries to minimize these parameters, as we
demonstrate in our attacks on LowMC.

2.3 Model of Computation

Since an exhaustive key search attack (which evaluates the LowMC encryp-
tion function) and our attacks use different bitwise operations, comparing these
attacks cannot be done simply by counting the number of encryption function
evaluations. Instead, we compare the complexity of straight-line implementa-
tions of the algorithms, counting the number of bit operations (such as XOR,
AND, OR) on pairs of bits. This computation model ignores operations such
as moving a bit from one position to another (which only requires renaming
variables in straight-line programs). As calculated in Sect. 3, the straight-line
implementation of one encryption function evaluation of LowMC requires about
219 bit operations. Consequently, a straight-line implementation of exhaustive
search for 80-bit and 128-bit keys requires about 299 and 2147 bit operations,
respectively, and these are quantities of reference for our attacks.

3 Description of LowMC

LowMC is a collection of SP-network instances, proposed at Eurocrypt 2015 [1]
by Albrecht et al. The specification defined two specific instance families which
are analyzed in this paper, both having a block size of n = 256 bits, and are
characterized by their key size κ, which is either 80 or 128 bits. In this paper, we
refer to these instance families as LowMC-80 and LowMC-128. The encryption
function of LowMC applies a sequence of rounds to the plaintext, where each
round contains a (bitwise) round-key addition layer, an Sbox layer, and an affine
layer (over GF (2)). LowMC was designed with distinct features (as detailed
in the pseudocode below): it has a linear key schedule and its affine layers are
selected at random, where each selection defines a separate instance of the family.
The Sbox layer of LowMC is composed of 3-bit Sboxes with degree 2 over GF (2)
(the actual specification of the Sboxes is irrelevant for our analysis and is omitted
from this paper). Furthermore, the Sbox layers are only partial, namely, in each
Sbox layer, only 3m < n bits go through an Sbox (where m is a parameter),
while the rest of the n − 3m bits remain unchanged.

Each family instance of LowMC is also defined with a data limit lim, which
determines the maximal (recommended) data complexity before changing the
key. In other words, the cipher is guaranteed to offer security according to its key
size as long as the adversary cannot obtain more than 2lim plaintext-ciphertext
pairs. The parameters of the two instance families are given in Table 2.

542 I. Dinur et al.

Table 2. LowMC instance families

Instance Family key size κ Block Size n Sboxes m Data lim Rounds r

LowMC-80 80 256 49 64 11

LowMC-128 128 256 63 128 12

The pseudocode of the encryption function (taken from [1]) is given below.

ciphertext = encrypt (plaintext,key)
//initial whitening
state = plaintext + MultiplyWithGF2Matrix(KMatrix(0),key)
for (i = 1 to r)

//m computations of 3-bit Sbox, n-3m bits remain the same
state = Sboxlayer (state)
//affine layer
state = MultiplyWithGF2Matrix(LMatrix(i),state)
state = state + Constants(i)
//generate round key and add to the state
state = state + MultiplyWithGF2Matrix(KMatrix(i),state)

end
ciphertext = state

The matrices LMatrix(i) are chosen at random from all invertible binary
n × n matrices, while the matrices KMatrix(i) are chosen independently and
uniformly at random from all binary n × κ matrices of rank min(n, κ). The
constants Constants(i) are chosen independently and uniformly at random from
all binary vectors of length n.

In this paper, we denote the 256-bit state at the input to the i’th key addition
layer by Xi−1 (e.g., the plaintext is denoted X0), the input to the i’th Sbox layer
by Yi−1 and the input to the i’th affine layer by Zi−1. We refer to the 3m bits
of the state that go through Sboxes in the Sbox layer as the S-part, while the
remaining n − 3m bits are referred to as the I-part. Given a state W , denote by
W |SP and W |IP the S-part and I-parts of the state, respectively (e.g., Y5|IP
is the I-part of the input state to the 6’th Sbox layer).

It is common practice in cryptanalysis of block ciphers to exchange the order
of the final two affine operations over GF (2) (namely, the keyless affine transfor-
mation and key addition). This allows the attacker to “peel off” the last affine
transformation at a negligible cost by working with an equivalent last-round key
(obtained by an affine transformation on the original last-round key). For the
sake of simplicity, we assume in the following that we have already “peeled off”
the last affine transformation of the cipher. Therefore, the final states of the last
round r are denoted by Xr−1, Yr−1, Zr−1 and Yr, which denotes the ciphertext
(after “peeling off” the final affine transformation).

Each affine layer of LowMC involves multiplication of the 256 state with a
256 × 256 matrix. This multiplication requires roughly 216 bit operations, and
therefore a single encryption of LowMC (that contains more than 8 rounds)
requires more than 216 · 8 = 219 bit operations (as already noted in Sect. 2.3).

Optimized Interpolation Attacks on LowMC 543

4 A Basic 9-Round Attack on LowMC-80

In this section we describe our basic interpolation attack on 9-round LowMC,
which is given first without optimizations for the sake of clarity. We begin by
considering the elements that are required for the attack.

4.1 The High-Order Differential Property

We construct the high-order differential property used in the interpolation
attack. A similar property was described by the LowMC designers [1], but we
reiterate it here for the sake of completeness.

The algebraic degree of a single round of LowMC-80 over GF (2) is 2, and
therefore the algebraic degree of any bit at the input to the 6’th Sbox layer of
LowMC-80, Y5, in the input bits, X0, is at most 32. Moreover, as the bits of the
I-part of LowMC do not go through Sboxes in the first round, then the degree at
the input to the 7’th Sbox layer, Y6, in the bits of the I-part, X0|IP , (given that
the input bits of the S-part, X0|SP , are constant) is at most 32. Furthermore,
since the bits of the I-part of the 7’th Sbox layer do not go through an Sbox,
the degree of any bit of Z6|IP in the input bits of the I-part, X0|IP , is at most
32 (given that X0|SP is constant).

The last property implies that the value of a 33-order differential over any
33-dimensional subspace selected from X0|IP , (keeping X0|SP constant) is zero
for any bit of Z6|IP . Moreover, as we selected a subspace whose bits do not
go through an Sbox in the first round, the value of a 32-order differential for
any bit of Z6|IP over any 32-dimensional subspace from X0|IP , is a constant
(independent of the key). This observation implies that we can select several
32-dimensional subspaces, and compute in a preprocessing phase the constants
obtained by summing (over GF (2)) over a target bit of Z6|IP (for an arbitrary
fixed value of the key). Each such constant (derived from a 32-dimensional sub-
space) gives one bit of information that we will exploit as the constant value of
an equation in the interpolation attack.

4.2 Bounding the Number of Variables

In the interpolation attack on 9-round LowMC-80, we select a target bit from
Z6|IP and denote its ANF representation in the 256-bit ciphertext (obtained
after inverting the final affine transformation) and 80-bit key by F (C,K). We
consider K as an unknown constant, and write FK(C) = FK(c1, . . . , c256) =∑

u=(u1,...,u256)∈GF (2256)

αuMu, where αu ∈ {0, 1} is the coefficient of the monomial

Mu =
256∏

i=1

cui
i . As the complexity of the attack depends on the number of variables

αu, it is important to estimate their number with good accuracy. An initial
estimation can be made by observing that the algebraic degree of the (inverse)
round of LowMC-80 is 2,2 and thus deg(FK(C)) ≤ 4. This implies that αu = 0
2 The algebraic degree of any invertible 3-bit Sbox is (at most) 2.

544 I. Dinur et al.

in case wt(u) > 4, and therefore the number of unknown variables is upper
bounded by

(
256
≤4

) ≈ 227.
The initial upper bound on the number of variables can be significantly

improved by considering the specific round function of LowMC-80. For this pur-
pose, it will be convenient to use additional notation to describe the variables αu

according to the degree of Mu, by defining the set of variables Ui for a positive
integer i as Ui = {αu that is not identically zero as a function of the key|wt(u) =
i
∧

u ∈ GF (2256)}. We have already seen that Ui is empty for i > 4 (as these
variables are identically zero independently of the key), and we now derive tighter
bounds on |Ui| for i ≤ 4. Thus, we analyze the symbolic representation of the state
variables in the decryption direction, starting from the ciphertext Y9, up to Z6, as
polynomials in the ciphertext bits c1, . . . , c256.

The ciphertext Y9 contains 256 bits of c1, . . . , c256, while in order to compute
Z8 we merely add (unknown) constants to these bits (recall that we “peeled off”
the last affine layer). Then, the inverse Sbox layer is applied to Z8 to obtain
the state Y8. Each 3-bit Sbox may contribute (up to) 3 quadratic monomials
to Y8, and 6 monomials in total, e.g., an Sbox corresponding to ciphertext bits
c1, c2, c3 may contribute the monomials c1, c2, c3, c1c2, c1c3, c2c3. Note that these
monomials may appear in the ANF of different bits of Y8 with different unknown
coefficients (e.g., c1x1 and c1x2 may appear in the ANF of two different bits of
Y8). However, in interpolation attacks, we consider the ANF of the target bit, in
which the coefficient αu of every monomial Mu in the ciphertext is linearized and
considered as a single variable. Therefore, the important quantity is the number
of possibilities to create the monomials Mu (for this reason, the monomial c1
is counted only once even if it appears in the ANF of different bits of Y8 with
different unknown coefficients).

Since there are 49 Sboxes, the total number of monomials Mu in the ANF of
the state bits of Y8 is bounded by |U2| ≤ 3 · 49 = 147, |U1| ≤ 256 (which is the
trivial bound) and |Ui| = 0 for i ≥ 3. As the affine and key addition mappings
do not influence the number of monomials Mu, this bound applies also to X8

and Z7.
Next, the inverse Sbox layer is applied to Z7 to obtain the state Y7, for which

we already know that |Ui| = 0 for i > 4. Since the Sbox layer is of degree
2, a trivial upper bound on the number of variables αu in Y7 is obtained by

multiplying the 147+256 = 403 monomials in unordered pairs, giving |
4⋃

i=1

Ui| ≤
(
403
2

)
+ 403 < 216.5. Since the key addition and affine layers do not influence the

number of monomials, the upper bound of 216.5 also applies to X7 and Z6, and
it is much smaller than our initial bound of about 227.

We denote the set of variables
4⋃

i=1

Ui by U , and note that the explicit set

{u|αu ∈ U} (which gives the relevant monomials Mu) can be easily derived dur-
ing preprocessing (which involves a more explicit computation of the monomial
set {Mu|αu ∈ U}, whose size is bounded above).

Optimized Interpolation Attacks on LowMC 545

4.3 Obtaining the Data

After deducing that the number of variables in the system of equations is |U | ≈
216.5, we conclude that we need to differentiate over about 216.5 32-dimensional
subspaces in order to obtain sufficiently many equations to solve the system.
A trivial way to do this is to select about 216.5 arbitrary linearly independent
32-dimensional subspaces from the 256− 3 · 49 = 109 bits of X0|IP . This results
in an attack with data complexity of 232+16.5 = 248.5, and is rather wasteful.
A more efficient approach (which was previously used in various papers such
as [2]), is to select a large 37-dimensional subspace S from X0|IP , containing(
37
32

)
> 218 linearly independent 32-dimensional subspaces, which should suffice

for the attack (assuming that the constructed system of equations is sufficiently
random). The subspaces are indexed according to 37 − 32 = 5 constant indexes
that are set to zero in S.

4.4 The Basic Interpolation Attack

We now describe a basic interpolation attack on 9-round LowMC-80. We note
that this attack is incomplete, as it only computes the |U | variables αu using
e ≈ |U | equations, without recovering the actual secret key. The details of this
final step will be given in the optimized attack in Sect. 5.2. For the sake of con-
venience, we describe the attack in two phases: the preprocessing phase (which
is independent of the data and secret key) and online phase. However, we take
into account both phases in the total complexity evaluation.

Assume we selected a target bit b from Z6|IP , a subspace S of dimension 37
from X0|IP , and e ≈ |U | 32-dimensional subspaces S1, . . . , Se in S. The detailed
attack is described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U | equations, denoted
by a0: evaluate b on the subset of inputs of S (with the key set to zero),
and obtain a bit array of size 237. Finally, calculate the free coefficients
by summing on b for the e 32-dimensional subspaces S1, . . . , Se in S,
and store the result in a0.

2. Calculate the |U | vectors {u|αu ∈ U}: This can be done by first calcu-
lating the 403 monomials Mu past the first Sbox layer, and multiplying
them in pairs (as described in Sect. 4.2).

Online:

1. Ask for the encryptions of the 237 plaintexts in S and store the cipher-
texts in a table.

546 I. Dinur et al.

2. Allocate a 237×|U | matrix A, where row A[t] is a bit array that represents
the evaluation FK(Ct) (namely,

∑

{u|αu∈U}
αuMu(Ct)).

3. For each ciphertext Ct, calculate A[t] by evaluating FK(Ct):
(a) For each {u|αu ∈ U}, evaluate the monomial Mu(Ct) (the coefficient

of αu) and set the corresponding bit entry in A[t] according to the
result.

4. Allocate an e × |U | matrix E over GF (2), representing the equation
system on U .

5. For each 32-dimensional subspace Sj in S, namely S1, . . . , Se (that
match the subspaces considered in preprocessing Step 1):
(a) Populate the row (equation) E[j] by summing over the 232 rows of

A corresponding to Sj .
6. Solve the equation system Ex = a0, where x represents the vector

of variables of U and a0 is the vector of free coefficients calculated in
preprocessing Step 1.

The data complexity of the attack is 237 chosen plaintexts. The total time
complexity of the attack is about 265 bit operations, dominated by online Step
5 (for each of the e subspaces, we sum over 232 bit vectors of size |U |, requiring
about e · 232 · |U | ≈ 265 bit operations). The memory complexity of the attack is
about 237 · |U | ≈ 253.5 bits, dominated by the storage of the matrix A in online
Step 2.

We note that in the complexity evaluation of the attack we ignore indexing
issues that arise (for example) in Step 3.a (that maps between a variable αu ∈ U
and its corresponding column index in A[t]), and in Step 5 (that maps between
a subspace Sj in S and the corresponding 5 constant indexes of S). The reason
that we can ignore these mappings in the complexity evaluation is that they are
independent of the secret key and data, and therefore, they can be precomputed
and integrated into the straight-line implementation of the program.

5 The Optimized Interpolation Attack

In this section, we introduce three optimizations of the basic 9-round attack
above. The first optimization reorders the steps of the algorithm in order to
reduce the memory complexity, while the second optimization further exploits
the structure of chosen plaintexts to reduce the time complexity of the attack.
Finally the third optimization is based on a novel technique in interpolation
attacks, and allows to (further) reduce the data and time complexities. We first
describe informally how to apply the optimizations to the basic 9-round attack
on LowMC-80 above, and then devise a more formal and generic framework that
can be applied to other LowMC variants.

Optimized Interpolation Attacks on LowMC 547

The first two optimizations focus on online steps 2–5, which compute the
equation system E from the 237 ciphertexts. First, we reduce the memory com-
plexity by noticing that we do not need to allocate the matrix A. Instead, we
work column-wise and focus on a single column A[∗][�] at a time, corresponding
to some {u|αu ∈ U}. We evaluate Mu(Ct) for all ciphertexts (which gives an
array of 237 bits, a�) and then populate the corresponding column E[∗][�] by
summing over the 32-dimensional subspaces S1, . . . , Se on a�.

Next, we reduce the time complexity by optimizing the summation process:
given a bit array a� of 237 entries, the goal is to sum over many 32-dimensional
subspaces (indexed according to 5 bits which are set to zero). This can be done
efficiently using the Moebius transform (refer to Sect. 2.1). For this purpose,
we can view a� as evaluating a 37-variable polynomial over GF (2), and the
summation over a 32-dimensional subspace of a� is equal to the coefficient of its
corresponding 32-degree monomial. All these coefficients are computed by the
Moebius transform in about 37 · 237 bit operations. We stress that the reason
that we can use the Moebius transform in this case is purely combinatorial and is
due to the way that we selected the structure of subspaces for the interpolation
attack. Indeed, there does not seem to be any obvious algebraic interpretation
to a� when viewed as a polynomial.

Finally, we optimize the data complexity (and further reduce the time com-
plexity): In order to achieve this, examine the polynomial F (K,C) (as a function
of both the key and ciphertext) for the target bit b selected in Z6|IP . Due to the
linear key schedule of LowMC, this polynomial is of degree 4, similarly to FK(C)
(in which the key is treated as a constant). We consider a variable αu ∈ U and
analyze its ANF in terms of the 80 key bit variables. Since αu is multiplied with
Mu in F (K,C), then deg(αu) + deg(Mu) ≤ 4, implying that if deg(Mu) ≥ 2,
then deg(αu) ≤ 2. This simple observation is borrowed from cube attacks [2]
and can be used to significantly reduce the number of variables U , as described
next.

Consider all the variables in U2

⋃
U3

⋃
U4, and recall that their number was

upper-bounded in Sect. 4.2 by roughly 216.5. However, since all of these variables
are polynomials of degree (at most) 2 in the 80 key bits, they reside in a linear
subspace of monomials of dimension

(
80
2

)
+ 80 = 3240. This implies that we can

significantly reduce the total number of variables from ≈ 216.5 to 3240 + 256 =
3496 < 212 (including the 256 variables of U1) by considering linear relations
between the variables U2

⋃
U3

⋃
U4. An immediate consequence of the reduction

of variables is that we need less equations to solve the equation system, and
therefore, we require less subspaces (or data) to obtain these equations. More
specifically, a subspace of dimension 35 contains

(
35
32

)
= 6545 > 212 subspaces of

dimension 32, which should suffice for the attack.
Assuming that we interpolate the variables of U2

⋃
U3

⋃
U4 in terms of the

key and recover their values, then the key itself should be very easy to deduce,
as the variables of U3 are merely key bits.

We note that while the idea above exploits the linear key schedule of LowMC,
the technique is general and can be applied to block ciphers with arbitrary key

548 I. Dinur et al.

schedules. In this case, it would consider each round key as independent. This
increases the number of variables in the (linearized) key, but not necessarily by a
significant factor. For example, if LowMC-80 had a non-linear key schedule, the
optimization above would interpolate U2

⋃
U3

⋃
U4 in terms of

(
80
2

)
+80 = 3240

monomials in the key of round 9, and only 80 additional linear monomials and
3 · 49 = 294 quadratic monomials in the key of round 8 that are created by
the inverse Sbox layer of round 8 (we can assume that the key of round 8 is
added right after the 8’th Sbox layer, as the key addition and affine layer are
interchangeable).

5.1 Transformation of Variables

In this section, we begin to describe our generic framework for interpolation
attacks on LowMC by formalizing the last optimization described above.

Given an instance of LowMC with a 256-bit block, a key size of κ, and m
Sboxes per layer, we assume that we want to interpolate a target bit b through
the final r1 rounds of the cipher. We first describe in a more generic way how
to calculate the initial set of variables U , and bound its size. As in the 9-round
attack, the number of monomials in the 256 ciphertext bits at Yr−1 (after invert-
ing the final Sbox layer) is bounded by 256+3m. The target bit b is a polynomial
of degree 2r1−1 in the state Yr−1, and thus it contains at most

(
256+3m
≤2r1−1

)
mono-

mials. Therefore, the set of monomials with (apriori) unknown coefficients can
be computed by multiplying the 256 + 3m monomials in unordered tuples (with
no repetition) of size up to 2r1−1. Thus,

|U | ≤
(

256 + 3m

≤ 2r1−1

)

,

and this set can be computed with |U | multiplications of tuples. Note again that
this bound is generally better than the trivial bound of |U | ≤ (

256
≤2r1

)
, which is

obtained due to the fact that b is a polynomial of degree 2r1 in the 256 ciphertext
bits.

We consider the target bit b as a polynomial in both the ciphertext and the
key, namely, F (K,C) = F (x1, . . . , xκ, c1, . . . , c256) =

∑

u=(u1,...,un)∈GF (2n)

αuMu,

where Mu =
n∏

i=1

cui
i and αu(x1, . . . , xκ) is a polynomial from GF (2κ) to GF (2).

We partition the variables of |U | into subsets according to the degree of their
monomials in the ciphertext, which is bounded by deg(FK(C)) = 2r1 . Denote

d = 2r1 and write U =
d⋃

i=1

Ui, where Ui = {αu ∈ U |deg(Mu) = i}. Due to

the linear key schedule of LowMC, we have deg(F (K,C)) = deg(FK(C)) = d,
and therefore deg(αu) + deg(Mu) ≤ d. This allows us to transform the variable
set U into a smaller variable set, considering internal linear relations due to the
fact that deg(αu) ≤ d − deg(Mu). We stress again that the variable transforma-
tion technique can be applied to block ciphers with arbitrary key schedules by
considering each round key as independent.

Optimized Interpolation Attacks on LowMC 549

We choose an integral splitting index 1 ≤ sp ≤ d+1 , and write U = U ′ ⋃ U ′′,

where U ′ =
sp−1⋃

i=1

Ui and U ′′ =
d⋃

i=sp

Ui. The observation above implies that

the algebraic degree of the variables in U ′′ (in terms of the key) is bounded
by d − sp, namely, deg(αu) ≤ d − sp, for each αu ∈ U ′′. Therefore, we
can interpolate each variable of U ′′ in terms of the key, and express it as
αu =

∑

{v=(v1,...,vκ)|wt(v)≤d−sp}
βuMv, where βv ∈ {0, 1} is the coefficient of the

monomial Mv =
κ∏

i=1

xvi
i . Note that the coefficients βv are independent of the key

and can be computed during preprocessing. This interpolation transforms the
set of variables U ′′ into the set of variables V , which are low degree monomials

in the key bits V = {Mv =
κ∏

i=1

xvi
i |v = (v1, . . . , vκ) ∧ wt(v) ≤ d − sp}. Similarly

to the partition of U , we partition the variables of V into subsets according to
the degree of their monomials in the key, namely Vi = {Mv ∈ V |deg(Mv) = i}.

In addition, we define V≤i =
i⋃

j=1

Vi. Note that αu ∈ Ui is a linear combination

of variables in V≤(d−i).
Recall that our initial set of variables is expressed as U = U ′ ⋃ U ′′, where

U ′ =
sp−1⋃

i=1

Ui and U ′′ =
d⋃

i=sp

Ui. This set of variables is transformed via interpo-

lation into a new set of variables W = U ′ ⋃ V .
We compute bounds on sizes of the variables sets as follows:

|U ′| ≤
(

256
≤ sp − 1

)

, |V | ≤
(

κ

≤ d − sp

)

,

|W | = |U ′| + |V | ≤
(

256
≤ sp − 1

)

+
(

κ

≤ d − sp

)

.

The Variable Transformation Algorithm. We now describe the algorithm
which interpolates a variable αu ∈ Ui in terms of the variable set V≤(d−i). For
the sake of efficiency, the algorithm is performed in two phases, where in the
first phase, we evaluate the polynomial αu in terms of the key for all relevant
keys of low Hamming weight and store the results. Note that each evaluation of
αu requires summing on 2i evaluations of the target bit b. In the second phase,
we use the evaluations to interpolate αu in terms of V≤(d−i).

1. Allocate a bit array a1 of size |V≤(d−i)| for the evaluations of αu.
2. Evaluate αu for each key with Hamming weight at most d − i. Namely,

for each key in the set {K|wt(K) ≤ d − i}:

550 I. Dinur et al.

(a) Evaluate F (K,C) (the target bit) on the subset of 2i inputs (with
the fixed key K) {K,C|ū ∧ C = 0}, sum the result over GF (2), and
store it in a1.

3. Allocate a bit array a2 of size |V≤(d−i)| for interpolation of αu in terms
of V≤(d−i).

4. For each Mv ∈ V≤(d−i) (with index �), the coefficient βv of Mv in αu is
calculated as follows:
(a) Sum the 2wt(v) values of a1 calculated for the subset of keys {K|v̄ ∧

K = 0}, and store the result in a2[�].

The total number of evaluations of b in Step 2 is 2i · |V≤(d−i)|, each requiring
r1 · 216 bit operations. Therefore, the total complexity of this step is r1 · 216+i ·
|V≤(d−i)|. Step 4 requires less than |V≤(d−i)| · 2d−i bit operations. In total, the
interpolation of αu ∈ Ui requires |V≤(d−i)| · (r1 · 216+i + 2d−i) bit operations.

Since U ′′ =
d⋃

i=sp

Ui, we can write the complexity of interpolating all the

variables as
d∑

i=sp

|Ui| · |V≤(d−i)| · (r1 · 216+i + 2d−i). A simple way to bound this

complexity is

|U ′′| · |V | · (r1 · 216+d + 2d−sp) ≈ |U ′′| · |V | · r1 · 216+d.

In some cases, we can obtain a refined bound by writing the complexity as

|Usp| · |V≤(d−sp)| · (r1 ·216+sp +2d−sp)+
d∑

i=sp+1

|Ui| · |V≤(d−i)| · (r1 ·216+i +2d−i) ≤

|Usp| · |V≤(d−sp)| ·(r1 ·216+sp +2d−sp)+ |U ′′| · |V≤(d−sp−1)| ·(r1 ·216+d +2d−sp+1) ≈

|Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U ′′| · |V≤(d−sp−1)| · r1 · 216+d.

Note that the bound is potentially better than the trivial one of |U ′′| · |V | ·r1 ·
216+d as |Usp| ≤ (

256
sp

)
, which may be smaller than |U ′′|. Moreover |V≤(d−sp−1)| ≤

(
κ

≤d−sp−1

)
, which is smaller than |V |.

Transformation of Equations. After computing the transformation of vari-
ables from U ′′ to V , we need to apply the actual transformation to every equa-
tion over U that we calculated. Namely, we are interested in transforming an
equation over the variable set U = U ′ ⋃ U ′′, into an equation over variable
set W = U ′ ⋃ V . Obviously, the coefficients of the variables of U ′ remain the
same, and we need to apply the transformation for every variable αu ∈ U ′′.

Optimized Interpolation Attacks on LowMC 551

The complexity of transforming a single variable αu ∈ Ui in a single equation
is simply equal to its number of coefficients over V , namely |V≤(d−i)|. There-
fore, the complexity of transforming all the variables αu ∈ U ′′ in an equation is

d∑

i=sp

|Ui| · |V≤(d−i)|. A simple upper bound on this complexity is

|U ′′| · |V |.

Similarly to the variable transformation algorithm, a refined upper bound can
be calculated as

|Usp| · |V | + |U ′′| · |V≤(d−sp−1)|.
In total, if we transform e equations, the complexity calculations above are
multiplied by e.

Finally, we observe that the splitting index determines the complexity of
the variable and equation transformation algorithms. Furthermore, the splitting
index also determines |W |, which in turn determines the number of equations e.
In general, we will choose sp in order to minimize |W |, which in turn minimizes
the data and time complexity of the attack.

5.2 Details of the Optimized Interpolation Attack

Given an instance of LowMC with a 256-bit block, a key size of κ, and m Sboxes
per layer, we interpolate a target bit b through the final r1 rounds of the cipher.
Let U , U ′, U ′′, V and W be as defined above, and let e ≈ |W | denote the number
of equations. Assume S is a sufficiently large subspace of plaintexts, such that
it contains e smaller subspaces S1, . . . , Se whose high-order differential on b is a
constant value (independent of the key).

The preprocessing phase of the optimized attack in described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U ′| equations,
denoted by a0: evaluate b on the subset of inputs (plaintexts) of S (with
the key set to zero), and obtain a bit array of size |S|. Then, calculate
the free coefficients by applying the Moebius transform to the bit array,
and copy the values of sums over S1, . . . , Se to a0.

2. Calculate the |U | vectors {u|αu ∈ U}: This is done by first calculating
the 256+3m monomials past the first Sbox layer, and multiplying them
in unordered tuples (with no repetition) of size up to 2r1−1(as described
in Sect. 5.1).

Step 1 involves |S| evaluations of the encryption scheme and one application
of the Moebius transform on a vector of size S. Altogether, it requires |S| ·
219 + log(|S|) · |S| ≈ |S| · 219 bit operations (as log(|S|) 	 219). Step 2 requires

552 I. Dinur et al.

|U | monomial multiplications, each monomial can be represented with a 256-bit
array, and therefore this step requires 28 · |U | bit operations.

A summary of the complexity analysis of the preprocessing phase is as follows.

Step 1: 219 · |S|
Step 2: 28 · |U |

In terms of memory, Step 1 requires |S| bits, while Step 2 requires 28 · |U |
bits.

Online:

1. Ask for the encryptions of the plaintexts in S and store the ciphertexts
in a table.

2. Allocate a bit vector of size |S| for the storage of the vectors a� (the
�’th column of the matrix A in the basic attack).

3. Allocate an e × |W | matrix E over GF (2), representing the (reduced)
equation system on W . The matrix is vertically decomposed into two
smaller matrices: E1 of size e × |U ′| and E2 of size e × |V |.

4. For each {Mu|αu ∈ U} with an index �:
(a) For each ciphertext Ct, calculate a�[t] by evaluating Mu(Ct).
(b) Use the Moebius transform to sum over all subspaces of a�.
(c) If αu ∈ U ′, populate column � of E1: For each subspace Sj in S,

namely S1, . . . , Se, obtain its corresponding sum from a� and copy
it to E1[j][�].

(d) Otherwise, αu ∈ U ′′:
i. Given that αu ∈ Ui, interpolate the coefficients of V≤(d−i) in αu

as described in Sect. 5.1.
ii. For each subspace Sj in S, obtain its corresponding boolean sum

from a� (the coefficient of αu over U). If the sum is 1, then add
(over GF (2)) the interpolated coefficients into their indexes in
E2[j] (as described in Sect. 5.1).

5. Solve the equation system Ex = a0, where x represents the vector
of variables of W = U ′ ⋃ V and a0 is the vector of free coefficients
calculated in preprocessing Step 1.

6. Deduce the κ-bit secret key, which is simply given by the monomials V1

(namely, the monomials of degree 1 in V).

The complexity of Step 1 is |S| encryptions, or |S| · 219 bit operations. In
Step 4, we iterate over |U | monomials, where for each one we first evaluate
Mu(Ct) for each ciphertext in Step 4.a. Each such evaluation can be performed
with d bit operations (as deg(Mu) ≤ d), and thus monomial evaluations require
about d · |S| · |U | bit operations. Next, we apply the Moebius transform in Step
4.b, requiring about log(|S|) · |S| bit operation, and therefore the complexity of
all the transforms is about log(|S|) · |S| · |U |. The complexity of interpolating

Optimized Interpolation Attacks on LowMC 553

all the variables in Step 4.d.i, is bounded in Sect. 5.1 by |U ′′| · |V | · r1 · 216+d.
The complexity of Step 4.d.ii (over all αu ∈ U ′′) is bounded in Sect. 5.1 by
e · |U ′′| · |V | ≈ |W | · |U ′′| · |V |.

The complexity of Step 5 is |W |3 bit operations using Gaussian elimination.
A summary of the complexity analysis of the online phase is as follows. Since we
generally do not have a good bound for |U ′′|, we simply replace it with |U | (as
|U ′′| ≤ |U |), and further assume that e ≈ |W |.
Step 1: |S| · 219

Step 2: |S|
Step 3: |W | · |W |
Step 4.a: d · |S| · |U |
Step 4.b: log(|S|) · |S| · |U |
Step 4.c: |U ′| · |W |
Step 4.d.i: |U | · |V | · r1 · 216+d

Step 4.d.ii: |W | · |U | · |V |
Step 5: |W |3
Step 6: negligible

Alternatively, we can use the refined complexity bounds for steps 4.d.i and
4.d.ii, as calculated in Sect. 5.1.

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d

Step 4.d.ii: |W | · (|Usp| · |V | + |U | · |V≤(d−sp−1)|)

The total data complexity of the algorithm is |S| chosen plaintexts. The total
time complexity is dominated by steps 4 and 5, as calculated above. The memory
complexity is potentially dominated by a few steps: the storage of variables in
preprocessing that requires 28 · |U | bits, the storage of ciphertexts in Step 1 that
requires 28 · |S| bits, and the storage of E in Step 3 that requires |W | · |W | bits.

6 Optimized Interpolation Attacks on LowMC-80

In this section we apply the optimized interpolation attack on LowMC-80, for
which κ = 80 and m = 49.

6.1 A 9-Round Attack

As in the basic attack described in Sect. 4.4, we select the target bit b in Z6|IP ,
using subspaces of dimension 32 to obtain the equations. We interpolate through
r1 = 2 rounds, implying that d = 2r1 = 4. Therefore |U | =

(
256+3m
≤2r1−1

)
=

(
403
≤2

) ≈
216.5.

As described at the beginning of Sect. 5, we use sp = 2. We compute the
size of the relevant variable sets |U ′| ≤ (

256
≤sp−1

)
=

(
256
≤1

) ≈ 28, |V | ≤ (
κ

≤d−sp

)
=

(
80
≤2

)
< 212, |W | = |U ′| + |V | < 212.

554 I. Dinur et al.

We choose a subspace S of dimension 35 from X0|IP , containing
(
35
32

)
>

212 > |W | 32-dimensional subspaces, which should suffice for the attack.
In terms of time complexity, the analysis of the critical steps of the attack is

as follows:

Step 4.a: d · |S| · |U | ≈ 4 · 235 · 216.5 = 253.5

Step 4.b: log(|S|) · |S| · |U | ≈ 35 · 235 · 216.5 = 256.5

Step 4.c: |U ′| · |W | ≈ 28 · 212 = 220

Step 4.d.i: |U | · |V | · r1 · 216+d ≈ 216.5 · 212 · 2 · 220 = 249.5

Step 4.d.ii: |W | · |U | · |V | ≈ 212 · 216.5 · 212 = 240.5

Step 5: |W |3 ≈ 212·3 = 236

In total, the time complexity of the optimized 9-round attack is about 257 bit
operations (or 257−19 = 238 encryptions), mostly dominated by Step 4.b. The
data complexity is 235 chosen plaintexts. The memory complexity is dominated
by the storage of ciphertexts in Step 1, and is about |S| · 28 = 243 bits.

We note that while the improvement of the optimized attack compared to
the basic one is rather moderate for the 9-round attack, the effect of our opti-
mizations is more pronounced in the attacks described next, as the reduction in
the number of variables becomes more significant (a comparison for the attack
on full LowMC-128 is at the end of Sect. 7.2).

6.2 A 10-Round Attack

Similarly to the 9-round attack, in order to attack 10 rounds of LowMC-80, we
select the target bit b in Z6|IP , using subspaces of dimension 32 to obtain the
equations. We interpolate through r1 = 3 rounds, implying that d = 2r1 = 8.
Therefore |U | =

(
256+3m
≤2r1−1

)
=

(
403
≤4

)
< 230.5.

In this attack we use sp = 4, and compute the size of the relevant variable sets
|U ′| ≤ (

256
≤sp−1

)
=

(
256
≤3

) ≈ 221.5, |V | ≤ (
κ

≤d−sp

)
=

(
80
≤4

)
< 221, |W | = |U ′| + |V | <

222.5. We use the refined analysis for steps 4.d.i and 4.d.ii, and thus we also
calculate |Usp| = |U4| =

(
256
4

)
< 227.5 and |V≤(d−sp−1)| =

(
80
≤3

)
< 216.5.

We choose a subspace S of dimension 39 from X0|IP , containing
(
39
32

)
>

223 > |W | 32-dimensional subspaces.
In terms of time complexity, the analysis of the critical steps of the attack is

as follows (using the refined analysis for steps 4.d.i and 4.d.ii):

Step 4.a: d · |S| · |U | ≈ 8 · 239 · 230.5 = 272.5

Step 4.b: log(|S|) · |S| · |U | ≈ 39 · 239 · 230.5 ≈ 275

Step 4.c: |U ′| · |W | ≈ 221.5 · 222.5 = 244

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d ≈
227.5 · 221 · (3 · 220 + 24) + 230.5 · 216.5 · 3 · 224 ≈ 270 + 272.5 ≈ 273

Step 4.d.ii: |W |·(|Usp|·|V |+|U |·|V≤(d−sp−1)|) ≈ 222.5 ·(227.5 ·221+230.5 ·216.5) ≈
222.5 · (248.5 + 247) ≈ 271.5

Step 5: |W |3 ≈ 222.5·3 = 267.5

Optimized Interpolation Attacks on LowMC 555

In total, the time complexity of the optimized 10-round attack is about 276

bit operations (or 257 encryptions), mostly dominated by Step 4.b. The data
complexity is 239 chosen plaintexts. The memory complexity is dominated by
the storage of ciphertexts in Step 1, and is about 28 · |S| = 247 bits (note that
the storage of E requires 222.5·2 = 245 bits).

6.3 An Attack on Full LowMC-80 for Weak Instances

The 9 and 10-round attacks described above can be extended by an additional
round with negligible cost for a subset of weak instances containing a fraction
of about 2−38 of all instances. In particular, this implies that about 2−38 of the
instances of full 11-round LowMC-80 can be attacked significantly faster than
exhaustive search.

Consider the 10-round attack: as shown above, we can construct an efficient
high-order differential property for any choice of target bit of Z6|IP , and also
for any linear combination of the bits of Z6|IP . When considering interpolation
from the decryption side on a full 11-round instance, we can efficiently interpolate
the polynomial FK(C) for any bit of Z7|IP , or any linear combination of the
bits of Z7|IP . Assume that there exists a linear dependency between the 109
bits of Z6|IP and the 109 bits of Z7|IP . In this case, the linear combination
in terms of Z6|IP does not go through an Sbox in round 8. Therefore, it is
possible to extend the high-order differential property on this linear combination
by another round with essentially no extra cost, and choose the target bit for
interpolation to be the corresponding linear combination on the bits of Z7|IP .
The existence of this linear dependency is determined by the affine layer of round
7 (the transformation between Z6 and X7), and assuming that random invertible
matrices behave roughly the same (with respect to the event considered) as
random matrices, the probability of this event is about 2109+109−256 = 2−38

(over the choice of the 7’th affine layer).
We note that there exists an additional subset of weak instances of about

the same size since the described attacks can also be mounted using chosen
ciphertexts (where interpolation is performed on the decrypted plaintexts). In
this case, the weakness of a given instance is determined by the choice of the
third affine layer.

7 Optimized Interpolation Attacks on LowMC-128

In this section we apply the optimized interpolation attack on LowMC-128, for
which κ = 128 and m = 63.

7.1 An 11-Round Attack and Weak Instances of LowMC-128

We describe our attack on 11-round LowMC-128 and then extend it to full
LowMC-128 for weak instances. We select the target bit b in Z7|IP , and

556 I. Dinur et al.

interpolate through r1 = 3 rounds, implying that d = 2r1 = 8. Therefore
|U | =

(
256+3m
≤2r1−1

)
=

(
445
≤4

)
< 231.

In this attack we use sp = 4, and compute the size of the relevant variable
sets |U ′| ≤ (

256
≤sp−1

)
=

(
256
≤3

) ≈ 221.5, |V | ≤ (
κ

≤d−sp

)
=

(
128
≤4

) ≈ 223.5, |W | =
|U ′| + |V | ≈ 224.

For the high-order differential property, we use subspaces of dimension 26 =
64 whose bits are not multiplied together in the first round. The outcome of
such a high-order differential is a constant (independent of the key) for 1+6 = 7
rounds, and this property can be extended beyond the 8’th Sbox layer when
selecting the target bit from Z7|IP .

Since |W | ≈ 224, we require roughly the same number of 64-dimensional
subspaces to construct the equation system and mount the attack. Therefore,
we take a larger subspace of dimension 70, containing

(
70
64

)
> 224 ≈ |W | 64-

dimensional subspaces. As X0|IP contains only 67 bits, we choose the subspace
from these 67 bits and additional 3 bits in X0|SP , contained in 1 active Sbox.
Since the active Sbox is non-linear, we guess the 3 linear key expressions that are
added to its input, which allow us to construct the required ≈ 224 64-dimensional
subspaces from a 70-dimensional subspace after the first Sbox layer.

The guess of the 3 key bits can be avoided by selecting the 70 − 64 = 6
constant bits of the 64-dimensional subspaces from the 67 bits of X0|IP in the
70-dimensional subspace. This restriction keeps the selected Sbox fully active
in all subspaces, and thus the linear subspace after the first Sbox layer (at Z0)
is independent of the key bits. The number of such restricted 64-dimensional
subspaces is

(
67
6

)
> 224 ≈ |W |, and hence they should suffice for the attack.

Finally, we notice that the Moebius transforms (Step 4.b) can be optimized
due to the way that we chose the subspaces in S, as for all of them, 3 specific bits
of X0|SP are active. In order to exploit this, we perform the Moebius transform
on a 270 bit vector in two phases: in the first phase, we partition the 270 big
subspace into 267 3-dimensional subspaces according to the 67 bits of X0|IP ,
and sum on all of them in time 270, obtaining a vector of size 267. In the second
phase, we perform the Moebius transform on the 267 vectors computed in the
first phase. Therefore, the complexity of a single Moebius transform is reduced
from 70 ·270 ≈ 276 to 270 +67 ·267 ≈ 273. The complexity of online Step 4.b now
becomes |U | · 273 ≈ 2104 bit operations.

The time complexity analysis of the critical steps of the attack is as follows:

Step 4.a: d · |S| · |U | ≈ 8 · 270 · 231 = 2104

Step 4.b: 2104 (as noted above)
Step 4.c: |U ′| · |W | ≈ 221.5 · 224 = 245.5

Step 4.d.i: |U | · |V | · r1 · 216+d ≈ 231 · 223.5 · 3 · 224 ≈ 280.5

Step 4.d.ii: |W | · |U | · |V | ≈ 224 · 231 · 223.5 = 278.5

Step 5: |W |3 ≈ 224·3 = 272

In total, the time complexity of the attack is about 2105 bit operations,
dominated by steps 4.a and 4.b. The data complexity is 270 chosen plaintexts.

Optimized Interpolation Attacks on LowMC 557

The memory complexity is dominated by the storage of ciphertexts in Step 1,
and is about |S| · 28 = 278 bits.

Extending the Attack to Full LowMC-128 for Weak Instances. Simi-
larly to the attacks on LowMC-80, the 11-round attack on LowMC-128 can be
extended by an additional round with no increase in complexity for a subset
of weak instances. However, the fraction of these instances is much smaller, as
the I-part of LowMC-128 contains only 67 bits, and is smaller than the one of
LowMC-80. A similar analysis to the one of Sect. 6.3 shows that the fraction of
such weak instances for LowMC-128 is roughly 267+67−256 = 2−122. As noted in
the Introduction, this attack does not violate the formal security claims of the
LowMC designers.

7.2 An Attack on Full LowMC-128

We now describe our attack on full (12-round) LowMC-128. This attack is more
marginal than the previous attacks, and we have to use essentially all of our
previously described optimizations, as well as new ones in order to obtain an
attack which is faster than exhaustive search.

In order to attack 12 rounds of LowMC-128, we extend the interpolation of
the 11-round attack past another round, interpolating Z7|IP through r1 = 4
Sbox layers, and hence d = 24 = 16, |U | =

(
256+3m
≤2r1−1

)
=

(
445
≤8

) ≈ 255.
In this attack we use sp = 8, and compute the size of the relevant variable

sets |U ′| ≤ (
256

≤sp−1

)
=

(
256
≤7

) ≈ 243.5, |V | ≤ (
κ

≤d−sp

)
=

(
128
≤8

) ≈ 240.5, |W | =
|U ′| + |V | ≈ 244. We use the refined analysis for steps 4.d.i and 4.d.ii, and thus
we also calculate |Usp| = |U8| =

(
256
8

)
< 248.5 and |V≤(d−sp−1)| =

(
128
≤7

)
< 236.5.

The High-Order Differential Property. We can try to mount the attack
with high-order differentials on subspaces of dimension 64 for the target bit in
Z7|IP , but this results in an attack which is at best very marginally faster than
exhaustive search. The main new optimization introduced in this attack is the
use of reduced subspaces of dimension 60. Obviously, the result of a high-order
differentiation over such a subspace is not a constant, but (as we show next)
its algebraic degree in the key bits is bounded by 8. Consequently, the resul-
tant function (polynomial) of each high-order differentiation can be expressed in
terms of our reduced variable set V = |V≤(8)|. This polynomial can be interpo-
lated during preprocessing and does not contribute additional variables to the
equation system.

We select a big subspace S of dimension 73 that contains all the 67 bits of
X0|IP and 6 additional bits of 2 active Sboxes in X0|SP , and (similarly to the 11-
round attack) define the 60-dimensional subspaces according to their 73−60 = 13
constant bits in X0|IP . The number of such subspaces is

(
67
13

)
> 244 ≈ |W |, and

therefore they should suffice for the attack.
In order to show that the result of a high-order differentiation of the target

bit in Z7|IP over a selected 60-dimensional is of degree 8 in the key bits, consider

558 I. Dinur et al.

the state Z0 obtained after the first Sbox layer. The algebraic degree of the target
bit b (selected from Z7|IP) in Z0 is bounded by 26 = 64. As the linear subspace
undergoes a one-to-one transformation in the first Sbox layer (through the fully
active 2 Sboxes), it remains a linear subspace in Z0. Therefore, the algebraic
degree of the high-order differentiation in the bits of Z0 and the key is upper-
bounded by 64−60 = 4. Since each bit of Z0 is a polynomial in the key of degree
(at most) 2, the algebraic degree of the high-order differentiation in the bits of
the key is upper-bounded by 4 · 2 = 8, as claimed.

The Preprocessing Phase. The main change in this attack compared to the
one of Sect. 5.2 is in preprocessing Step 1, where in addition to interpolating
the e ≈ |W | free coefficients, we interpolate the e · |V | ≈ |W | · |V | coefficients
of V (since we selected 60-dimensional subspaces instead of 64-dimensional sub-
spaces). The modified preprocessing step is described below. It is similar to the
variable transformation algorithm of Sect. 5.1, interpolating first over the plain-
texts and then over the keys. Note that the matrix E of linear equations is
allocated and initialized already at this stage.

1. Allocate an e × |W | matrix E over GF (2), representing the (reduced)
equation system on W . The matrix is vertically decomposed into two
smaller matrices: E1 of size e × |U ′| and E2 of size e × |V |.

2. Allocated an e · |V | evaluation matrix EV .
3. Allocate a |S| = 273 bit array a1 for the evaluations of the target bit b.
4. For each key in the set {K|wt(K) ≤ 8} (with index �):

(a) Evaluate b (the target bit) on the set S of 273 inputs (with the fixed
key K) and store the result in a1.

(b) Apply the Moebius transform on a1.
(c) Populate column � of EV : For each subspace Sj in S, namely

S1, . . . , Se, obtain its corresponding sum from a1 and copy it to
E1[j][�].

5. For each equation 1, . . . , e (with index j):
(a) For each Mv ∈ V≤8 = V (with index �):

i Sum the 2wt(v) values of EV [j] calculated for the subset of keys
{K|v̄ ∧ K = 0}, and store the result in E2[j][�].

We first note that similarly to the 11-round attack, the complexity of the
Moebius transform can be optimized (due to the way that we selected the sub-
spaces) in a 2-step process from 73 · 273 to 273 + 67 · 267 ≈ 274.

We analyze the complexity of the computationally heavy steps 4 and 5. The
complexity of Step 4.a (for all {K|wt(K) ≤ 8}) is |V | · |S| ·219 ≈ 240.5 ·273 ·219 =
2132.5. The complexity of Step 4.b (using the optimized Moebius transform) is

Optimized Interpolation Attacks on LowMC 559

|V | · 274 ≈ 2114.5. The complexity of Step 4.c is e · |V | ≈ |W | · |V | ≈ 244 · 240.5 =
284.5. The complexity of Step 5.a.i is bounded by e · |V | · 28 ≈ 244 · 240.5 · 28 =
292.5. In total, Step 4.a dominates the time complexity, which is about 2132.5 bit
operations.

Analysis of the Full Attack. In terms of time complexity, the analysis of
the critical steps of the online attack is as follows (using the optimized Moebius
transform and the refined analysis for steps 4.d.i and 4.d.ii):

Step 4.a: d · |S| · |U | ≈ 16 · 273 · 255 = 2132

Step 4.b: |U | · 274 ≈ 2129

Step 4.c: |U ′| · |W | ≈ 243.5 · 244 = 287.5

Step 4.d.i: |Usp| · |V | · (r1 · 216+sp + 2d−sp) + |U | · |V≤(d−sp−1)| · r1 · 216+d ≈
248.5 · 240.5 · (4 · 224 + 28) + 255 · 236.5 · 4 · 232 ≈ 2115 + 2125.5 ≈ 2125.5

Step 4.d.ii: |W | ·(|Usp| · |V |+ |U | · |V≤(d−sp−1)|) ≈ 244 ·(248.5 ·240.5+255 ·236.5) ≈
244 · (289 + 291.5) ≈ 2136

Step 5: |W |3 ≈ 244·3 = 2132

The online phase complexity is about 2136 dominated by3 Step 4.d.ii. The
total complexity of the attack is less than 2137 bit operations, which is about
2128+19−137 = 210 times faster than exhaustive search (including the preprocess-
ing phase, whose complexity is about 2132.5). The data complexity of the attack
is 273 chosen plaintexts. The memory complexity is dominated by the storage of
E, whose size is about |W | · |W | ≈ 288 bits.

Note that without the variable transformation, merely Step 5 (Gaussian elim-
ination) would require about 255·3 = 2165 bit operations, which is much slower
than exhaustive search.4

8 Conclusions

In this paper, we introduced new techniques for interpolation attacks, including
a new variable transformation algorithm that can lead to savings in their data
and time complexities. We applied the optimized interpolation attack to LowMC,
and refuted the claims of the designers regarding the security level of both the 80
and 128-bit key variants. As a future work item, it will be interesting to optimize
our techniques further and apply them to additional block ciphers.

3 We note that the analysis of Step 4.d.ii can be refined further, and its actual com-
plexity is lower by a factor between 2 and 4. Moreover, the actual algorithm of this
step can be optimized, but we do not consider such low-level optimizations here for
the sake of simplicity.

4 Solving the equation system remains slower than exhaustive search even when using
more advanced algorithms which are based on Strassen’s algorithm [9], requiring
about 255·2.8 = 2154 bit operations. While there are known algorithms that perform
better in theory, most of them are very complex and inefficient in practice.

560 I. Dinur et al.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 430–454. Springer, Heidelberg (2015)

2. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

3. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers.
In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986,
pp. 179–190. Springer, Heidelberg (2008)

4. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)

5. Joux, A.: Algorithmic Cryptanalysis, 1st edn. Chapman & Hall/CRC, Boca Raton
(2009)

6. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast
Software Encryption. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1994)

7. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptogra-
phy. SLSECS, vol. 276, pp. 227–233. Springer, Heidelberg (1994)

8. Shimoyama, T., Moriai, S., Kaneko, T.: Improving the higher order differential
attack and cryptanalysis of the KN cipher. In: Okamoto, E., Davida, G., Mambo,
M. (eds.) Information Security. LNCS, vol. 1396, pp. 32–42. Springer, Heidelberg
(1997)

9. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13, 354–
356 (1969)

	Optimized Interpolation Attacks on LowMC
	1 Introduction
	2 Preliminaries
	2.1 Boolean Algebra
	2.2 High-Order Differential Cryptanalysis and Interpolation Attacks
	2.3 Model of Computation

	3 Description of LowMC
	4 A Basic 9-Round Attack on LowMC-80
	4.1 The High-Order Differential Property
	4.2 Bounding the Number of Variables
	4.3 Obtaining the Data
	4.4 The Basic Interpolation Attack

	5 The Optimized Interpolation Attack
	5.1 Transformation of Variables
	5.2 Details of the Optimized Interpolation Attack

	6 Optimized Interpolation Attacks on LowMC-80
	6.1 A 9-Round Attack
	6.2 A 10-Round Attack
	6.3 An Attack on Full LowMC-80 for Weak Instances

	7 Optimized Interpolation Attacks on LowMC-128
	7.1 An 11-Round Attack and Weak Instances of LowMC-128
	7.2 An Attack on Full LowMC-128

	8 Conclusions
	References

