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Abstract. In this paper we study authenticated encryption algorithms
inspired by the OCB mode (Offset Codebook). These algorithms use secret
offsets (masks derived from a whitening key) to turn a block cipher into a
tweakable block cipher, following the XE or XEX construction.

OCB has a security proof up to 2n/2 queries, and a matching forgery
attack was described by Ferguson, where the main step of the attack recov-
ers the whitening key. In this work we study recent authenticated encryp-
tion algorithms inspired by OCB, such as Marble, AEZ, and COPA. While
Ferguson’s attack is not applicable to those algorithms, we show that it is
still possible to recover the secret mask with birthday complexity. Recov-
ering the secret mask easily leads to a forgery attack, but it also leads to
more devastating attacks, with a key-recovery attack against Marble and
AEZ v2 and v3 with birthday complexity.

For Marble, this clearly violates the security claims of full n-bit secu-
rity. For AEZ, this matches the security proof, but we believe it is nonethe-
less a quite undesirable property that collision attacks allow to recover the
master key, and more robust designs would be desirable.

Our attack against AEZ is generic and independent of the internal
permutation (in particular, it still works with the full AES), but the key-
recovery is specific to the key derivation used in AEZ v2 and v3. Against
Marble, the forgery attack is generic, but the key-recovery exploits the
structure of the E permutation (4 AES rounds). In particular, we intro-
duce a novel cryptanalytic method to attack 3 AES rounds followed by 3
inverse AES rounds, which can be of independent interest.

Keywords: CAESAR competition · Authenticated encryption · Crypt-
analysis · Marble · AEZ · PMAC · Forgery · Key-recovery

1 Introduction

The purpose of an Authenticated Encryption scheme is to provide both privacy
and integrity with a single cryptographic algorithm. In 2014, the CAESAR com-
petition was launched with the goal to identify good Authenticated Encryption
schemes as better alternatives to current options such as AES-GCM [14]. 57
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candidates have been submitted to the CAESAR competition, and they must
now be analyzed carefully.

In this paper, we provide a security analysis of the AES-based candidates
Marble [5] and AEZ v3 [7]. Both designs are inspired by OCB [16], designed
in 2001 by Rogaway, Bellare, Black, and Krovetz. They are built as modes of
operation of a block cipher1, using secret offsets at the input and/or output of
the block cipher calls.

OCB. In OCB, a whitening key L is derived from the master key K, and the
i-th message block Mi is enciphered to Ci = EK(Mi ⊕ γi · L) ⊕ γi · L, where γi

is a (Gray) counter, · is a finite field multiplication, and γi · L is the i-th offset.
This design principle was later formalized as the XE and XEX construction [15],
and proved to turn efficiently a secure block cipher into a secure tweakable block
cipher [12]. OCB with a an n-bit block cipher is proven secure up to 2n/2 queries,
and Ferguson showed a collision attack matching the bound [3]. The attack uses
a long message M , so that there is a collision between two block cipher inputs:

Mi ⊕ γi · L = Mj ⊕ γj · L

The collision can be detected because Mi ⊕ Ci = Mj ⊕ Cj , and the value of L
is recovered as (γi ⊕ γj)−1 · (Mi ⊕ Mj). When L is known, it is easy to forge
messages.

Marble. Marble [5] is a CAESAR candidate by Jian Guo inspired by COPA [1].
COPA was designed in 2013, and combines OCB’s offsets with an internal depen-
dency chain in order to achieve some security in the case of nonce repetition.
Marble uses two internal chains in order to prevent birthday attacks on the
internal chain, and uses reduced-round AES as building blocks. Marble claims
security against nonce-repetition, and against release of unverified plaintexts,
but cannot hide common prefixes in case of nonce reuse (Marble is online).
As opposed to most CAESAR candidates, Marble claims full 128-bit security
(beyond the birthday bound). The structure of Marble can be seen in Fig. 2.

Results presented so far on Marble include a cipher-text distinguisher with
complexity 264, similar to the distinguisher against the counter mode [17].

AEZ. AEZ is a CAESAR candidate designed by Hoang, Krovetz, and Rogaway.
The authors define the security notion of Robust AE, which is the optimal secu-
rity achievable when nonces are repeated, and unverified plaintexts are released.
AEZ is claimed to achieve this security notion. In this paper, we focus on the
current version of AEZ, AEZ v3, as proposed on the crypto-competition mail-
ing list, and presented at DIAC [7]. AEZ v3 has also been accepted at Euro-
crypt 2015, and presented as one of the honorable mentions for the best papers
1 For efficiency reasons, Marble and AEZ actually use 4-rounds of AES rather than a

full block cipher.
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award [8]. Our result can also be applied to AEZ v2, but not to AEZ v1, because
of a different key expansion.

As far as we are aware, no cryptanalysis of AEZ as been published so far.

Our Results. In this paper, we describe generic collision attacks against Marble
and AEZ, allowing to recover the whitening key with about 2n/2 chosen message
queries. When the whitening key is known the security offered by Marble and
AEZ crumbles and we show a forgery attack using a single extra encryption
query. Moreover, we extend this result to key-recovery attacks using properties
of the internal permutations and/or the key scheduling.

Our results are summarized in Tables 1 and 2. The data complexity is listed
in number of message blocks (16 bytes). We now detail our results on each
Authenticated-Encryption with Associated-Data (AEAD) scheme.

Marble. Our attack against Marble uses queries with repeated nonces, which
should be secure according to the security claims of Marble. Since Marble claims
security beyond the birthday bound (allowing up to 2n block of data), the forgery
attack using collisions clearly violates the security claims. In addition, we show
that if unverified plaintexts are released, i.e. if we can obtain plaintexts from
ciphertexts without a valid tag, then we can further recover the master key K.
For this attack, we build special queries so that only 3 forward AES rounds and
3 backwards AES rounds are active, and we develop a novel method to attack
such a reduced cipher with only known plaintext/ciphertexts. Our attack can be
build upon two different distinguishers. the first one is based on the detection of
collision events, and the second one on a statistical property. In both cases, our
attack requires about 233 queries and its time complexity is 264; we believe this
result is also of independent interest.

Following the disclosure of this attack, Guo proposed a minor modification
of the specifications of Marble as version 1.2 [6]. However, our attack is still
applicable to the modified version, as shown independently by ourselves and
Lu [13]. Guo later decided to withdraw Marble from the CAESAR competition.

AEZ. Our analysis of AEZ v3 focuses on the processing of Associated Data.
In particular, if AEZ is used with an empty message and no nonce, it turns into
a variant of PMAC, and the security notion of Robust AE becomes the usual
MAC security notion. We show how to recover the whitening key of this variant
of PMAC with a collision attack (a collision attack is also possible against the
standard PMAC, e.g. following [11]). More importantly, the key derivation of
PMAC allows to recover the master key K from the whitening key.

This attack does not violate the security proof, but matches the security bound.
However, collision attacks usually have a more limited impact (e.g. only affecting
authenticity), and it seems quite unfortunate that a collision attack leads to a key-
recovery. This property should probably be avoided when possible2.
2 In AEZ v4, for the second round of the competition, the designers took into account

our result and modified the key derivation in order to prevent this property.
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Table 1. Our results against Marble.

Attack (Sec. claim) Data Time

Recover L 265 × 2 CP 264

Forgery (2128) 265 × 2 CP 264

Key-recovery (2128):

Collision-baseda 265 × 2 CP + 232.6 × 130 CC 264

Collision-based 265 × 2 CP + 233 × 130 CC 264

a The chosen ciphertexts use the decryption-misuse model.

Table 2. Our results against AEZ.

Attack Dataa Time Success probability

Key-recovery 266.6 1 1

Key-recovery 244 1 2−45.2

a The AEZ specification requires to rotate the
key after 244 blocks

COPA. After the release of an early version of this paper, Lu applied the same
techniques to COPA, and described an attack to recover the whitening key [13].
The main attack in this paper actually targets the associated data processing,
which uses PMAC, and can be applied to PMAC. However, the impact of this
result is unclear because COPA and PMAC do not claim security beyond the
birthday bound, and this attack cannot be turned into a key-recovery attack.

Outline of the Paper. Since our collision attack on AEZ is much simpler
than the attack against Marble, we first explain it in Sect. 2. Then we give a
short description of the Marble authenticated encryption algorithm in Sect. 3.
In Sect. 4, we show how to recover the whitening key L and describe our forgery
attack. Finally, we demonstrate in Sect. 5 how to recover the encryption key K
from decryption-misuse queries.

2 Collision Attack Against AEZ

We first explain the collision attack on AEZ and the resulting key-recovering
attack.

2.1 Short Description of AEZ

For simplicity, we consider AEZ used with only associated data, without any
nonce or message (the attack can easily be applied with a fixed nonce and mes-
sage if required). In this case, AEZ turns into a variant of PMAC, and the
security claim becomes the usual MAC security definition. A particularity of
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AEZ is that it allows a vector-valued input, i.e. it can authenticate a sequence
of strings rather than a single string.

More precisely, the MAC is computed as follow:

– The key derivation algorithm generates keys k0, k1 and whitening keys J, L
– Full data blocks Aj

i of the j-th string (indexed from 1) are processed as:

Xj
i = Ek0

(
Aj

i ⊕ (i mod 8) · J ⊕ 2�(i−1)/8� · L ⊕ 8j · J
)

– If the last block is partial, it is enciphered as:

Xj
i = Ek0(A

j
i ⊕ 8j · J)

– The first block to be processed is the ciphertext extension τ (corresponding
to the tag length). It is τ = 128 by default.

– The tag is computed as Ek1(
⊕

i,j Xj
i )

where E is a full or reduced-round AES. This is illustrated by Fig. 1.

Ek1

Ek0

9J

L

τ

Ek0 Ek0 Ek0

17J 18J 19J

L L L

A2
1 A2

2 A2
3

Ek0 Ek0

25J 26J

L L

A3
1 A3

2

Fig. 1. AEZ used as a MAC (no message, no nonce, two AD strings).

2.2 Collision Attack on AEZ

In order to mount a collision attack against AEZ, we consider two sets of mes-
sages, with C a fixed block:

– A = {Ax | x ∈ {0 . . . 264 − 1}}, with Ax =
(
τ ;C; (C ‖ [x] ‖ 064)

)
– B = {By | y ∈ {0 . . . 264 − 1}}, with By =

(
τ ; (C ‖ 064 ‖ [y]);C

)

All message are made of two separate strings; message in A have a string of one
block and a string of two blocks, while messages in B have a string of two blocks
and a string of one block. In particular, we have:
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– MAC(Ax) = Ek1

(
Ek0

(
τ ⊕ L ⊕ 9J

) ⊕ Ek0

(
C ⊕ L ⊕ 17J

)

⊕Ek0

(
C ⊕ L ⊕ 25J

) ⊕ Ek0

(
([x] ‖ 064) ⊕ L ⊕ 26J

))

– MAC(By) = Ek1

(
Ek0

(
τ ⊕ L ⊕ 9J

) ⊕ Ek0

(
C ⊕ L ⊕ 17J

)

⊕Ek0

(
(064 ‖ [y]) ⊕ L ⊕ 18J

) ⊕ Ek0

(
C ⊕ L ⊕ 25J

))

This leads to a simple collision attack: MAC(Ax) = MAC(By) if and only if
[x] ‖ [y] = 8 · J (where 8 = 18 ⊕ 26). With A and B of size 264 as defined above,
there is exactly one collision, and the collision immediately reveals the value of
J = 8−1 · ([x] ‖ [y]).

Key Recovery. Surprisingly, the key derivation of AEZ allows to recover the
master key K from the whitening key J . More precisely, if the master key K is
of length 128 bits or smaller, J is an encryption of K under a known constant
C: J = AES4C(K). This can easily be inverted: K = AES4−1

C (J). We note that
this is not the case in PMAC, where the whitening key is an encryption of 0
under the secret key K: L = AESK(0).

This attack matches the security proof of AEZ and does not violate the
security claims. However, a complete break of AEZ after the birthday bound is
not expected: most schemes with birthday-bound security are more resilient and
collision attacks don’t allow key-recovery.

It should be mentioned that the Eurocrypt version of AEZ does not explicitly
specify a key derivation algorithm, and leaves it as an open problem:

“The key K ∈ Byte∗ is mapped to three 16-byte subkeys (I, J, L) using
the key-derivation function (KDF) named Extract that is called at line
401. The definition of Extract is omitted from the figures and regarded
as orthogonal to the rest of AEZ. See the AEZ spec for the current
Extract : Byte∗ → Byte48. In our view, it is an unresolved matter
what the security properties (and even what signature) of a good KDF
should be. Work has gone off in very different directions, and the area is
currently the subject of a Password Hashing Competition (PHC) running
concurrently with CAESAR.”

Clearly, the key derivation of the AEZ v3 specification does not have the security
properties of a good KDF.

Data Limit. The AEZ specification requires users to change the key after
encrypting 248 bytes, i.e. 244 blocks. This prevents the attack as described above.
However, we can perform the attack with smaller sets A and B of size 241.4, with
a success probability of 2−45.2. This is still much more efficient than generic
attacks: with a time complexity of 244, a brute-force key search only succeeds
with a probability of 2−84.
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3 Description of Marble

Marble is an authenticated encryption algorithm designed by Guo [5] with key-
length and tag-length of both 128 bits. A plaintext and its associated data are
divided into blocks of 128 bits and are then proceeded consecutively. Its internal
permutation is based on a modified version of the AES block cipher. Unlike other
authenticated encryption algorithms, Marble does not require a nonce.

Marble has very strong security claims: it claims to offer full 128-bit security,
i.e. an attack should take time T = 2128 even after large amount of data have
been encrypted with the same key (up to D = 2128). This is in contrast to many
CAESAR candidates and classical modes of operations for block ciphers (e.g.
GCM), which only offer a birthday level of security, i.e. the ciphers are secure
as long as T · D < 2128.

In addition, Marble does not use nonces, and the security claim even holds if
unverified plaintexts are released, i.e. the adversary can request the decryption
of a ciphertext C without knowing a valid tag corresponding to C (decryption-
misuse oracle). A few other CAESAR candidate allow the release of unverified
plaintext (AEZ, POET, APE, Minalpher), but they only claim birthday security.

An overview of Marble is depicted in Fig. 2. The Marble mode of operation
makes use of two 128-bit chaining variables s1 and s2, initialized with constants
const1 and const2. The associated data and the plaintext are padded indepen-
dently, so both resulting fields A and P can be divided into 128 bit blocks. We
do not describe the padding function here, as it does not affect our attacks. We
will denote a message to encrypt by (AD ‖ M), where AD is a vector containing
lA 128-bit blocks of associated data and M is a vector containing lM 128-bit
blocks of plaintexts.

The internal primitive used is a modified block cipher, as intermediate val-
ues of the block are combined with the incoming chaining variables. Formally,
the primitive uses 3 internal keyed permutations E1, E2 and E3 and processes
128-bit blocks as follows. On input (P, s1, s2), (C, s′

1, s
′
2) is defined as

X = E1K(P )
(X ′, s′

1) = (3X + s1,X + s1)
Y = E2K(X ′)

(Y ′, s′
2) = (3Y + s2, Y + s2)
C = E3K(Y ′)

Note that additions and multiplications are performed in the binary Galois
Field F2128 defined by the primitive polynomial x128+x7+x2+x+1. Furthermore,
polynomials ΣaiX

i are denoted by the integers Σai2i. Therefore, please note
that additions and multiplications on such objects have to be interpreted as
operations in the binary field (and not on the integer ring) and have to be
handled carefully.

In the case of Marble, each one of the three permutations E1, E2 and E3,
is composed with 4 full-round of AES (i.e. SubByte, ShiftRow, MixColumn and
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AddRoundKey). One can notice that no key addition is performed at the begin-
ning of those permutations. 12 subkeys are therefore required. A 128-bit master
key K is derived into 11 subkeys using the AES-128 key-schedule algorithm.
The master key itself is used as the 12th subkey. For more information about
the AES block cipher, we refer to [2].

The Marble encryption then works as follows. First, a mask L is derived
from the key K by encrypting a constant const3 (which also sets key-dependent
s1[0], s2[0]). For each associated data block Ai (i ≥ 1), a pre-whitening key is
defined as 2i−132L. For each plaintext block Mi, a pre-whitening key and a
post-whitening key are defined as 2iL and 2i−13L. These blocks are processed
iteratively, starting with associated data, as follows:

1. Addition (i.e. xor) of the pre-whitening key;
2. Application of the internal primitive;
3. For plaintext blocks, application of the post whitening key, which results in

ciphertext blocks.

Finally, the tag is computed by encrypting an extra block defined as the
sum of all plaintext blocks and all encrypted additional data blocks, with pre-
whitening key 2�M 7L and post-whitening key 2�M −13L.

4 A Universal Forgery Attack on Marble

In this section, we first describe a method to find the mask L using about 265

chosen plaintext queries. Then, we use this knowledge to compute forgeries. Our
attack enables to modify the associated data field in a way that affects neither
the ciphertext nor the authentication tag. It can therefore be used to compute
universal forgeries in a chosen plaintext setting.

4.1 Recover the Mask L

The main idea of the attack is to build a pair of message M �= M ′ so that the
inputs to the E1 functions are the same for both messages. This is possible if
M and M ′ have the same total length, but the associated data and message
parts have different lengths. When the inputs to E1 collide, all the intermediate
computations collide, and we can detect this event on the resulting ciphertexts.
Please note that as different multiples of L are used for post-whitening, this
operation is more tricky than detecting a collision on ciphertexts. In the following
we use 2 blocks of AD and 1 block of message for M , but 1 block of AD and 2
blocks of message for M ′.

More precisely, we encrypt messages Mα and M ′
β , for different values α, β ∈

F2128 , defined as follows (where A ∈ F2128 is a constant value):

– Mα = (AD[1], AD[2] ‖ M [1]) = (A, 8α ‖ 6α);
– M ′

β = (AD[1] ‖ M ′[1],M ′[2]) = (A ‖ 8β, 6β).
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Fig. 3. The TRANS operation.

In the following, we consider sets of 264 values α and β so that α ⊕ β covers
all values in F2128 . The inputs to the E1 layer will be respectively (we note that
32 = 5 in F2128):

x1 = A ⊕ 5L x2 = 8α ⊕ 10L x3 = 6α ⊕ 2L for Mα

x′
1 = A ⊕ 5L x′

2 = 8β ⊕ 2L x′
3 = 6β ⊕ 4L for M ′

β

In particular, we have:
x1 ⊕ x′

1 = 0 x2 ⊕ x′
2 = 8(α ⊕ β ⊕ L) x3 ⊕ x′

3 = 6(α ⊕ β ⊕ L)

Therefore, the inputs to E1 collide when α ⊕ β = L.
We denote the output of the E3 layer as yi (respectively y′

i), and the corre-
sponding ciphertexts as Cα[1] (respectively (C ′

β [1], C ′
β [2])). We have:

Cα[1] = y3 ⊕ 3L C ′
β [1] = y′

2 ⊕ 3L C ′
β [2] = y′

3 ⊕ 6L

In particular, if α ⊕ β = L, we have xi = x′
i for i ≤ 3, therefore yi = y′

i for
i ≤ 3, and Cα[1] ⊕ C ′

β [2] = 5L (since 3 ⊕ 6 = 5). In order to detect this event
efficiently we match the set of values {Cα[1] ⊕ 5α} and {C ′

β [2] ⊕ 5β}. When
α ⊕ β = L, we have a match, and we can easily filter false positives using a new
message pair with a different value of the constant A. The full algorithm is given
by Algorithm 1, using 265 short encryption queries.

4.2 An Attack Against Marble 1.2

After the first release of our attack, Guo made a minor modification to the
specification of Marble [6]. Namely, the input mask for the last block of associated
data is changed from 2i−132L to 2i−133L. Our attacks can be adapted as follows.

The adversary needs to query an encryption oracle for messages Mα and M ′
β ,

defined as

– Mα = (AD[1], AD[2] ‖ M [1]) = (10α, 28α ‖ 6α);
– M ′

β = (AD[1] ‖ M ′[1],M ′[2]) = (10β ‖ 28β, 6β).

Using the notations of Sect. 4.1, the inputs to the E1 layer will be :

x1 = 10α ⊕ 5L x2 = 28α ⊕ 30L x3 = 6α ⊕ 2L for Mα

x′
1 = 10β ⊕ 15L x′

2 = 28β ⊕ 2L x′
3 = 6β ⊕ 4L for M ′

β
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Algorithm 1. Recover L from an encryption oracle E .
H ← ∅ � H is a hash table
for α ∈ {0, 1, . . . , 264 − 1} do

(C[1] ‖ T ) ← E(0, 8α ‖ 6α)
H{C[1] ⊕ 5α} ← α

end for
for β ∈ {0, 264, . . . , 2128 − 264} do

(C′[1], C′[2] ‖ T ) ← E(0 ‖ 8β, 6β)
if H{C′[2] ⊕ 5β} exists then

α ← H{C′[2] ⊕ 5β}
(D[1] ‖ T ) ← E(1, 8α ‖ 6α)
(D′[1], D′[2] ‖ T ) ← E(1 ‖ 8β, 6β)
if D[1] ⊕ 5α = D′[2] ⊕ 5β then

return α ⊕ β
end if

end if
end for

In particular, we have:

x1 ⊕ x′
1 = 10 · (α ⊕ β ⊕ L),

x2 ⊕ x′
2 = 28 · (α ⊕ β ⊕ L),

x3 ⊕ x′
3 = 6 · (α ⊕ β ⊕ L).

If for some (α, β), α ⊕ β = L, then xi = x′
i for i = 1, 2, 3. Then, the outputs of

E3 verify y1 = y′
1, y2 = y′

2 and y3 = y′
3 and therefore, Cα[1] ⊕ 3L = C ′

β [2] ⊕ 6L.
As 3 ⊕ 6 = 5, This can also be expressed as:

Cα[1] ⊕ 5α = C ′
β [2] ⊕ 5β.

Therefore, L has to be searched among the values (α⊕β) for which this relation
holds. As for our attack on the previous version of Marble, about 264 different
values of both α and β are required.

4.3 Computing Forgeries on Marble Without Whitening Keys

Once we have retrieved L, we can consider a simplified description of Marble
where the masks are removed, as depicted in Fig. 4. In its mask-less descrip-
tion, Marble possesses an interesting property as described in Fig. 5: a series of
identical input blocks X has a periodic effect on the internal state.

Indeed, if we let E1(X) = u, E2(3S1⊕u) = v and E2(3S1⊕2u) = w, it is easy
to see that after encrypting 4 blocks X, the internal states S1 and S2 remain
unchanged. Furthermore, if we use a series of 8 consecutive identical associated
data blocks X, the effect on τ also cancels out. This leads to a universal forgery
attack: for any associated data AD and plaintext M , the adversary computes
the masked value B of a chunk of 8 identical blocks of associated data after AD
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Fig. 4. Mask-less description of Marble. S1 and S2 are unknown key-dependent values.

and queries the encryption oracle on ((A,B) ‖ M). The answer (C ‖ T ) to that
query is also a valid ciphertext for (AD ‖ M), therefore the adversary can return
(C ‖ T ) as a forgery. The attack is given as Algorithm 2.

Algorithm 2 . Compute the ciphertext (C ‖ T ) from (AD ‖ M) using
known L.

B ← (2l · 32 · L
)lA+7

l=lA

(C ‖ T ) ← AEK((AD, B) ‖ M) � Encryption oracle call
return (C ‖ T )

5 Key-Recovery Attack

We now show how to recover the master key once the mask L has been deter-
mined. In order to simplify the description of the attack, we now focus on the
mask-less variant of Marble; however the full attack can easily be adapted to the
full version of Marble with a known mask.

The main idea is to collect pairs of messages with a fixed difference in some
internal state variables. This will allow us to attack a reduced cipher composed
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Fig. 5. Collision on the internal state of the associated data.

by 4 AES rounds followed by 4 inverse AES rounds rather than a 12-round AES
(see details below). Moreover, we apply this strategy to E1 rather that to E3

because the whitening key of E1 is directly derived from L. Since L is known,
the first AES round of E1 is key-independent. Therefore we can peel it off, and
attack only 3 forward rounds and 3 inverse rounds. However, this requires us to
use decryption queries, but we can’t forge valid tags for an arbitrary ciphertext
yet, so we use a decryption-misuse oracle.

5.1 Gathering Pairs

The first step is to collect pairs of plaintext blocks that have the same difference
in the S1 lane (after the permutation E1). In order to construct such plaintexts,
we build pairs of ciphertexts with specific differences and values. More precisely,
we consider pairs of messages as follows (with the same associated data AD):

C̃x = (AD ‖ 0, 0120, 0, 0, 0, 0, 0, 0, 0, 0, x) Cx[i] = C̃x[i] ⊕ 2i−1 · 3 · L

C̃ ′
x = (AD ‖ 1, 0120, 1, 0, 0, 0, 0, 1, 1, 1, x) C ′

x[i] = C̃ ′
x[i] ⊕ 2i−1 · 3 · L

where 0 and 1 are constant one-block values and x takes a different value for
each pair. We decrypt these pairs and we collect the final plaintext blocks.



Collision Attacks Against CAESAR Candidates 523

We now study the differences in the S2 lane (before the permutation E3).
Using the definition of the TRANS operation as given in Fig. 3, S2 is updated as
follows during decryption:

S2[i + 1] = 2 · S2[i] ⊕ E−1
3 (C̃[i])

With the messages Cx and C ′
x, we have

S2[129] = 2129S2[0] ⊕ (1 ⊕ 2 ⊕ · · · ⊕ 2128)A,

S′
2[129]=2129S2[0] ⊕ (1 ⊕ 2 ⊕ · · · ⊕ 2128)A ⊕ (20 ⊕ 21 ⊕ 22 ⊕ 27 ⊕ 2128)(A ⊕ B),

where A = E−1
3 (0) and B = E−1

3 (1). Since 2128 = 20 ⊕ 21 ⊕ 22 ⊕ 27, we have
S2[129] = S′

2[129]. This is shown in Fig. 6, where δ = A ⊕ B.

E1

E2

2127δ ⊕ 26δ ⊕ 2δ ⊕ δ

E3

δ

0 ⊕ 1

. . .

Px[130] ⊕ P ′
x[130]

E1

E2

E3

x ⊕ x

Fig. 6. Difference propagation in decryption. A red arrow means that there is a fixed
unknown difference. A black arrow means that the difference is null.

We now consider the final plaintext block given by the decryption oracle.

P̃x[130] = Px[130] ⊕ 2130 · L

= E−1
1

(
E−1

2

(
E−1

3 (x) ⊕ 3 · S2[129]
) ⊕ 3 · S1[129]

)

P̃ ′
x[130] = P ′

x[130] ⊕ 2130 · L

= E−1
1

(
E−1

2

(
E−1

3 (x) ⊕ 3 · S2[129]
) ⊕ 3 · S′

1[129]
)

With Ux = E−1
2

(
E−1

3 (x) ⊕ 3 · S2[129]
)
, we have

P̃x[130] = E−1
1 (Ux) ⊕ 3 · S1[129]

P̃ ′
x[130] = E−1

1 (Ux) ⊕ 3 · S′
1[129]
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Therefore, the pair P̃x[130], P̃ ′
x[130] can be seen as a plaintext/ciphertext pair

for a cipher with 4 AES rounds, a middle key S1[129] ⊕ S′
1[129], and 4 inverse

AES rounds:

P̃x[130] E1 Ux E−1
1 P̃ ′

x[130]

S1[129] S′
1[129]

In addition, we can peel off the outer rounds since there is no whitening key
in E1.

5.2 Extracting the Key

We must now extract the key of a reduced cipher with 3 AES rounds, and 3
inverse AES rounds. First, we notice that the middle ShiftRow and MixCol-
umn operations can be removed, if we transform the middle key. In a basic
description, the operations in the middle are ShiftRow, MixColumn, AddKey, then
XORing the constant S1[129]⊕S′

1[129], AddKey, InverseMixColumn, and Inverse-
ShiftRow. Instead we move the (unknown) constant addition before ShiftRow,
using the linearity of ShiftRow and MixColumn, so that ShiftRow, MixColumn
and AddKey cancel out with AddKey, InverseMixColumn and InverseShiftRow. We
denote the addition of the modified constant as AddDeltaS, and its value as
δS = InverseShiftRow(InverseMixColumn(S1[129] ⊕ S′

1[129])). The middle rounds
are then reduced to byte-wise operations: AddRoundKey, SubByte, AddDeltaS,
InverseSubByte, AddRoundKey. This can be seen as a key-dependent Sbox layer.
These transformations are summarised on Fig. 7.

AK
SB
SR
MC

AK
SB
SR
MC

AK
SB

ADS
ISB
AK

IMC
ISR
ISB
AK

IMC
ISR
ISB
AK

distinguisher

Fig. 7. Reduced cipher composed of 3 AES rounds, the addition of δS and 3 inverse
AES rounds. The distinguisher covers the middle part of this cipher.

The first step of our attack is to guess a diagonal of the first round key, which
allows to compute a column after the first round and before the last round. Next
we focus on the middle rounds. The middle rounds have only one MixColumn
operation, and one InverseMixColumn without byte shuffling in between. There-
fore it can be seen as four parallel 32-bit functions, acting on each diagonal
(similar to the Super-SBox technique [4]). Note that if the key guess is wrong,
the resulting function can not be decomposed into 4 parallel functions. For each
function, 1 input byte and 1 output byte are known. We describe below two
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different distinguishers for the middle rounds, that lead to key recovery attack
with similar complexities. The first one is based on a rare event that can easily
be detected, the second one relies on the detection of a statistical bias in the
generic case.

Collision-based Distinguisher. For our first distinguisher, we focus on the
constant δS . We only know that δS is non-zero on the full state. Considering that
it is distributed uniformly on non-zero constants, it cancels one of the diagonals3

with probability (296 − 1)/(2128 − 1) ≈ 2−32. Then, an average of 230 different
choices of AD are necessary to reach a value of δS that cancels on one of the
diagonals. Let us consider that it occurs on the first diagonal (w.l.o.g.), which
contains bytes 0, 7, 10, 13. Then, the value of these bytes collide before and after
the AddDeltaS operation. Then, the values of the first column of the block (bytes
0, 1, 2, 3) are not affected by the middle rounds. If we continue the decryption
process towards both ends of the modified version of the AES, the collision passes
through the InverseMixColumn operation. After undoing the ShiftRow, SubByte
and textsfAddKey operation, we notice that the values of bytes 0, 5, 10, 15 are
equal at the beginning and at the end of the middle part of the cipher.

For each choice of AD, we then generate 3 (plaintext-ciphertext) pairs (P̃x, P̃ ′
x)

for 3 values of x. Then, we proceed as follows.
In each of the 230 sets, we guess separately the 32 bits on each of the 4 anti-

diagonals4 of the first round key. This enables to compute one full column of the
state before and after the middle rounds, for each value of x. For each byte bi

in this column, we store a list Li of the key values such that the input byte and
the output byte of the middle rounds are equal for each x.

Then we consider the first diagonal before and after the middle rounds.
It contains bytes 0, 5, 10 and 15 of the block. Remember that the diagonals
contain the inputs and outputs of 4 independent functions Fi. From the 4 lists
of partial keys Lj , j = 0, 5, 10, 15, we can build all the keys such that the input
of Fi collides with the output for each value of x. Using the known plaintexts
and ciphertexts for the full cipher, we can try all these keys as candidates. Then,
we repeat the whole process with the other three diagonals.

We now explain why this attack works.

Filtering Keys. Following the analysis above, the right key can be decomposed
into 4 partial keys covering each diagonal of the block. If δS cancels on one
of the columns, then the partial values of the right key will appear on the four
corresponding lists Li, and the full key will be among the combination of elements
of the four lists. Therefore, the right key will be detected by our algorithm.

False Positives. For each wrong partial 32-bit key, it is stored in the correspond-
ing list Lj if the input and output of Fi collide on byte j, for each of the 3 values
of x. This occurs with probability 2−24, if we consider the input and output
3 defined as the images of columns by the ShiftRow operation.
4 defined as the pre-images of columns by the ShiftRow operation.
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byte computed for Fi as independent. Therefore, we have on average one false
positive of each of the 4 diagonals of the key. Considering that the number of
false positives are independent for each diagonal of the key, there are on average
(28)4 = 232 keys to try, for each of the 4 diagonals and each of the 230 sets
of values. The expected number of key candidates is marginally increased to
(28 + 1)4 ≈ 232 when the difference δS cancels on the diagonal, as each set of
partial keys at least contains the right key.
δS �= 0 on column i. As above, each wrong key guess is stored with probabil-
ity 2−24, which leads to (28)4 false positives on average, that are discarded by
exhaustive search.

Summary of the Attack. We focus on the key recovery attack on the mask-less
version of Marble. In the decryption-misuse setting, it requires the decryption of
6×230 ciphertexts composed of 130 blocks of plaintext and 1 block of associated
data, which correspond to 230 sets of 3 pairs. To build the lists of partial keys,
one has to perform 6 × 1/4 of an AES round for each partial key guess, leading
to a total of 3 × 231 AES rounds, for each set and each diagonal. The average
complexity of this step for the full attack is then 3 × 263 AES rounds. The most
time-consuming part of the attack is the exhaustive search among the remaining
candidates, which requires 264 AES encryptions on average (232 per column and
per set).

Linear Cryptanalysis. The method described in Sect. 5.1 leads to the knowl-
edge of plaintext-ciphertext pairs for a cipher that consists of 3 AES rounds, a
key addition and 3 inverse AES rounds. The adversary therefore targets a cipher
with a reduced number of rounds, in a known plaintext setting. Using linear
cryptanalysis therefore seems a natural idea. As shown above, one can guess 4
key bytes, which leads to the knowledge of 4 input and 4 output bytes of the
inner 4 rounds of this cipher.

In [9], Keliher and Sui demonstrate that the maximum expected linear prob-
ability over 2 AES rounds is about LP ≈ 1.638 × 2−28. In our case, we can
concatenate a linear trail with its inverse. When averaging over the possible
values of the key and of the intermediate difference δS , the maximum expected
probability for a 4-round characteristic would be about LP 2 ≈ 1.342 × 2−55.
This number also gives an estimation of the amount of data required for the
attack to work. Even by taking into account the possible bias due to the linear
hull effect, the complexity of the linear attack is expected to be far higher than
the one suggested by the experiments below.

A refinement of the linear attack consists in noticing that between the two
middle rounds, each byte of the block is affected only by a key byte and a byte
of δS , but not by other bytes of the block. Therefore, the two middle Sbox layers
could be expressed as one layer of 8-bit key-dependent Sboxes, leading to trails
with 6 active Sboxes instead of 10. Nevertheless, the best linear trail would
then depend on the unknown value of δS , which would make it hard to exploit.
Instead, we use the following statistical distinguisher.
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Statistical Distinguisher. Intuitively, if we have many partial input/output
pairs, we should detect some correlation between the inputs and output. Indeed,
when the key guess is wrong, the function composing the distinguisher behaves as
a 128-bit permutation instead of the parallel application of four 32-bit functions.
Hence, the input and output bytes are less correlated. We focus on a property
that does not require to know in advance which values are correlated, and works
for any function based on (four 32-bit) parallel permutations.

For each known plaintext/ciphertext, we partially encrypt/decrypt one round
on a specific diagonal and we denote one known input/output byte of the distin-
guisher by (α, β) respectively. It is possible to take into account the four known
input/output pairs, but the distinguisher presented below works with only one
position and is easier to explain. We use 216 counters cα,β to count how many
times each pair (α, β) occurs with D available data. If the key guess is correct,
there should be some correlation between α and β, which results in a higher
value for some counters (and lower values for the other counters). In order to
detect this effect, we compute the sample variance s2 of the 216 counters:

s2 = 2−16
∑
α,β

(cα,β − c)2, where c = 2−16
∑
α,β

cα,β .

We expect that s2 is higher when the key guess is correct, because of the corre-
lation between α and β. For a wrong key guess, the computation between α and
β can not be decomposed into 4 parallel functions, and this correlation should
vanish. The resulting attack is described by Algorithm 3.

Algorithm 3. Recover the key of a reduced AES (3 direct rounds and 3 inverse
rounds)
Input: Plaintext/ciphertext pairs (P, C)

for 0 ≤ K < 232 do � Partial key guess
Initialize cα,β = 0
for all (P, C) do

Compute α, β
cα,β ← cα,β + 1

end for
c ← 2−16∑

α,β cα,β

s2[K] ← 2−16∑
α,β(cα,β − c)2

end for
return arg maxK s2[K]

In order to analyze this algorithm, we model the counters using random
variables Cα,β , and the sample variance as S2 for a wrong key guess, and S2

∗
for the right key. Our goal is to show that when D is large enough, we have
Pr[S2 > S2

∗ ] negligible, i.e. the correct key is ranked first.
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Wrong key Guess. We know that starting from α, if we revert the initial round
with the wrong key, then compute three rounds forward with the correct keys,
add δS , compute three round backwards with the correct keys, and finally one
round forward with the wrong key, we reach a state with β. Therefore, α and β
are partial inputs/outputs of a 128-bit permutation.

If we model this function by a random 128-bit permutation, the number of
data matching a pair (α, β), in images and pre-images of this 128-bit function,
follows an hypergeometric distribution. Indeed, for each input which first byte
has value α, the output is drawn uniformly without replacement among all the
possible outputs of the function. The success is determined by whether the first
byte of the output equals β. The number of draws is 2120, and there are 2120

success cases among 2128 possible values.
(α, β) occurs with D data, knowing that the probability of success is p =

2120/2128 = 2−8. Let us call this variable Xα,β . Hence we have

E[Xα,β ] = (2120)2/2128 = 2112

Var[Xα,β ] = (2120)2/2128 × (1 − 2−8)2/(1 − 2−128) ≈ 2112 − 2105.

Next we study Yα,u the number of times each value α, u is reached with D
samples, for each possible value u of the remaining 15 bytes of the input of F .
The Yα,u follow a multinomial distribution, with:

E[Yα,u] = 2−128D,
Var[Yα,u] = 2−128(1 − 2−128)D,

Var[Yα,u, Yα′,u′ ] = −2−256D.

Let us denote by Sα,β the set of values u such that F (α, u) = (β, v) for some v.
It contains exactly Xα,β elements. The counters Cα,β can then be expressed as

Cα,β =
∑

u∈Sα,β

Yα,u.

The variables Yα,u all follow the same distribution. From the law of total
variance, we have:

Var[Cα,β ] = EXα,β

⎛
⎝Var

⎡
⎣ ∑

u∈Sα,β

Yα,u|Xα,β

⎤
⎦
⎞
⎠+VarXα,β

⎛
⎝E

⎡
⎣ ∑

u∈Sα,β

Yα,u|Xα,β

⎤
⎦
⎞
⎠

After expanding the sums and reordering the terms to make variances and
covariances of the Yα,u appear, we get:

Var[Cα,β ] = E
[
Xα,β Var[Yα,u] + (X2

α,β −Xα,β)Var[Yα,u, Yα,u′ ]
]
+Var

[
Xα,β E[Yα,u]

]

= E(Xα,β)Var(Yα,u) + E[X2
α,β −Xα,β ] Var(Yα,u, Yα,u′ ) + E[Yα,u]2 Var[Xα,β ]

= E(Xα,β)Var(Yα,u) +
(
Var[Xα,β ] + E[Xα,β ]

2 − E[Xα,β ]
)
Var(Yα,u, Yα,u′ )

+E[Yα,u]2 Var[Xα,β ]

We have numeric expressions for each term of this expression, therefore we
can compute the following approximation:
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Var[Cα,β ] ≈ 2−16D + 2−144D2.

Correct Key. Let us now assume that the key guess is correct, i.e. the pairs (α, β)
are valid partial input/output but of a 32-bit function this time. We can then re-
apply the above analysis by adjusting the parameters to fit the 32-bit function.
In this case, Xα,β denotes the number of partial values of the data matching
the pair (α, β) in the right column. In that case, we have an hypergeometric
distribution with 224 draws without replacement from a set of 232 values, among
which 224 define a success event.

Therefore, we have

E[Xα,β ] = (224)2/232 = 216

Var[Xα,β ] = (224)2/232 × (1 − 2−8)2/(1 − 2−32) ≈ 216 − 29.

Similarly, we can define variables Yα,u as the number of times a given input
of the 32-bit function F is reached among D samples, drawn uniformly. As in
the previous case, the Yα,u follow a multinomial distribution, with:

E[Yα,u] = 2−32D,
Var[Yα,u] = 2−32(1 − 2−32)D,

Var[Yα,u, Yα′,u′ ] = −2−64D.

The same formula can be used to compute the variance of the counters Cα,β .
We get approximately:

Var[Cα,β ] ≈ 2−16D + 2−48D2.

Distinguisher. We obtain an efficient distinguisher with D = 232: for a wrong
key guess, the variance of the counter is about 216, but it is about 217 for the
right key. In order to evaluate the probability that the correct key is ranked
first, we must evaluate how far the sample variance s2 is from the true variance
Var[Cα,β ].

For a wrong key guess, if we use a single counter and repeat the experiment
with 216 independent sets of D plaintexts, each counter Cα,β can be approx-
imated by a binomial distribution with parameters D and p = 2−16. If we
approximate them as a normal distribution with parameters μ = 2−16D and
σ =

√
2−16(1 − 216)D, we know that the distribution of the sample variance S2

for a wrong key guess follows a χ2 distribution [10, Proposition 2.11]:

S2 ∼ σ2

(n − 1)
χ2

n−1 ∼ 2−32Dχ2
216−1

In particular, we have Pr[S2 > 216 + 212] < 2−90, therefore we don’t expect
that the sample variance of a wrong key is above 216 + 212. In practice, we
use a single set of D plaintexts, and we evaluate the sample variance of the 216

counters; our experiments show that the distribution is close to a χ2 distribution
(the maximum value of s2 with 216 samples was 216 + 1420).
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For the right key, we don’t have an analytic expression of the distribution
of the sample variance, but we can perform experiments. Our experiments show
that with very high probability S2

∗ > 216 + 212, as seen in Fig. 8. Of our 216

experiments, the minimum value of s2∗ was 102795 ≈ 216 + 215. Using D = 232,
we have a large margin and we expect the attack to work with significantly less
data, but recovering L will be the bottleneck of the attack.

While this attack does not use any property of the parallel 32-bit function, we
expect that it can be improved in the specific case of AES rounds. In particular,
we notice a small peak around 3 × 216 in Fig. 8, which is due to zero bytes in δs,
and it should be possible to take advantage of this.

0 1 2 3 4 165 6 7 8 9 10 11 12 13 14 15
·214

0

S2
∗ : correct key

S2: wrong key

Fig. 8. Experimental results: distribution of the sample variance S2 and S2
∗ with D =

232 (216 experiments with random keys).

6 Conclusion

Our results show that collision attacks can have a strong impact on the security
of authenticated encryption schemes. It seems that extracting the whitening key
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using collisions is possible in many OCB-based designs, and this can sometimes
be extended into a full key-recovery attack.

On AEZ, we show how to recover the whitening key, and we point out that the
key derivation of AEZ v2 and v3 has the unfortunate property that the master
key can easily be recovered from the whitening key. This allows a complete break
after the birthday bound. Even with a limit on the amount of data processed
with a single key, this still gives an attack with a higher success probability than
generic attacks. While this does not violate the security proof of AEZ, we believe
it would be better to avoid this property.

Our results on Marble show that it does not provide the security features
claimed by the author, i.e. beyond birthday bound security and decryption-
misuse resistance. We note that Marble still offers a stronger security than many
CAESAR candidates and classical modes of operations when using nonces (or
unique AD). Once usage requirements are relaxed, our results also show that the
security of Marble is similar to the security of other misuse resistant CAESAR
candidates (e.g. APE-128, POET, AEZ, Minalpher) but it collapses badly after
the birthday bound under a decryption-misuse setting, even leading to a full key
recovery.

It seems that adding one extra operation on the state between the processing
of the associated data and of the message would avoid our attacks, but a thorough
analysis would be necessary to ensure that the resulting construction is secure.
As our attack heavily relies on the fact that S1 and S2 keep the same values
on two different plaintexts, one could xor a constant block (for example, 16
bytes encoding the byte positions in the block, (0, 1, . . . , 15)) on S1 and S2 after
processing the associated data.

In addition, our key-recovery attack of Marble suggests that 4 AES rounds in
the E functions are insufficient if the adversary can find a shortcut to target two
E functions instead of three. In particular, this suggest that a deeper investiga-
tion of the security of AEZ with a modified key schedule would be interesting.

Up to our knowledge, the statistical distinguisher presented to recover the
encryption key of a reduced-round AES, has never been used before. Although
it permits to attack few rounds, it seems that it is more efficient than a classical
linear attack. We believe that it is sufficient enough for this kind of distinguisher
to benefit from further research.
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