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Abstract. Side channels provide additional information to skilled
adversaries that reduce the effort to determine an unknown key. If suffi-
cient side channel information is available, identification of the secret key
can even become trivial. However, if not enough side information is avail-
able, some effort is still required to find the key in the key space (which
now has reduced entropy). To understand the security implications of
side channel attacks it is then crucial to evaluate this remaining effort
in a meaningful manner. Quantifying this effort can be done by looking
at two key questions: first, how ‘deep’ (at most) is the unknown key in
the remaining key space, and second, how ‘expensive’ is it to enumerate
keys up to a certain depth?

We provide results for these two challenges. Firstly, we show how to
construct an extremely efficient algorithm that accurately computes the
rank of a (known) key in the list of all keys, when ordered according to
some side channel attack scores. Secondly, we show how our approach
can be tweaked such that it can be also utilised to enumerate the most
likely keys in a parallel fashion. We are hence the first to demonstrate
that a smart and parallel key enumeration algorithm exists.
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1 Introduction

Side channel attacks have proven to be a hugely popular research topic, as the
proliferation of new venues such as CHES, COSADE and HOST shows. Much of
the published research is about key recovery attacks utilising side channel infor-
mation. Key recovery attacks essentially take a number of side channel observa-
tions, colloquially referred to as ‘traces’, and apply a so-called distinguisher to
traces that assigns scores to keys. An attack is considered (first-order) successful
given a set of traces, if the actual secret key receives the highest score. Besides
describing methods (i.e. the distinguishers) that recover the secret key from the
available data, papers focus on the question of how many traces are required for
successful first-order attacks.
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The trade-off chosen in most work is, hence, to increase the number of traces
to ensure that the secret key is recovered successfully with almost certainty. As
observed by Veyrat-Charvillon et al. [13] in their seminal paper on optimal key
enumeration, this might not be the trade-off that a well resourced adversary
would choose. Suppose that access to the side channel is scarce or difficult. In
such a case the actual secret key might not have the highest score after utilising
the leakage traces, but it might still have a higher score than many other keys.
Now imagine that the adversary can utilise substantial computational resources.
This implies that by searching through the key space (in order of decreasing
scores; we call this smart key enumeration) the adversary would find the secret
key much faster than by a näıve brute-force search (i.e. one that treats all keys
as equally likely). Consequently, the true security level of an implementation
cannot be judged solely by its security against first-order side channel attacks.
Instead it is important to understand how the number of traces impacts on the
effort required for a smart key enumeration.

We now illustrate this motivation by linking it to evaluating the impact of
the most influential type of side channel attack: Differential Power Analysis.

1.1 Evaluating Resistance Against Differential Power Analysis

Differential Power Analysis (DPA) [9] consists of predicting a so-called target
function, e.g. the output of the Substitution Boxes, and mapping the output of
this function to ‘predicted side channel values’ using a power model. For this
process it is not necessary to know or guess the whole secret key, SK. One
only needs to make guesses about ‘enough bits’. The predicted values for a key
chunk are then ‘compared’ to the real traces (point-wise) using a distinguisher.
Assuming enough traces are available, the value that represents the correct key
guess will lead to a ‘higher’ distinguishing value. In Kocher et al.’s original
paper [9] this was illustrated for the DES cipher, but most contemporary research
uses AES as running example.

With respect to AES: Kocher’s attack consists of using a t-test statistic as a
distinguisher to compute scores for the values of each 8-bit chunk of the 128-bit
key; see Fig. 1 for a visual example. Here we have m = 16 chunks, each contain-
ing n = 256 values, with associated distinguishing scores as derived via a t-test
statistic. In the graphical illustration, the secret key values are marked out in grey.

If sufficient side information is available, the values of the chunks that corre-
spond to the secret key will have by far the highest distinguishing scores, such
as the majority of key chunks in our graphical illustration. In this case the secret
key can be trivially found (it is the concatenation of the chunks that lead to the
uniquely highest score). However, if less side information is available, the scores
may not necessarily favour a single key. Nevertheless, an adversary is still able to
utilise these scores to smartly enumerate and then test keys (by using a known
plaintext-ciphertext pair).



Counting Keys in Parallel After a Side Channel Attack 315

0

1

2

3

n − 2

n − 1

k0

0.01

0.03

0.41

0.38

...

0.11

0.08

k1

0.01

0.13

0.11

0.27

...

0.01

0.02

k2

0.40

0.05

0.20

0.07

...

0.30

0.01

· · · di,j · · ·

km−1

0.02

0.03

0.31

0.33

...

0.12

0.04

Fig. 1. Score vectors for m key chunks. Each chunk can take values from 0 to n−1, and
scores di,j are on a scale that depends on the side channel distinguisher. The values
that correspond to the (hypothetical) secret key are highlighted in grey.

Security Evaluations. Considering the perspective of a security evaluator, it is
obviously important to characterise the remaining security of an implementation
after leakage. The evaluator (who can run experiments with a known key, and
a varying number of traces) wants to compute its position in a ranked list of all
keys. Knowing this position allows the evaluator to assess the amount of effort
required by an adversary performing a smart search (given some distinguishing
vectors). Ideally, the evaluator is able to compute the ranks of arbitrarily deep
keys.

Accuracy and Efficiency are Key Requirements: Naturally, because the evalua-
tor performs concrete statistical experiments, a single run of a single attack is
not sufficient to gather sound evidence. In practice, any side channel experiment
needs to be repeated multiple times by the evaluation lab, and many different
attacks need to be carried out, utilising different amounts of side channel traces.
Having the capability to determine the position of the key in a ranked list accu-
rately (rather than just giving an estimation), and efficiently, is crucial to cor-
rectly assess the effort of a real world adversary. Previous works’ algorithms [6,14]
were capable of estimating the key rank within some bound. We demonstrate
that we are accurate when enough precision is used, and importantly, we put
forward the first approach for parallel and smart key enumeration.

1.2 Problem Statement and Notation

We use a bold type face to denote multi-dimensional entities. Indices in super-
script refer to column vectors (we use the variable j for this purpose), and
indices in subscript refer to row vectors (we use i for this purpose). Two indices
i, j refer to an element in row i and column j. To maintain an elegant layout,
we sometimes typeset column vectors ‘in line’, and then indicate transposition
via a superscript k = (. . . )T .

We partition a key guess k intom chunks, each able to take one ofn possible val-
ues, i.e. k =

(
k0, . . . , km−1

)
, and k j = (d0,j , d1,j , . . . , dn−1,j)

T . After exploiting
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some leakage L all chunks k j have some corresponding score vectors, i.e. we know
the score for each guess ki,j is di,j after leakage. For convenience we use the vari-
able skj to refer to the indices (in each chunk) that correspond to the correct key,
i.e. SK =

(
ksk1,1, ksk2,2, . . . , kskm−1,m−1

)
. The score D of the secret key is then

D =
∑m−1

j=0 dskj ,j . We will later map scores to (integer) weights and the weight of
the secret key will be W .

The rank of a key is defined as the position of the key in the ordering (of all
keys), where keys with the exact same weight are ranked ‘ex aequo’. In principle,
any order of these equally ranked keys is permissible, so one is free to make a
choice about this order. Assuming the correct key is ranked first among all keys of
the same weight requires us to count all keys with weight less than W. It implies
that the rank we return is conservative in the following sense: key ranking is used
to evaluate the security of side-channel attacks; our assumption on the ordering
implies we give a side-channel adversary the benefit of the doubt (and so we
deem it slightly more successful than it in reality can be). As an alternative,
one could assume the correct key is ranked last among all keys of the same
weight (since we use integer weights, this can be done by increasing the weight
by one, counting all keys according to the ranked-first method, and subtracting
one from the returned rank); ranking the candidate key both as first and last of
its weight will lead to an interval of ranks containing all keys of that rank. Thus
our choice (rank first) is effectively without loss of generality: run once it gives a
conservative estimate, run twice it gives the exact interval of possible ranks for
the candidate key.

Definition 1 (Key Rank Computation). Given m vectors of n distinguish-
ing scores, and the score D of the secret key SK, count the number of keys with
score strictly larger than D.

Definition 2 (Smart Key Enumeration). Given m vectors of n distinguish-
ing scores, list the B keys with the highest score.

1.3 Outline and Our Contributions

In a nutshell, we utilise an elegant mapping of the key rank computation problem
to a knapsack problem, which can be simplified and expressed as (efficient) path
counting. As a result, we can compute accurate key ranks, and importantly,
this enables us to put forward the first algorithm that can perform smart key
enumeration in a parallel manner.

Our contribution is structured in four main sections as follows:

Casting the Key Enumeration as an Integer Knapsack. In Sect. 2 we
show how to cast the key enumeration problem as a solution to counting
knapsack solutions. In particular, we develop the representation of key rank
as a multi-dimensional knapsack, and discuss its resulting graph representa-
tion. Whilst the final definition can be represented as an integer program-
ming problem, we choose to frame each step as an extension of the knapsack
problem, for intuition.
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A Key Rank Algorithm. In Sect. 3 we map the multi-dimensional knap-
sack to a directed acyclic graph. We can therefore count solutions to the
multi-dimensional knapsack problem by counting paths in the graph. The
restriction of picking one item per chunk keeps the number of vertices in
the directed acyclic graph small. As the graph is compact, and each node
has at most two outgoing edges, the path counting problem can be solved
efficiently in O

(
m2 · n · W · log n

)
.

Smart Key Enumeration. In Sect. 4, with the additional book-keeping of
storing the vertices we visit, we can enumerate the B most likely keys with
complexity O

(
m2 · n · W · B · log n

)
. We then show several techniques to

make this process as efficient as possible.
Practical Evaluation and Comparison with Previous Work. In Sect. 5

we discuss requirements around precision. The main factor that influences
performance is the size of the key rank graph, which is determined by the
precision of the initial mapping and the weight of the target key. We compare
our work with previous works in terms of precision and speed with regards
to the key rank algorithm, and in terms of speed with regards to smart key
enumeration.

A full version of this paper can be found on ePrint1, where we consider
additional alternative topological sorting methods and provide pseduo-code for
each. Also implementation details, and testing methodologies are considered in
greater depth.

1.4 Previous Work

Key Rank. An näıve approach is that by simply removing a number of the
least likely key values from each key chunk, the size of the search space is then
restricted as n is reduced. However there are inherit problems with the approach;
firstly this may be removing valid high ranking keys, as it is possible that a key
may be constructed from one very low ranked value in one key chunk, and very
high in others. Secondly, it is still reliant on a simple brute force approach, and
even with a reduced n value this approach is thus too expensive to be practical.
Finally, if the target key is deep, this approach won’t work at all as it is possible
that the correct key values have been removed.

Veyrat-Charvillon et al. [14] were the first to demonstrate an algorithm to
estimate the rank of the key without using full key enumeration. The search
space can be represented as a multidimensional space, with each dimension cor-
responding to a key chunk, sorted by decreasing likelihoods. The space can be
divided into two, those keys ranked above the target and those ranked below.
Using the property that the ‘frontier’ between these two spaces is convex, they
are able to ‘trim’ each space down until the key rank has been estimated to
within 10 bits of accuracy.

Bernstein et al. [1] propose two key ranking algorithms. The first is based
on [14] and adds a post processing phase which has been shown to tighten the
1 ePrint report: 2015/689.
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bounds from 10 bits to 5 bits. The second algorithm ranks keys using techniques
similar to those used to count all y-smooth numbers less than x. By having an
accuracy parameter they are able to get their bounds arbitrarily tight (at the
expense of run time).

Glowacz et al. [6] construct a novel rank estimation algorithm using convolu-
tion of histograms. Using the property that S1+S2 := {x1+x2|x1 ∈ S1, x2 ∈ S2}
can be approximated by histogram convolution, by creating a histogram per key
chunk and convoluting them all together, they are able to efficiently estimate
the key rank to within 1 bit of precision.

Duc et al. [4] perform key rank using a method inspired by Glowacz et al. [6].
They repeatedly ‘merge’ the data in one column at a time (as the histograms
were convoluted in one at a time). Each piece of information is downsampled to
one of a series of discrete values (similar to putting into a histogram bin). The
major difference is that instead of just downsampling the orginial data, they also
downsample after each key chunk is merged in.

Key Enumeration. Veyrat-Charvillon et al. [13] propose a deterministic algo-
rithm to enumerate keys based on a divide-and-conquer approach. Using a tree-
like recursion (starting with two subkeys, then four, all the way to sixteen) and
keeping track of what they call the frontier set (similarities can be drawn to the
frontier of Veyrat-Charvillon et al. [14]), they are able to efficiently enumerate
keys.

Ye et al. [15] present what they describe as a Key Space Finding algorithm. A
Key Space Finding algorithm takes in the distinguishing score vector and returns
two outputs: the minimum verification complexity to ensure a desired success
probability, along with the optimal effort distributor which achieves this lower
bound. Given this it is straightforward to run a (probabilistic) key enumeration
algorithm. The distinguisher intuitively moves the boundary of which subkeys
to enumerate until the desired probability is achieved.

Bogdanov et al. [2] create a score based key enumeration algorithm which
can be seen as a variation of depth first search. Potential keys are generated via
score paths, each of which has a score associated with them, which in conjunction
with a precomputed score table allows for efficient pruning of impossible paths.
From here it is possible to efficiently enumerate possible values.

Reflecting on the Approaches Taken by Previous Work. All of the previ-
ous work has treated key rank and key enumeration as two disjoint problems and
hence approached them using different techniques. For instance, it is unclear how
to extend the existing key rank algorithms to enumerate keys, and conversely, it is
not apparent how to simplify the enumeration algorithms to compute key ranks
efficiently (i.e. without just counting as you enumerate). We however believe
that both of these problems are highly similar in nature and by maintaining
some structure within the key rank it should be possible to enumerate without
making the ranking inefficient. In the remainder of the paper we explain how to
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do just that: efficient key ranking with enough structure to make (fully parallel)
enumeration possible.

2 Casting the Key Enumeration as a Knapsack

We now explain how the key enumeration problem can be formulated as a variant
of a knapsack problem. In its most basic form a knapsack problem takes a set
of n items that have a profit pi and a weight wi. A binary variable xi is used
to select items from the set. The objective is then to select items such that the
profit is maximised whilst the total weight of the items does not exceed a set
maximum W :

maximize:
n−1∑

i=0

pi · xi

subject to:
n−1∑

i=0

wi · xi ≤ W

xi ∈ {0, 1},∀i
The counting knapsack (#knapsack) problem is then understood to be the

associated counting problem: given a knapsack definition, count how many solu-
tions there are to the knapsack problem.

Intuitively, we should be able to frame the key rank computation problem as
a knapsack variant. In contrast to a basic knapsack, however, we have classes of
items (these are the distinguishing vectors k j), profits can be dropped since we
are counting the number of solutions, and we must take exactly one item from
each class. The weight wi,j for each item can be derived2 from the distinguishing
score wi,j = MapToWeight (di,j) in such a way that higher distinguishing scores
lead to lower weights3. We define the maximum weight W as the sum of the
weights associated with the secret key chunks, i.e. W =

∑m−1
j=0 wskj ,j . Recall

that we assume if several keys have weight W the secret key (which must be
among those) is listed first. This enforces W as a strict upper bound in the
knapsack definition.

The multiple-choice knapsack problem that identifies keys with weight lower
than W is then defined as follows:

m−1∑

j=0

n−1∑

i=0

wi,j · xi,j < W

n−1∑

i=0

xi,j = 1,∀j

xi,j ∈ {0, 1},∀i, j
2 For the sake of readability, we do not discuss the implications of needing to map

distinguishing scores (which are floating point values) to weights at this point, but
refer the reader to Sect. 5.1 for a discussion.

3 This ensures compatibility with knapsack notation.
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The first constraint ensures that all keys (i.e. selections of items) have a
weight lower than the secret key. The second constraint ensures that only one
item per distinguishing vector is selected. The counting version of this multiple-
choice knapsack equals to computing the key rank.

Counting solutions to knapsack problems in general is known to be a compu-
tationally hard problem, and known classical solutions [5] rely on combinations of
dynamic programming and rejection sampling to construct an FPRAS. Gopalan
et al. [7] more recently utilise branching programs for efficient counting, and
we took inspiration from this paper to approach the solution to our counting
problem.

To illustrate our solution, we have to slightly modify the knapsack repre-
sentation. It will be convenient to express the multiple-choice knapsack as a
multi-dimensional knapsack variation as follows. Each key chunk corresponds to
‘one dimension’. Each item ki,j has an associated weight vector w i,j of length
m + 1 of the form (wi,j , 0, . . . , 1, 0, . . . , 0), where the 1 is in position j. The
global weight is also expressed as a vector W = (W, 2, . . . , 2) of length m + 1.
The key rank problem is then to count the number of solutions (that satisfy all
constraints simultaneously) to

m−1∑

j=0

n−1∑

i=0

w i,j · xi,j < W

xi,j ∈ {0, 1},∀i, j

The constraint W ensures that all keys that are counted have a strictly lower
weight than the secret key. If the weight vector has a 1 in position j, it means
that this is a value for the jth key chunk. Since the weight limit is 2 in the
constraint vector W , it means that only a single value for any key chunk can be
chosen. We now illustrate this by a simple example.

Example 1. Our illustrative example, which will run throughout the paper, con-
sists of two distinguishing vectors with three elements each: k0 = (0, 1, 3)T , and
k1 = (0, 2, 3)T . We assume that the secret key, SK, is (2, 1). First we derive
the global weight constraint vector. In this case it has length m + 1 = 3 and
contains the maximum weight W = w0,2 + w1,1 = 3 + 2 = 5, which results in
W = (5, 2, 2). The weight vectors of the ki,j are:

w0,0 = (0, 1, 0), w0,1 = (1, 1, 0), w0,2 = (3, 1, 0)
w1,0 = (0, 0, 1), w1,1 = (2, 0, 1), w1,2 = (3, 0, 1)

Given that W = 5, all except two of the combinations are below this thresh-
old. Hence the solutions to the knapsack are:

(k0,0, k0,1), (k0,0, k1,1), (k0,0, k2,1),
(k1,0, k0,1), (k1,0, k1,1), (k1,0, k2,1),
(k2,0, k0,1)
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Notice that the knapsack solution will never contain the secret key itself, as
it returns all keys with weight strictly less than the weight of the secret key. For
the ranking problem this would give us that our secret key has rank 8.

For standard knapsack problems it is well known [3] that solutions can be
found via finding longest paths on a directed acyclic graph. In the following
section we will show that such a graph exists also for our knapsack, and impor-
tantly, that the resulting graph allows for a particularly efficient path counting
solution, which gives us a solution to the Key Rank problem.

3 An Accurate Key Rank Algorithm

In this section we first define the graph and illustrate how it relates to the multi-
dimensional knapsack via intuition and a working example. We then explain our
fast path counting algorithm for a compact representation of the graph.

3.1 Key Rank Graph

Recall that our multi-dimensional knapsack has m · n elements, and for each
element we have a weight vector. Also, a correct solution to the multi-dimensional
knapsack must have a weight that is strictly smaller than W . Since we need to
be able to represent all permissible solutions we need W extra vertices (per
element). This means that we ‘encode’ all solutions to the knapsack in a graph
with m · n · W vertices (plus an extra two for accept and reject nodes). The
vertices corresponding to item ki,j are labelled V w

i,j , where the variable w denotes
the ‘current weight’. The key rank graph contains a start node S, an accept node
A and a reject node R. The edges are constructed as follows:

–
(
V w

i,j , V
w
i+1,j

)
which corresponds to the item not being chosen in this set

–
(
V w

i,j , V
w+wi,j

0,j+1

)
if the item is chosen for this set and w + wi,j < W

–
(
V w

n−1,j , R
)

if no elements are chosen from the set
–

(
V w

i,m−1, A
)

if the item is chosen for the last set and w + wi,m−1 < W

–
(
V w

i,j , R
)

if the item is chosen for this set and w + wi,j ≥ W

– S = V 0
0,0 to set up the start node

When visualising the key rank graph it will be convenient to think of the
indices i, j as though they are ‘flattened’ (i.e. they are topologically sorted and
occur in a linear order). In this representation the graph is n ·m deep, W wide,
where the width of the key rank graph essentially tracks the current weight (of
the partial keys). Each vertex has exactly two edges coming out of it (with the
exception of A and R): either the vertex was ‘included’ (this corresponds to the
choice of selecting the corresponding value of the key chunk to become part of
the key) or not. If the answer is yes then the edge must point to the first item
in the next key chunk, as we can only choose one item per key chunk, and the
weight must be incremented by the weight of this key item. If the item/vertex is
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not chosen then the edge must go to the next item in the chunk (or reject if this
was the last item) and the weight must not be incremented as the item was not
selected. For any partial key, if a new key chunk is added and the new weight
exceeds W then this is not a valid key and thus the path will go to the reject
node R.

Graph Example. To illustrate the working principle we provide in Fig. 2 the
process of constructing the graph for the example provided above.

Initially the graph is constructed (top right) and the start node is initialised
based on the rule S = V 0

0,0. The width of the graph is set to be 5 (0–4) as this
matches our maximum weight (W = 5). The depth of the graph becomes 6 as
each chunk contains 3 items.

Next (middle left) the first two children from the start node are created.
The edge that denotes the chunk is, in fact, selected (the right child) is built
following the rule

(
V 0
0,0, V

0+0
0,1

)
, which creates the edge from the start node, to an

element in the next chunk. The edge that denotes the chunk is not selected (the
left child) is built following the rule

(
V 0
0,0, V

0
1,0

)
, which creates the edge from the

start node to the next item within the same chunk.
Moving onto the following step (middle right), children continue to be created

through the same set of rules. However, note that at the point a link is created to
the accept node based on the rule

(
V 0
0,1, A

)
, this demonstrates that the selection

of key chunk 0 followed by 0 is a valid solution to the problem.
In the following steps links continue to be created based on the rules until all

paths in the graph are created. Please note that throughout the construction of
the graph, the last item in each chunk will have a left child that points to reject
(as obviously there are no further chunks to select) but these have been omitted
from the example diagram for the sake of clarity.

All the greyed out nodes also have their children calculated. However, as they
do not alter the path count, we have excluded them from the example figures to
aid clarity.

Each path from S to A if, corresponds to a key with lower weight than our
secret key. Thus, counting these paths will yield the rank of the secret key. While
in general path counting is hard [12], we explain how our graph structure, having
at most two outgoing edges per node, lends itself to efficient counting.

3.2 Counting Valid Paths

Clearly our key rank graph is a directed acyclic graph. We have already men-
tioned that it is convenient to ‘flatten’ the graph (as it has been presented in the
example). This ‘flat’ graph is also more suited for an efficient counting algorithm.
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Fig. 2. An example showing the construction of the graph for the small example
instance provided
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Hence, from this point onwards we will now assume that the graph is topologi-
cally sorted4. The start node will be labelled 1 and the final node will be labelled
A. There are n ·m ·W + 2 vertices in the graph, we have that A = n ·m ·W + 2
and R = A − 1.

We also assume two constant time functions LC(·), RC(·) which return the
index of the left child and right child, respectively. The algorithmic descriptions
of these functions can be found in Fig. 4 for our particular graph. We therefore
have the following recurrence relation, where PC is a vector and PC[i] stores
the number of accepting paths from i to A:

sPC[c] =

⎧
⎪⎨

⎪⎩

1, if c = A.

0, if c = A − 1.
PC[LC(c)] + PC[RC(c)], otherwise.

The total number of paths between 1 (our start node) and A (our accept
node) is then simply PC[1]. This recurrence relation forms the algorithm given
in Algorithm 1, which assumes that LC,RC are globally accessible functions.

Algorithm 1. The key rank algorithm
PC[A] ← 1
for c = A − 1 to i = 1 do

PC[c] ← PC[LC(c)] + PC[RC(c)]
end for
return PC[1]

For an example of this, see Fig. 3. This figure shows that the vector is tra-
versed from the end back to the start, and cells are filled by summing the values
in their left and right children cells. For clarity in the figure, we only show
example links betwen two cells, whereas in practise they are present on all.

Correctness. The base case of PC[A] = 1 is self explanatory; there is exactly
one path from A to A, the path involving no edges. From an arbitrary node c,
it is possible to traverse the edge to the left child (and thus take however many
paths start there) or traverse the edge to the right child (and do the same) and
we conclude that PC[c] = PC[LC(c)] + PC[RC(c)]. We can iterate over all
nodes starting at the final node A and working backwards until we reach the
start node, and since our graph is topologically sorted when we are operating on

4 It turns out that because the path counting for the key rank graph is already
extremely fast and memory efficient, the choice of sorting is irrelevant, bar the
exception that S must be the first node and A must be the final node. However,
when it comes to key enumeration this will be an important consideration and thus
will be discussed in further detail in the corresponding section.



Counting Keys in Parallel After a Side Channel Attack 325
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Fig. 3. Example demonstrating how the path count is calculated. Two nodes children
links have been included to demonstrate the process.

a node, the values for the nodes’ children will already have been calculated as
they come later in the topological sorting.

We note at this point that this counting algorithm is exact. However, as we
pointed out before, we need to convert floating point distinguishing scores to
integer weights, and this conversion may incur a loss of precision and hence
could cause a loss of accuracy. We discuss this in Sect. 5.

Time Complexity. The time complexity of the key rank algorithm depends on
the number of vertices in the key rank graph and their size. Our graph contains
A = m · n ·W vertices. The integers stored in the vertices could be up to O(2A)
(and thus be of size O(A)) because in the worst case each value can be double
the previous value (if PC[LC(i)] = PC[LC(i)]). Hence, given that we have A
vertices and perform an integer addition with an A-bit variable for each vertex,
we have worst-case time complexity of O(A2) = O(m2 · n2 · W 2).

However, whilst we touch each vertex once, we know that there are at most
O(nm) keys. Consequently, we need no more than O(m log n) bits to store the
path count (in contrast to the O(A) = O(m · n · W ) bits for the worst case).
Hence the time complexity for computing the key rank via the key rank graph
is O(m2 · n · W · log n).

It is worth noting that the key depth does not factor into the time complexity
and the following example will help to clarify this. Consider the target key which
has weight 1 in every column (which gives W = 16 and a grid with 65536 nodes).
If all other key chunks have weight 0 then the target key will have rank 2128 since
all other keys have a lower weight. However, if all other key chunks have weight
2, then our target key will have rank 0 because all other keys have a higher
weight. None of the other values affect the size of the graph and thus it is clear
that the runtime is not changed by the key depth.

In fact for AES-128 the values of m,n are also fixed and thus we get that
the algorithm runs in O(W ), that is to say it is linear in the weight of the secret
key. See Sect. 5.1 for experiments supporting this.
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Algorithm 2. The key enumeration algorithm
KL[A] ← ∅
for c = A to 1 do

KL[c] ← (value(c),KL[RC(c)]) ∪ KL[LC(c)]
end for
return KL[1]

4 Parallelisable Key Enumeration Algorithm

We are able to further modify our algorithm such that with minor (standard
book-keeping) adjustments, we are able to list all valid paths, as opposed to just
counting them, with reasonable efficiency. The algorithm is given in Algorithm2
and requires an additional (constant time) function call value which, given an
index c, returns the value of a vertex. We write (a, {xc}c) to mean {(a, xc)}c.
That is to say if we concatenate an item a with a set, we are really concatenating
the item a with every item in the set to form a new set.

It is now easy to use this for key enumeration. Assume we have the resources
to enumerate/test up to B keys. Then, we choose some weights (which corre-
spond to key guesses) and use the key rank algorithm to determine their ranks
and compare them to B. This allows us to quickly select the appropriate W for
the given B. Then, Algorithm 2 proceeds as follows: for any valid path (in the
key rank graph), every time a right child is taken (this can be determined by the
node indices) the corresponding value for the respective key chunk is chosen. A
left child means that we are not taking a particular value for key chunk. In this
manner the keys are effectively reconstructed from the key rank graph.

If one wanted to enumerate the keys in a smart order, this would simply be
a case of altering the construction of the tree which stores the valid key chunks
for enumeration. Currently the valid key chunks are stored in numerical order
within the tree, however if this was changed such that they were stored in order
of scores, the keys would be rebuilt in a near optimal order.

In the rest of this section we discuss run time and memory requirements.
Whilst the run time is bounded by the number of keys that we want to enumer-
ate, we show there are different strategies to improve the memory performance.
Finally, we show that with a further simple observation, we can parallelise the
key enumeration algorithm.

4.1 Time Complexity

We begin with a worst case analysis considering a general graph. In this case,
the enumeration algorithm would be exponential in the length of the number
of vertices, because to generate all paths (each vertex has two children) the
algorithm clearly must take O(2A) time.

However, in our key rank graph, each path corresponds to a valid key with
weight lower than W . Considering this, the run time of this algorithm is relative
to the rank (which is determined by W ) and not to the total number of keys;



Counting Keys in Parallel After a Side Channel Attack 327

hence this algorithm can be used to enumerate keys for a given workload in time
O(m2 ·n ·W ·B · log n). This is because all O(n ·m ·W ) nodes are touched once,
and B keys are reconstructed which are of length m · log n.

4.2 Memory Efficiency

How we topologically sort the key rank graph has a major impact on the memory
efficiency of the key enumeration. While there are a variety of explicit topological
sorting algorithms in the literature [8,11], we are able to avoid explicit sorting
because we know our graph structure in advance. Hence, we show that our graph
can be sorted implicitly by how the nodes are numbered within the calculation
of the left and right child functions. The remaining question is what method of
sorting is the most desirable.

In Fig. 4 we demonstrate topologically sorting the example graph previously
considered in Fig. 2, as well as present the associated pseudo code. There are
alternative sorting methods available which were considered, and we discuss the
pros and cons of these in the extended version of this paper available on ePrint5.
We also discuss how to improve memory efficiency further by appropriately stor-
ing the generated keys.

Wide Sort. In this sorting the graph is numbered one chunk at a time, one
item at a time, along the weight in increasing order (see Fig. 4). Formally given
a chunk, item and weight (x, y, z) the index is i = x · W · n + y · W + z. This
is a valid topological sorting of the graph, since a nodes’ children will be either
one item lower in the same chunk (for the left child) or the first item in the next
chunk (right child) both of which have a higher number.

This is the topological sort we described for key rank. Note that, since key
rank is extremely fast we describe the most intuitive sort since it did not have
an impact on performance, while with enumeration this is no longer the case
and must now be taken into consideration.

The advantage of this sorting is that it is due to the fact an element will only
need to look at the item below and the item at the top of the next chunk; these
are the only things needing to be stored in memory. This makes it very memory
efficient requiring O(W ) memory.

The disadvantage of this method is that it is highly serial and it does not
seem possible to (easily) parallelise.

Key Storage. The topological sorting of the graph is clearly a crucial factor for
memory efficiency. The other factor is how keys are represented/stored within
our graph.

In the algorithm as described all (partial) keys are stored at each point in
the algorithm. This will become very inefficient. Consider, for example, the case
where you want to enumerate all keys. There are 2120 keys which have the first

5 https://eprint.iacr.org/2015/689.

https://eprint.iacr.org/2015/689
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if (n · W ) − (c mod (n · W )) ≤ W then
return R

else
return c + W

end if

w′ ← c mod W
i ← (c−w′) mod (n·W )

W

j ← c−w′−i·W
n·W

if w + wi,j ≥ W then
return R

else if i �= m − 1 then
return (i + 1) · n · w′ + W + wi,j

else
return A

end if

Fig. 4. Topological sorting of our previous example. Note that the deepest node in
each chunk will be guaranteed to have a left child leading to R; for clarity these paths
are omitted (top). Pseudo code of how the child indices are calculated for each node
in the tree (bottom).

key chunk set to zero (hence this chunk would be duplicated 2120 times). Clearly,
one needs to choose an appropriate data structure, and we use a tree, see Fig. 5.
This key tree is passed to a separate algorithm that converts it into a series of
keys for testing. The advantage of this is threefold. First, it greatly speeds up
the enumeration. Second, the conversion of the key tree into a list of keys is
trivially parallelisable, and third, the actual testing (in our case checking the
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Fig. 5. The key tree for all possible three character keys containing ‘A’ or ‘B’

AES encryption using a given plaintext/ciphertext pair) can be amortised into
this cost.

4.3 Parallelisation

We can achieve parallelisation with a simple observation: by adjusting the graph
such that instead of vertices with a weight lower than W going to the accept
state, we only allow vertices with weight in the range between the two weights
W1 and W2 to reach the accept state. The width of the graph is defined by
W2; W1 has no impact on the graph size. This results in an algorithm that
enumerates ‘batches’ of likely keys. Hence, one can run multiple instances of the
key enumeration algorithm in parallel, where each instance enumerates a unique
batch of keys.

All ranges of keys can be computed in parallel and require no communication
between threads except for the initial passing of the distinguishing scores and a
notification when the key has been found. It is hence trivial to utilise multiple
machines (or cores).

Setting W In an enumeration setting, the correct key, and therefore W is
unknown. We create a series of ‘steps’ in W (to bound using W1, W2 as intro-
duced previously), which are enumerated in order until the correct key is found.

Iterating across these W increments, we select the weights by first taking
the most probable across all distinguishing vectors, i.e. the weight at the top of
each column. If the correct key is not located, the weight limit is increased by
an amount equal to moving down by one key chunk in a column. The generation
of each W step is done according to the following:

More complex methods of bounding the weights could be used, such as binary
searches or similar, but this would increase the cost of calculating the capacities
before the enumeration begins, with little tangible benefit.

Also, it should be noted that if we simply incremented the capacity in the
smallest possible steps, then the algorithm would then be guaranteed to be
accurate, enumerating keys in the correct order. However, this would make par-
allelism nearly impossible as each unit of work would be too small causing the
overhead from the parallel computation to dominate the runtime.



330 D.P. Martin et al.

Algorithm 3. Generating W increments for enumeration when W is unknown
for k = 0 to m do

c ← 00,...,m

for i = k to m do
for j = 0 to n do

ci + 1
Calculate W of key chunks at depths c

end for
end for

end for

Further Speed Optimisations. Currently the algorithm operates on every node
of the graph. However, some of the nodes are not even reachable from the start
node (for example the greyed out nodes in Fig. 2). Hence any computation done
on these nodes is wasted because it will never be combined into a solution. By
precalculating the number of valid paths from S to all other nodes in the graph (a
reasonably cheap operation compared to a large key enumeration – this is done
using the key rank algorithm), we can skip over a node if the number of paths
from the start node to here is 0 because any work here will not be combined
with the final solution.

5 Practical Evaluation and Comparison with Previous
Work

Our key enumeration and key rank algorithms are both based on a graph rep-
resentation of a multi-dimensional knapsack. To define this multi-dimensional
knapsack it is necessary to map distinguishing scores, which typically are float-
ing point values, to integer weights. This is a very simple process of multiply-
ing the raw score di,j , of value most 2α, in the distinguishing vector by 2p−α

where p is the bit value of precision we wish to maintain. Then performing
an abs has the double effect of removing the negative sign, and making the
most probable (the most negative numbers) the smallest, meaning they have the
lightest weight which maps to our knapsack representation perfectly. Formally
wi,j = MapToWeight (di,j) where MapToWeight(di,j) = �abs(di,j · 2p−α)� for
p bits of precision.

This requirement has implications for the performance of our algorithms, as
the time complexities for both algorithms strongly depend on the parameters
m (the number of key chunks), n (the number of items per chunk), and W
(the maximum weight). In particular, for any fixed key size (and number of
chunks) the size of the graph (i.e. the width) grows with W , and W grows with
the precision that we allow for in the conversion from floating point values to
integers.
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We hence focus our practical evaluation on the impact of the precision6,
on accuracy7 and on performance. First, we discuss the precision requirements
for practical DPA outcomes. Second, we explore the practical impact on the
performance of key rank when we increase the precision. Third, assuming we
allow for sufficient precision, we ask what are the best performance results that
we can achieve on single but also many core platforms for the key enumeration.

It is clear that to answer these questions we need to be able to generate
many practically relevant distinguishing vectors in a manner that is comparable
to previous work. We hence decided to adopt the simulator used by Veyrat-
Charvillon et al. [13]. Veyrat-Charvillon et al. create distinguishing vectors based
on attacking the AES SubBytes output, assuming noisy Hamming weight leaks,
and using the Hamming weight as power model. Their DPA simulator allows us
to manipulate the level of noise, and the number of measurements. The simulator
then performs a standard DPA by utilising template matching as a distinguisher
(this has been shown by Mangard et al. [10] to be equivalent to performing a
correlation based DPA with a perfect model). They output ‘additive’ scores (by
taking the logarithm of the raw matching scores), which we pass directly to
our MapToWeight function. In all experiments we keep the number of traces
constant at 30 (which matches [13]) and changed the variance of the noise to
create ‘deeper’ keys.

5.1 Evaluating and Comparing Precision

In practical DPA attacks the combination of measured power traces, model val-
ues, number of traces and distinguisher will influence the effective precision of the
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Fig. 6. Impact of the distinguisher (left: correlation, right: Gaussian templates without
log2) on the precision requirements when considering up to 16 bits of precision.

6 Precision is the ability to reproduce a measurement result, i.e. if several measure-
ments of a variable give very close values then the measurement is precise.

7 Accuracy is the closeness of a measurement to a true value, i.e. this relates to the
‘trueness’ of a measurement.
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distinguisher scores8. We discuss the mentioned factors briefly. Then we experi-
mentally determine the necessary level of precision for our key rank algorithm,
and compare this to the number of bins for the method by Glowacz et al. [6].

Precision in Factors Influencing DPA Outcomes. Various factors can
influence the outcome of a DPA attack, and also have an affect on the amount
of precision required to accurately represent distinguishing scores. These can
include the resolution of the leakage traces, the power model used, and the
distinguisher applied. In our experiments we vary the precision from four to
sixteen bits.

Experimentally Measuring Precision for Key Rank and Glowacz et al.
We ran precision tests using Veyrat-Charvillon’s simulator, using N = 30 and
variance two) to determine the appropriate level of precision for further exper-
iments. We plot the difference in ranking outcomes for increasing precision in
Fig. 7 (left). In this figure, and in all figures that will follow, we plot outcomes of
individual experiments in gray, and average outcomes in black. The x-axis show
the precision in wi, j. The y-axis refers to the change in ranking outcomes when
increasing the precision by 0.1 bits from the previous step. From 11 bits onwards
the outcomes do not change anymore. Because our ranking method is exact with
enough precision, we can infer that with 11 bits of precision in wi,j we produce
exact ranks. Already from 4 bits of precision (on average, as plotted in black) we
are within five bits of accuracy from the real result. From about 8 bits onwards,
increasing the precision changes the ranking outcomes by just under a bit for
our algorithm.
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Fig. 7. Bits of precision for key rank (left) and number of bins for Glowacz et al.(right).

8 Veyrat’s simulator stores values in variables with double precision (i.e. one has 53 bits
of precision). But effectively, only a few of them are necessary to contain the effective
precision.
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We implemented the convolution based method by Glowacz et al. [6]. Their
method is essentially based on building m histograms (one from each of the
distinguishing vectors) and counting the keys by counting items in the ‘amal-
gamated’ histogram efficiently via convolution. Figure 7 (right) shows that they
achieve very high average precision (plotted in black) from about 50,000 bins
onward. We can therefore conclude that using 50,000 bins roughly corresponds
to 11 bits of precision in wi,j . Glowacz et al. [6] actually recommend to use
500,000 bins in their paper.

Recall that we hypothesised that different distinguishers would lead to differ-
ent precision requirements. To test this hypothesis we implemented two further
distinguishers for the simulator: one distinguisher was based on correlation and
one was based on Veyrat-Charvillon’s method but without applying the loga-
rithm. Figure 6 shows the results for them, this time we allowed up the 16 bit
precision. The plots show that indeed, different distinguishers require different
levels of precision, and that correlation has the least requirements.

To provide further evidence for the exactness of our ranking algorithm
(provided enough precision), we considered the difference between the key rank
output by our algorithm, and the key rank output by Glowacz et al. In this exper-
iment, we used 16 bits for our algorithm and 500,000 bins for Glowacz et al. Fig. 8
shows the identical trend as Fig. 1 (right panel) of Glowacz et al. Hence the dif-
ference between our ranking outcomes and their ranking outcomes are identical
to the rank estimation tightness that they measure, reinforcing the exactness of
our ranking outcomes.
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Fig. 8. Observed difference in calculated key rank between our algorithm and
Glowacz et al.

5.2 Evaluating and Comparing Run Times for Key Rank

We explained in Sect. 3 that the run time of the Key Rank algorithm is inde-
pendent of the actual depth of the key. The run time depends on the size of the
graph, which is fixed for a certain choice of m and n, and hence depends on the
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Fig. 9. Impact of the size of W (left) and precision in wi,j (right) on the run time of
Key Rank

size of W . Since W is derived from summing the weights of SK, its precision
will be determined by the precision that we allow during the conversion of the
distinguishing scores.

We hence experimented with the relationship between run time and size of W
and also precision. We did this by fixing all parameters for Veyrat-Charvillon’s
simulator and only varying the precision allowed in the function MapToWeight.
As in the previous graph, we upper bounded the precision in W at 16 bits.

Figure 9 shows how the run time increases for bigger W (left) and more
precision in W (right). The run times for sufficient precision (i.e. 8 bits for W )
are well below half a second. Even with 11 bits of precision (i.e. accurate ranking
outcomes) our average run time is around 4 s. The plot shows that this average
(black) is tracked well by the individual experiments (gray).

5.3 Evaluating and Comparing Run Times for Key Enumeration

The run time of the key enumeration algorithm (as referred to by KEA in the
graphs that will follow) is dominated by the depth to the key. Veyrat-Charvillon
et al. [13] presented the current state of the art for smart key enumeration, and
they kindly gave us access to the latest version of their implementation. We
were hence able to run their code alongside ours. Therefore for all graphs that
we provide in the following, the timings were obtained on identical platforms.
Note that for all experiements, as the toolbox provided a known secret key on
which the simulated attack was based, we knew at which point the enumeration
had found the correct key without needing to performm an AES operation on a
known plaintext/ciphertext pair (this is common within the literature).

Single Core vs Multi Core Comparisons. Figure 10 gives a comparison of run
times of Veyrat-Charvillon et al.’s algorithm and our algorithm on a single core
(left). We sampled multiple distinguishing scores for each key depth and ran our
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Fig. 10. Comparison between Veyrat-Charvillon et al.’s enumeration algorithm and our
algorithm for increasing key depths on a single core (left), and run times for parallel
instances of the key enumeration (right).

respective key rank algorithms. The graphs show that from key depths just under
30 bits onwards we clearly outperform Veyrat-Charvillon et al.’s algorithm, even
on a single core. On the right, we provide some performance graphs when running
our key enumeration algorithm on multiple cores. The graph shows that eight
cores can enumerate 240 keys in the same time as one core enumerates 237, which
is a vast difference. Also another result of note is a single core run enumerates
238 keys in 13.9 h and four cores performs the same enumeration in 6.4 h.
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A Computing Environment

All code was implemented using Java 1.7, with the exception of the Glowacz
et al.’s algorithm [6] which was implemented in Matlab to enable very fast
convolution of the histograms. The language difference here was not an issue
because key rank is so that fast we only ran accuracy comparisons and not
timing comparisons. The implementation of Veyrat-Charvillon et al.’s key enu-
meration algorithm [13] was provided by the author, and translated into Java
allowing for direct speed comparisons.

Running the single core enumeration tests, compared to Veyrat-Charvillon
which are plotted in Fig. 10 (left), took place on a system running Arch Linux,
with an Intel i7-4790S and 8 GB of system memory.

http://www.bris.ac.uk/acrc/
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Precision tests required larger memory capabilities and as such were carried
out on a system running Ubuntu, with an Intel Xeon E5-1650 and 32 GB of
system memory.

Finally the multiple core tests plotted in Fig. 10 (right) were run on a cluster
based environment, where each individual node provided 2 Intel E5-2670s and
64 GB of memory.
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