ASCA, SASCA and DPA with Enumeration:
Which One Beats the Other and When?

Vincent Grosso™ and Francois-Xavier Standaert

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
vincent.grosso@uclouvain.be

Abstract. We describe three contributions regarding the Soft Analyti-
cal Side-Channel Attacks (SASCA) introduced at Asiacrypt 2014. First,
we compare them with Algebraic Side-Channel Attacks (ASCA) in a
noise-free simulated setting. We observe that SASCA allow more efficient
key recoveries than ASCA, even in this context (favorable to the latter).
Second, we describe the first working experiments of SASCA against an
actual AES implementation. Doing so, we analyse their profiling require-
ments, put forward the significant gains they provide over profiled Dif-
ferential Power Analysis (DPA) in terms of number of traces needed
for key recoveries, and discuss the specificities of such concrete attacks
compared to simulated ones. Third, we evaluate the distance between
SASCA and DPA enhanced with computational power to perform enu-
meration, and show that the gap between both attacks can be quite
reduced in this case. Therefore, our results bring interesting feedback for
evaluation laboratories. They suggest that in several relevant scenarios
(e.g. attacks exploiting many known plaintexts), taking a small mar-
gin over the security level indicated by standard DPA with enumeration
should be sufficient to prevent more elaborate attacks such as SASCA. By
contrast, SASCA may remain the only option in more extreme scenarios
(e.g. attacks with unknown plaintexts/ciphertexts or against leakage-
resilient primitives). We conclude by recalling the algorithmic depen-
dency of the latter attacks, and therefore that our conclusions are specific
to the AES.

1 Introduction

State-of-the-art. Strategies to exploit side-channel leakages can be classified as
Divide and Conquer (DC) and analytical. In the first case, the adversary recovers
information about different bytes of (e.g.) a block cipher key independently, and
then combines this information, e.g. via enumeration [36]. In the second case,
she rather tries to recover the full key at once, exploiting more algorithmic
approaches to cryptanalysis with leakage. Rephrasing Banciu et al., one can see
these different strategies as a tradeoff between pragmatism and elegance [2].

In brief, the “DC+enumeration” approach is pragmatic, i.e. it is easy to
implement, requires little knowledge about the target implementation, and can
take advantage of a variety of popular (profiled and non-profiled) distinguishers,

© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASTACRYPT 2015, Part II, LNCS 9453, pp. 291-312, 2015.
DOI: 10.1007/978-3-662-48800-3_12

292 V. Grosso and F.-X. Standaert

such as Correlation Power Analysis (CPA) [6], Mutual Information Analysis
(MIA) [14], Linear Regression (LR) [34] or Template Attacks (TA) [8]. We will
use the term Differential Power Analysis (DPA) to denote them all [22].

By contrast, analytical approaches are (more) elegant, since they theoreti-
cally exploit all the information leaked by an implementation (vs. the leakages
of the first and/or last rounds independently for DC attacks). As a result, these
attacks can (theoretically) succeed in conditions where the number of measure-
ments available to the adversary is very limited. But this elegance (and the
power that comes with it) usually implies stronger assumptions on the target
implementation (e.g. most of them require some type of profiling). The Algebraic
Side-Channel Attacks (ASCA) described in [30] and further analyzed in [7,32]
are an extreme solution in this direction. In this case, the target block cipher and
its leakages are represented as a set of equations that are then solved (e.g. with
a SAT solver, or Groebner bases). This typically implies a weak resistance to the
noise that is usually observed in side-channel measurements. As a result, various
heuristics have been suggested to better deal with errors in the information leak-
ages, such as [24,39]. The Tolerant Algebraic Side-Channel Attacks (TASCA)
proposed in [25,26] made one additional step in this direction, by replacing the
solvers used in ASCA by an optimizer. But they were limited by their high mem-
ory complexity (since they essentially deal with noise by exhaustively encoding
the errors they may cause). More recently, two independent proposals suggested
to design a dedicated solver specialized to byte-oriented ciphers such as the
AES [16,27]. The latter ones were more efficient and based on smart heuris-
tics exploiting enumeration. Eventually, Soft Analytical Side-Channel Attacks
(SASCA) were introduced at Asiacrypt 2014 as a conceptually different way
to exploit side-channel leakages analytically [38]. Namely, rather than encoding
them as equations, SASCA describe an implementation and its leakages as a
code, that one can efficiently decode using the Belief Propagation (BP) algo-
rithm. As a result, they can directly exploit the (soft) information provided by
profiled side-channel attacks (such as LR or TA), in an efficient manner, with
limited memory complexity, and for multiple plaintexts. Concretely, this implies
that they provide a natural bridge between DC attacks and analytical ones.

Our Contribution. In view of this state-of-the-art, we consider three open
problems regarding DC and analytical strategies in side-channel analysis.

First, we observe that the recent work in [38] experimented SASCA in the
context of noisy AES leakages. While this context allowed showing that SASCA
are indeed applicable in environments where ASCA would fail, it leaves the
question whether this comes at the cost of a lower efficiency in a noise-free
context open. Therefore, we launched various experiments with noise-free AES
leakages to compare ASCA and SASCA. These experiments allowed us to confirm
that also in this context, SASCA are equally (even slightly more) efficient.

Second, the experiments in [38] exploited simulations in order to exhibit
the strong noise-resilience of SASCA (since the amount of noise can then be
used as a parameter of such simulations). But this naturally eludes the question
of the profiling of a concrete device, which can be a challenging task, and for

ASCA, SASCA and DPA with Enumeration 293

which the leakage functions of different target intermediate values may turn out
to be quite different [13]. Therefore, we describe the first working experiments
of SASCA against an actual AES implementation, for which a bivariate TA
exploiting the S-box input/output leakages would typically be successful after
more than 50 measurements. We further consider two cases for the adversary’s
knowledge about the implementation. In the first one, she has a precise descrip-
tion in hand (i.e. the assembly code, typically). In the second one, she only knows
AES is running, and therefore only exploits the generic operations that one can
assume from the algorithm specification.! Our experiments confirm that SASCA
are applicable in a simple profiled scenario, and lead to successful key recoveries
with less traces than a DC attack (by an approximate factor up to 5). They
also allow us to discuss the profiling cost, and the consequences of the different
leakage functions in our target implementation. A relevant observation regarding
them is that weak leakages in the MixColumns operations are especially damag-
ing for the adversary, which can be explained by the (factor) graph describing an
AES implementation: indeed, XORing two values with limited information sig-
nificantly reduces the information propagation of the BP algorithm execution.
This suggest interesting research directions for preventing such attacks, since
protecting the linear parts of a block cipher is usually easier/cheaper.

Third, we note that SASCA are in general more computationally intensive
than DC attacks. Therefore, a fair comparison should allow some enumeration
power to the DC attacks as well. We complement our previous experimental
attacks by considering this last scenario. That is, we compare the success rate
of SASCA with the ones of DC attacks exploiting a computational power corre-
sponding to up to 230 encryptions (which corresponds to more than the execu-
tion time of SASCA on our computing platform). Our results put forward that
SASCA remain the most powerful attack in this case, but with a lower gain.

Summary. These contributions allow answering the question of our title. First,
SASCA are in general preferable to ASCA, with both noise-free and noisy AES
leakages. Second, the tradeoff between SASCA and DC attacks is more balanced.
As previously mentioned, DC attacks are more pragmatic. So the interest of
SASCA essentially depends on the success rate gains it provides, which itself
depends on the scenarios. If multiple plaintexts/ciphertext pairs are available,
our experiments suggest that the gain of SASCA over DPA with enumeration is
somewhat limited, and may not justify such an elegant approach. This conclusion
backs up the results in [2], but in a more general scenario, since we consider
multiple-queries attacks rather than single-query ones, together with more a
powerful analytical strategy. By contrast, if plaintexts/ciphertexts are unknown
(which renders DPA [17] and enumeration more challenging to apply), or if the
number of plaintexts one can observe is very limited (e.g. by design, due to a
leakage-resilient primitive [10]), SASCA may be the best/only option.

! Admittedly, such a generic scenario still assumes that the target implementation
closely follows the specifications given in [11] which may not always be the case, e.g.
for bitslice implementations [29], or T-table based implementations [9].

294 V. Grosso and F.-X. Standaert

Preliminary Remark. Our focus in this paper is on a couple of extreme
approaches to side-channel analysis, i.e. the most pragmatic DC attacks against
8-bit targets of the first AES round, and the most elegant ASCA /SASCA exploit-
ing most/all such targets in the implementation. Quite naturally, the other ana-
lytical attacks mentioned in this introduction would provide various tradeoffs
between these extremes. Besides, more computationally-intensive DPA attacks
(based on larger key hypotheses) are also possible, as recently discussed by
Mather et al. [23]. Such attacks are complementary and may further reduce
the gain of SASCA over DPA, possibly at the cost of increased computational
requirements (e.g. the latter work exploited high-performance computing
whereas all our experiments were carried out on a single desktop computer).

2 Background

In this section we first describe the measurement setup used in our experiments.
Then, we describe two tools we used to identify and evaluate information leakages
in the traces. Finally, we recall the basics of the different attacks we compare.

2.1 Measurement Setup

Our measurements are based on the open source AES FURIOUS implementa-
tion (http://point-at-infinity.org/avraes) run by an 8-bit Atmel ATMEGAG644p
microcontroller at a 20 MHz clock frequency. We monitored the power consump-
tion across a 222 resistor. Acquisitions were performed using a Lecroy WaveRun-
ner HRO 66 ZI providing 8-bit samples, running at 400 Msamples/second. For
SASCA, we can exploit any intermediate values that appear during the AES
computation. Hence, we measured the full encryption. Our traces are composed
of 94 000 points, containing the key scheduling and encryption rounds. Our pro-
filing is based on 256 000 traces corresponding to random plaintexts and keys.
As a result, we expect around 1000 traces for each value of each intermediate
computation. We use I” _ for the value z of the n'” intermediate value in the i*"

n,x
tth

leakage trace, and liw(t) when we access at the t'* point (sample) of this trace.

2.2 Information Detection Tools

Since SASCA can exploit many target intermediate values, we need to identify
the time samples that contain information about them in our traces, next referred
to as Points Of Interest (POI). We recall two simple methods for this purpose,
and denote the POI of the n*” intermediate value in our traces with t,,.

(a) Correlation Power Analysis (CPA) [6]. is a standard side-channel dis-
tinguisher that estimates the correlation between the measured leakages and
some key-dependent model for a target intermediate value. In its standard ver-
sion, an a-priori (here, Hamming weight) model is used for this purpose.

http://point-at-infinity.org/avraes

ASCA, SASCA and DPA with Enumeration 295

In practice, this estimation is performed by sampling (i.e. measuring) traces
from a leakage variable L and a model variable Mj, using Pearson’s correlation
coefficient:

_ E[(E — o) (M —)]
pi(L, My) = var(L)var(My)

In this equation, E and var respectively denote the sample mean and variance
operators, and fiy, is the sample mean of the leakage distribution L. CPA is a
univariate distinguisher and therefore launched sample by sample.

(b) The Signal-to-Noise Ratio (SNR) [21]. of the n'" intermediate value
at the time sample ¢ can be defined according to Mangard’s formula [21]:

SNR, (1) = Vérz(éi (l;’m(t))) :
e E. (véri (lﬁm(t)))

Despite connected (high SNRs imply efficient CPA if the right model is used),
these metrics allow slightly different intuitions. In particular, the SNR cannot
tell apart the input and output leakages of a bijective operation (such as an
S-box), since both intermediate values will generate useful signal. This separation
can be achieved by CPA thanks to its a-priori leakage predictions.

2.3 Gaussian Templates Attacks

Gaussian TA [8] are the most popular profiled distinguisher. They assume that
the leakages can be interpreted as the realizations of a random variable which
generates samples according a Gaussian distribution and work in two steps.
In a profiling phase, the adversary estimates a mean fi,, , and variance ‘3121,1 for
each value z of the n'” intermediate computation. In practice, this is done for the
time sample ¢,, obtained thanks to the previously mentioned POI detection tools.
Next, in the attack phase and for each trace I, she can calculate the likelihood
to observe this leakage at the time t, for each x as:

P;I‘[l(tnﬂl’] ~ N(ﬂn,rv 5—7%,.%)'

In the context of standard DPA, we typically have x = p @ k, with p a known
plaintext and k the target subkey. Therefore, the adversary can easily calculate
Pr[k*|p,l(t,)] using Bayes theorem, for each subkey candidate k*:

Pr[k*] = Hp}[k* Ip, U (tn)].

To recover the full key, she can run a TA on each subkey independently.

296 V. Grosso and F.-X. Standaert

By contrast, in the context of SASCA, we will directly insert the knowledge (i.e.

probabilities) about any intermediate value x in the (factor) graph describing
the implementation, and try to recover the full key at once.

Note that our SASCA experiments consider univariate Gaussian TA whereas
our comparisons with DPA also consider bivariate TA exploiting the S-box input
and output leakages (i.e. the typical operations that a divide-and-conquer adver-
sary would exploit). In the latter case, the previous means and variances just
have to be replaced by mean vectors and covariance matrices. This choice is
motivated by our focus on the exploitation of multiple intermediate AES com-
putations. It could be further combined with the exploitation of more samples
per intermerdiate computation, e.g. thanks to dimensionality reduction [1].

2.4 Key Enumeration and Rank Estimation

At the end of a DC side-channel attack (as the previous TA), the attacker has
probabilities on each subkey. If the master key is not the most probable one,
she can perform enumeration up to some threshold thanks to enumeration algo-
rithms, e.g. [36]. This threshold depends on the computational power of the
adversary, since enumerating all keys is computationally impossible. If the key is
beyond the threshold of computationally feasible enumeration, and in order to
gain intuition about the computational security remaining after an attack, key
rank estimation algorithms can be used [15,37]. A key rank estimation takes in
input the list of probabilities of all subkeys and the probability of the correct
key (which is only available in an evaluation context), and returns an estimation
on the number of keys that are more likely than the actual key. Rank estima-
tion allows to approximate d*"-order success rates (i.e. the probability that the
correct key lies among the d first ones rated by the attack) efficiently and quite
accurately. The security graphs introduced in [37] provide a visual representation
of higher-order success rates in function of the number attack traces.

2.5 Algebraic Side-Channel Attacks

ASCA were introduced in [30] as one of the (if not the) first method to efficiently
exploit all the informative samples in a leakage trace. We briefly recall their three
main steps and refer to previous publications for the details.

1. Construction consists in representing the cipher as an instance of an algebraic
problem (e.g. Boolean satisfiability, Groebner bases). Because of their large mem-
ory (RAM) requirements, ASCA generally build a system corresponding to one
(or a few) traces only. For example, the SAT representation of a single AES trace
in [32] has approximatively 18,000 equations in 10,000 variables.

2. Information extraction consists in getting exploitable leakages from the mea-
surements. For ASCA, the main constraint is that actual solvers require hard
information. Therefore, this phase usually translates the result of a TA into
deterministic leakages such as the Hamming weight of the target intermediate

ASCA, SASCA and DPA with Enumeration 297

values. Note that the attack is (in principle) applicable with any type of lekages
given that they are sufficiently informative and error-free.

3. Solving. Eventually, the side-channel information extracted in the second
phase is added to the system of equations constructed in the first phase, and
generic solvers are launched to solve the system and recover the key. In practice,
this last phase generally has large RAM requirements causing ASCA to be lim-
ited to the exploitation of one (or two) measurement traces.

Summarizing, ASCA are powerful attacks since they can theoretically recover a
key from very few leakage traces, but this comes at the cost of low noise-resilience,
which motivated various heuristic improvements listed in introduction. The next
SASCA are a more founded solution to get rid of this limitation.

2.6 Soft Analytical Side-Channel Attacks

SASCA [38] describe the target block cipher implementation and its leakages
in a way similar to a Low-Density Parity Check code (LDPC) [12]. Since the
latter can be decoded using soft decoding algorithms, it implies that SASCA
can directly use the posterior probabilities obtained during a TA. Similar to
ASCA, they can also be described in three main steps.

1. Construction. The cipher is represented as a so-called “factor graph” with
two types of nodes and bidirectional edges. First, variable nodes represent the
intermediate values. Second, function nodes represent the a-priori knowledge
about the variables (e.g. the known plaintexts and leakages) and the operations
connecting the different variables. Those nodes are connected with bidirectional
edges that carry two types of messages (i.e. propagate the information) through
the graph: the type ¢ message are from variables to functions and the type r
messages are from functions to variables (see [20] for more details).

2. Information extraction. The description of this phase is trivial. The probabil-
ities provided by TA on any intermediate variable of the encryption process can
be directly exploited, and added as a function node to the factor graph.

3. Decoding. Similar to LDPC codes, the factor graph is then decoded using the
BP algorithm [28]. Intuitively, it essentially iterates the local propagation of the
information about the variable nodes of the target implementation.

Since our work is mostly focused on concrete investigations of SASCA, we now
describe the BP algorithm in more details. Our description is largely inspired
by the description of [20, Chapter 26]. For this purpose, we denote by z; the i*"
intermediate value and by f; the i function node. As just mentioned, the nodes
will be connected by edges that carry two types of messages. The first ones go
from a variable node to a function node, and are denoted as g, —f,,. The second
ones go from a function node to a variable node, and are denoted as 7y, _.y,,
In both cases, n is the index of the sending node and m the index of the recipient
node. The messages carried correspond to the scores for the different values of

298 V. Grosso and F.-X. Standaert

the variable nodes. At the beginning of the algorithm execution, the messages
from variable nodes to function nodes are initialized with no information on the
variable. That is, for all n,m and for all x,, we have:

Qo frn (Tn) = 1.

The scores are then updated according to two rules (one per type of messages):

T frn—vn (xn) = Z (f7rL($n’axn) HQun/—>fm (xn’)) (1)

’ ’
T, ,n #n n

Qop— fon (Tn) = H Tf s —vn () (2)

m’#m

In Eq.2, the variable node v, sends the product of the messages about x,
received from the others function nodes (m' # m) to the function node f,,,
for each value of x,,. And in Eq.1, the function node f,, sends a sum over all
the possible input values of f,, of the value of f,, evaluated on the vector of
(zpr,n' # n)’s, multiplied by the product of the messages received by f,, for
the considered values of x, . The BP algorithm essentially works by iteratively
applying these rules on all nodes. If the factor graph is a tree (i.e. if it has no
loop), a convergence should occur after a number of iterations at most equal to
the diameter of the graph. In case the graph includes loops (e.g. as in our AES
implementation case), convergence is not guaranteed, but usually occurs after a
number of iterations slightly larger than the graph diameter. The main parame-
ters influencing the time and memory complexity of the BP algorithm are the
number of possible values for each variable (i.e. 2% in our 8-bit example) and the
number of edges. The time complexity additionally depends on the number of
inputs of the function nodes representing the block cipher operations (since the
first rule sums over all the input combinations of these operations).

3 Comparison with ASCA

ASCA and SASCA are both analytical attacks with very similar descriptions.
As previously shown in [38], SASCA have a clear advantage when only noisy
information is available. But when the information is noise-free, the advantage
of one over the other has not been studied yet. In this section, we therefore tackle
the question “which analytical attack is most efficient in noise-free scenario?”.
To this end, we compare the results of SASCA and ASCA against a simu-
lated AES implementation with noise-free (Hamming weight) leakages. We first
describe the AES representation we used in our SASCA (which will also be used
in the following sections), then describe the different settings we considered for
our simulated attacks, and finally provide the results of our experiments.

3.1 Our Representation for SASCA

As usual in analytical attacks, our description of the AES is based on its tar-
get implementation. This allows us to easily integrate the information obtained

ASCA, SASCA and DPA with Enumeration 299

AddRoundKey Sbox MixColumns

‘ " \
/

2 |

' i

P e M @

XOR SBOX {0R P TMES XOR | xOR

XpF| XTIME XOR
ofYoRomcHRoRoR0

ﬂ

Fig. 1. Graph representation of one column of the first AES round.

during its execution. For readability purposes, we start by illustrating the graph
representation for the first round of one column of the AES in Fig.1. To build
this graph for one plaintext, we start with 32 variable nodes (circles), 16 for
the 8-bit subplaintexts (p;), and 16 for the 8-bit subkeys (k;). We first add a
new variable node in the graph representation each time a new intermediate
value is computed in the AES FURIOUS implementation,? together with the

2 Excluding memory copies which only increase the graph diameter.

300 V. Grosso and F.-X. Standaert

corresponding function nodes (rectangles). There are three different operations
that create intermediate values. First, the Boolean XOR takes two variables as
inputs and outputs a new variable that is equal to the bitwise XOR of the two
inputs. Next, two memory accesses to look-up tables are used for the S-box and
Xtimes operations, which take one variable as input, and create a new variable
as output. We finally add two types of leaf nodes to these three function nodes.
The P’s reflect the knowledge of the plaintext used, and the L’s give the posterior
probability of the value observed using Gaussian templates. A summary of the
different function nodes used in our AES factor graph is given in Table 1.

Table 1. Summary of the function nodes used in our AES factor graph.

1 ifa=b&dec,

1 if a = sbox(b
, sBox(a,b) = 4 - iFa=sboz(b),
0 otherwise.

XOR(a, b,c) = .
0 otherwise.

1 ifa=uxti b 1 ifz, =p,
XTIMES(a,b) = na %Zmes() P(z,) = B =P
0 otherwise. 0 otherwise.

L(zn) = Prlza|l(tn)].

The graph in Fig.1 naturally extends to a full AES execution. And when
using several traces, we just keep a single description of the key scheduling, that
links different subgraphs representing the different plaintext encryptions. Our
description of the key scheduling requires 226 variable nodes and 210 function
nodes. Our description of the rounds requires 1036 variable nodes and 1020
function nodes. The key scheduling nodes are connected by 580 edges, and each
round of the encryption contains 292 edges. As a result and overall, the factor
graph for one plaintext contains 1262 variable nodes, 1230 function nodes and
3628 edges. On the top of that we finally add the leakage function nodes which
account for up to 1262 edges (if all leakages are exploited). Concretely, each
variable node represents an intermediate value that can take 28 different values.
Hence, if we represent each edge by two tables in single precision of size 256, the
memory required is: 256 x (3628 x 2 + 1262) x 4 bytes ~ 8 MB.?

3.2 Comparison Setup

Our noise-free evaluations of ASCA and SASCA are based on single-plaintext
attacks, which is due to the high memory requirements of ASCA (that hardly
extend to more plaintexts). In order to stay comparable with the previous work
in [32], we consider a Hamming weight (W) leakage function and specify the
location of the leakages as follows:

— 16 Wg's for AddRoundKey,
— 16 Wg'’s for the output of SubBytes and ShiftRows,
— 36 Wy's for the XORs and 16 Wy for the look-up tables in MixColumns.

3 For the leakage nodes, messages from variable to function (g.,, s,) are not necessary.

ASCA, SASCA and DPA with Enumeration 301

As previously mentioned, these leakages are represented by £ boxes in Fig. 1.
We also consider two different contexts for the information extraction:

— Consecutive weights (cw), i.e. the Wg's are obtained for consecutive rounds.
— Random weights (rw), i.e. we assume the knowledge of Wg’s for randomly
distributed intermediate values among the 804 possible ones.

Eventually, we analyzed attacks in a Known Plaintext (KP) and Unknown Plain-
text (UP) scenario. And in all cases, we excluded the key scheduling leakages, as
in [32]. Based on these settings, we evaluated the success rate in function of the
quantity of information collected, counted in terms of “rounds of information”,
where one round corresponds to 84 Wy’s of 8-bit values.

3.3 Experimental Results

The results of our SASCA with noise-free leakages are reported in Fig.2, and
compared to the similar ASCA experiments provided in Reference [32].

We first observe that 2 consecutive rounds of Wy's are enough to recover
the key for SASCA with the knowledge of plaintext and when the leakages are
located in the first rounds.* Next, if we do not have access to the plaintext,
SASCA requires 3 consecutive rounds of leakage, as for ASCA. By contrast,
and as previously underlined, the solving/decoding phase is significantly more
challenging in case the leakage information is randomly distributed among the
intermediate variables. This is intuitively connected to the fact that the solver
and decoder both require to propagate information through the rounds, and
that this information can rapidly vanish in case some intermediate variables
are unknown. The simplest example is a XOR operation within MixColumns,
as mentioned in introduction. So accumulating information on closely connected
intermediate computations is always the best approach in such analytical attacks.
This effect is of course amplified if the leakages are located in the middle rounds
and the plaintext/ciphertext are unknown, as clear from Fig. 2.

Overall, and since both SAT-solvers and the BP algorithm with loops in the
factor graph are highly heuristic tools, it is of course difficult to make strong
statements about their respective leakage requirements. However, these experi-
ments confirm that at least in the relevant case-study of Hamming weight AES
leakages, the better noise-resilience of SASCA does not imply weaker perfor-
mances in a noise-free setting. Besides, and in terms of time complexity, the
attacks also differ. Namely, the resolution time for ASCA depends of the quan-
tity of information, whereas it is independent of this quantity in SASCA, and
approximately 20 times lower than the fastest resolution times for ASCA.

Note finally that moving to a noisy scenario can only be detrimental to ASCA.
Indeed, and as discussed in [26], ASCA requires correct hard information for the

4 We considered leakages for the two first rounds in this case, which seems more nat-
ural, and is the only minor differences with the experiments in [32], which considered
middle rounds. However, we note that by considering middle round leakages with
known plaintext, we then require three rounds of Wg's, as for ASCA.

302 V. Grosso and F.-X. Standaert

1 *
/
./
0.8
/
4
/
v
" 06
: —o— KP cw SASCA
g -%- UP cw SASCA
S 04 -+- KP rw SASCA
g ~x UP rw SASCA
—o— KP cw ASCA
0.2 -%- UP cw ASCA
-+- KPrw ASCA
~x-- UP rw ASCA
0

10

number of rounds of Wy information

Fig. 2. Experimental results of comparison of ASCA and SASCA.

key recovery to succeed. In case of noisy measurements, this can only be guar-
anteed by considering less informative classes of leakages or similar heuristics.
For example, previous works in this direction considered Hamming weights h’s
between h — d and h + d for increasing distances d’s, which rapidly makes the
attack computationally hard (and cannot be mitigated with multiple plaintext
leakages because of the high RAM requirements of ASCA). So the efficiency gain
of SASCA over ASCA generally increases with the measurement noise.

4 SASCA Against a Concrete AES Implementation

In this section, we complete the previous simulated experiments and explore
whether SASCA can be transposed in the more realistic context of measured
leakages. To the best of our knowledge, we describe the first uses of SASCA
against a concrete AES implementation, and take advantage of this case-study
to answer several questions such as (i) how to perform the profiling of the many
target intermediate values in SASCA?, (4) what happens when the implementa-
tion details (such as the source code) are unknown?, and (éii) are there significant
differences (or even gaps) between concrete and simulated experiments?

4.1 Profiling Step

We first describe how to exploit the tools from Sect. 2.2 in order to detect POIs
for our 1230 target intermediate values (which correspond to 1262 variable nodes
minus 32 corresponding to the 16 bytes of plaintext and ciphertext). In this con-
text, directly computing the SNRs or CPAs in parallel for all our samples turns
out to be difficult. Indeed, the memory requirements to compute the mean trace
of an intermediate value with simple precision requires 94,000 (samples) x 256
(values) x 4 (bytes) ~ 91MB, which means approximately 100 GB for the 1,230

ASCA, SASCA and DPA with Enumeration 303

values. For similar reasons, computing all these SNRs or CPAs sequentially is
not possible (i.e. would require too much time). So the natural option is to trade
time and memory by cutting the traces in a number of pieces that fit in RAM.
This is easily done if we can assume some knowledge about the implementation
(which we did), resulting in a relatively easy profiling step carried out in a dozen
of hours on a single desktop computer. A similar profiling could be performed
without implementation knowledge, by iteratively testing the intermediate val-
ues that appear sequentially in an AES implementation.

A typical outcome of this profiling is given in Fig.3, where we show the
SNR we observed for the intermediate value ¢; from the factor graph in Fig.1
(i-e. the value of the bitwise XOR of the first subkey and the first subplaintext).
As intuitively expected, we can identify significant leakages at three different
times. The first one, at t = 20, 779, corresponds to the computation of the value
t1, i.e. the XOR between p; and k;. The second one, at t = 22,077, corresponds
to the computation of the value s1, i.e. a memory access to the look-up table
of the S-box. The third one, at ¢ = 24,004, corresponds to memory copies of
s1 during the computation of MixColumns. Indeed, the SNR cannot tell apart
intermediate values that are bijectively related. So we used the CPA distinguisher
to get rid of this limitation (taking advantage of the fact that a simple Hamming
weight leakage model was applicable against our target implementation).

18
16} .
X: 22077
14} Y:1.6149 i
12} :
e 17
&
08 X: 24004
Y:0.55431
06 . —
04} x: 20779 1
0| ¥:0.1493 .
0 b | -
0 2 4 6 8 10
time samples %10

Fig. 3. SNR-based profiling of a single intermediate value.

A summary of the results obtained after our profiling step is given in Table 2,
where the most interesting observation is that the informativeness of the leakage
samples strongly depends on the target intermediate values. In particular, we
see that memory accesses allow SNRs over 2, while XOR operations lead to
SNRs below 0.4 (and this SNR is further reduced in case of consecutive XOR
operations). This is in strong contrast, with the simulated cases (in the previous
section and in [38]), where all the variables were assumed to leak with the same
SNR. Note that the table mentions both SNR and CPA values, though our

304 V. Grosso and F.-X. Standaert

Table 2. Summary of profiling step results.

Assembly code Graph description ‘SNR ‘p(WH)
Add round key

1d H1, Y+ * * *

eor ST11, H1 Xor t1 pl k1 0.1493]0.5186
Sbox

1di ZH, high(sbox<<1) |* * *

mov ZL, ST11 * * *

lpm ST11, Z _Sbox sl t1 1.6301 | 0.4766
MixColumns

1di ZH, high(xtime<<1) |* * *

mov H1, STi11 * * *

eor H1, ST21 _Xor hl sl s2 0.1261 |0.6158
eor H1, ST31 _Xor h2 hl s3 0.0391 0.1449
eor H1, ST41 _Xor h3 h2 s4 0.3293 10.5261
mov H2, STi11 * * *

mov H3, ST11 * * *

eor H3, ST21 _Xor mcl sl s2 0.2802 10.6163
mov ZL, H3 * * *

lpm H3, Z Xtime xt1 mcl 2.8650 |0.6199
eor ST11, H3 _Xor cml xtl sl 0.0723 10.2508
eor ST11, H1 Xor pl7 cm1 h3 |0.1064 |0.3492
Key schedule

1di H1, 1 * * *

1di ZH, high(sbox<<1) |* * *

mov ZL, ST24 * * *

lpm H3, Z _Sbox sk14 k14 2.2216 0.5553
eor ST11, H3 _Xor akl sk14 k1 |0.1158 0.5291
eor ST11, H1 XorCste k17 akl 1]0.3435 |0.5140

selection of POIs was based on the (more generic) first criteria, and CPA was
only used to separate the POIs of bijectively related intermediate values.?

4.2 Experimental Results

Taking advantage of the previous POI detection, we now want to discuss the
consequences of different assumptions about the implementation knowledge. These
investigations are motivated by the usual gap between Kerckhoft’s laws [18], which

5 We used a relatively noisy setup on purpose (e.g. we did not filter our measurements),
in order to magnify the effectiveness of SASCA in such challenging contexts.

ASCA, SASCA and DPA with Enumeration 305

advises to keep the key as only secret in cryptography, and the practice in embedded
security, that usually takes advantage of some obscurity regarding the implemen-
tations. For this purpose, we considered three adversaries:

1. Informed. The adversary has access to the implementation details (i.e. source
code), and can exploit the leakages of all the target intermediate values.

2. Informed, but excluding the key scheduling. This is the same case as the pre-
vious one, but we exclude the key scheduling leakages as in the simulations
of the previous section (e.g. because round keys are precomputed).

3. Uninformed. Here the adversary only knows the AES is running, assumes it
is implemented following the specifications in [11], and only exploits generic
operations (i.e. the inputs and outputs of AddRoundKey, SubByte, ShiftRows
and MixColumns, together with the key rounds’ inputs and outputs).

In order to have fair comparisons, we used the same profiling for all three cases
(i.e. we just excluded some POIs for cases 2 and 3), and we used 100 sets of 30
traces with different keys and plaintexts to calculate the success rate of SASCA
in these different conditions. The results of our experiments are in Fig. 4. Our first
and main observation is that SASCA are applicable to actual implementations,
for which the leakages observed provide more or less information (and SNR)
depending on the intermediate values. As expected, the informed adversary is
the most powerful. But we also see that excluding the key scheduling leakages, or
considering an uninformed adversary, only marginally reduces the attack success
rates. Interestingly, there is a strong correlation between this success rate and the
number of leakage samples exploited, since excluding the key scheduling implies
the removal of 226 leakage function nodes, and the uninformed adversary has
540 leakage function nodes less than the informed one (mostly corresponding
to the MixColumns operation). So we can conclude that SASCA are not only
a threat for highly informed adversaries, and in fact quite generically apply to
unprotected software implementations with many leaking points.

Simulation Vs. Measurement. In view of the previous results, with infor-
mation leakages depending on the target intermediate values, a natural question
is whether security against SASCA was reasonably predicted with a simulated
analysis. Of course, we know that in general, analytical attacks are much harder
to predict than DPA [31], and do not enjoy simple formulas for the prediction of
their success rates [22]. Yet, we would like to study informally the possible con-
nection between simple simulated analyses and concrete ones. For this purpose,
we compare the results obtained in these two cases in Fig. 5. For readability, we
only report results for the informed and uninformed cases, and consider different
SNRs for the simulated attacks. In this context, we first recall Table 2 where the
SNRs observed for our AES implementation vary between 2! and 272. Interest-
ingly, we see from Fig. 5 that the experimental success rate is indeed bounded by
these extremes. (Tighter and more rigorous bounds are probably hard to obtain
for such heuristic attacks). Besides, we also observe that the success rates of the

306 V. Grosso and F.-X. Standaert

success rate

10 15 20 25 30

number of traces

Fig. 4. Success rate in function of the # of traces for different adversaries: informed one
(—®), informed one without key scheduling leakages (-+) and uninformed one (- *-).

measurements and simulations are closer in the case of the uninformed adver-
sary, which can be explained by the fact that we essentially ignore MixColumns
leakages in this case, for which the SNRs are lower.

5 Comparison with DPA and Enumeration

In this section, we start from the observation that elegant approaches to side-
channel analysis generally require more computational power than standard
DPA. Thus, a fair comparison between both approaches should not only look at
the success rate in function of the number of traces, but also take into account
the resolution time as a parameter. As a result, and in order to compare SASCA
and the pragmatic DPA on a sound basis, this section investigates the result of
DC attacks combined with computational power for key enumeration.

5.1 Evaluation of Profiled Template Attacks

In order to be as comparable as possible with the previous SASCA, our com-
parison will be based on the profiled TA described in Sect. 2.3. More precisely,
we considered a quite pragmatic DC attack exploiting the bivariate leakages
corresponding to the AddRoundKey and SubByte operations (i.e. {s;}18, and
{t;}1¢, in Fig.1). We can take advantage of the same detection of POIs as
described in the previous section for this purpose. This choice allows us to keep
the computational complexity of the TA itself very minimal (since relying only
on 8-bit hypotheses). As previously mentioned, it also aims to make comparison

5 We considered TA for our DPA comparison because they share the same profiled
setting as SASCA. Comparisons with a non-profiled CPA can only be beneficial to
SASCA. More precisely, we expect a typical loss factor of 2 to 5 between (Wg-based)
CPA and TA, according to the results in [35] obtained on the same device.

ASCA, SASCA and DPA with Enumeration 307

1 . » .
0.8
Q
=
© 0.6
n
95}
8
g 0.4
o2}
0.2 /
0 —F—+—& wr—e fr -
0 5 10 15 20 0 5 10 15 20 25 30

(a) number of traces (b)

Fig. 5. Experimental results for SASCA for an informed adversary (a) and unin-
formed adversary (b). Red curves are for simulated cases (==, —=—4—,—0—) for
SNR (2,271,272,273). Blue curves (——) are for experiments on real traces (Color
figure online).

as meaningful as possible (since we compare two attacks with one sample per
target operation that only differ by their number of target operations). Follow-
ing, we built the security graph of our bivariate TA, as represented in Fig. 6,
where the white (resp. black) curve corresponds to the maximum (resp. mini-
mum) rank observed, and the red curve is for the average rank. It indicates that
approximately 60 plaintexts are required to recover the key without any enu-
meration (which is in line with Footnote 5). But more interestingly, the graph
also highlights that allowing enumeration up to ranks (e.g.) 23° allows to reduce
the required number of measured traces down to approximately 10.

5.2 Comparing SASCA and DPA with Enumeration

In our prototype implementation running on a desktop computer, SASCA
requires roughly one second per plaintext, and reaches a success rate of one after
20 plaintexts (for the informed adversary). In order to allow reasonably fair com-
parisons, we first measured that the same desktop computer can perform a bit
more than 22° AES encryptions in 20 seconds. So this is typically the amount of
enumeration that we should grant the bivariate TA for comparisons with SASCA.”
For completeness, we also considered the success rates of bivariate TA without enu-
meration and with 239 enumeration power.® The results of these last experiments

" We omit to take the (time and memory) resources required for the generation of the
list of the most probable keys to enumerate into account in our comparisons, since
these resources remain small in the total enumeration cost. Using the state-of-the-art
enumeration algorithm [36], we required 2.7MB + 0.55 seconds to generate a list of
220 keys, and 1.8GB + 3130 seconds to generate a list of 232 keys.

8 Which is also more than allowed by the new suboptimal key enumeration in [3].

308 V. Grosso and F.-X. Standaert

- -

© o)

o o o
T T T

key rank(log2)
3

0

0 10 20 30 40 50 60 70
number of traces

Fig. 6. Security graph of a bivariate TA.

are in Fig. 7. Overall, they bring an interesting counterpart to our previous inves-
tigations. On the one hand, we see that SASCA remains the most powerful attack
when the adversary has enough knowledge of the implementation. By contrast in
the uninformed case, the gain over the pragmatic TA with enumeration is lower.
So as expected, it is really the amount and type of leakage samples exploitable
by the adversary that make SASCA more or less powerful, and determine their
interest (or lack thereof) compared to DC attacks. In this respect, a meaningful
observation is that the gap between SASCA and DPA without enumeration (here
approximately 5) is lower than the approximate factor 10 that was observed in
the previous simulations of [38]. This difference is mainly due to the lower SNRs
observed in the MixColumns transform.

Eventually, we note that in view of these results, another natural approach
would be to use enumeration for SASCA. Unfortunately, our experiments have
shown that enumeration is much less effective in the context of analytical attacks.
This is essentially caused by the fact that DC attacks consider key bytes inde-
pendently, whereas SASCA decode the full key at once, which implies that the
subkey probabilities are not independent in this case, and can be degraded when
running the loopy BP too long. Possible tracks to improve this issue include the
use of list decoding algorithms for LDPC codes (as already mentioned in [13]), or
enumeration algorithms that can better take subkey dependencies into account
(as suggested in [19] for elliptic curve implementations).

6 Conclusion and Open Problems

This paper puts forward that the technicalities involved in elaborate analytical
side-channel attacks, such as the recent SASCA, are possible to solve in prac-
tice. In particular, our results show that the intensive profiling of many target
intermediate values within an implementation is achievable with the same (SNR
&CPA) tools as any profiled attack (such as the bivariate TA we considered).
This profiling only requires a dozen of hours to complete, and then enables very
efficient SASCA that recover the key of our AES implementation in a couple

ASCA, SASCA and DPA with Enumeration 309

1 e
P Biv. templates SR
*7 - %= Biv. templates 22°-th SR
0.8 e Biv. templates 2°°-th SR
—o— SASCA (informed adversary)
g) - - SASCA (uninformed adversary)
< 06
@0
73
8
% 0.4
17
+
0.2 #
1 + +—¥
SR * At
SR At
S G . e e o o
0 5 10 15 20 25

number of traces

Fig. 7. Comparison between elegant and pragmatic approaches.

of seconds and traces, using a single desktop computer. Furthermore, these suc-
cessful attacks are even possible in a context where limited knowledge about the
target implementation is available, hence mitigating previous intuitions regard-
ing analytical attacks being “only theoretical”. Besides this positive conclusion,
a fair comparison with DC attacks also highlights that the gap between a bivari-
ate TA and a SASCA can be quite reduced in case enumeration power is granted
to the DC adversary, and several known plaintexts are available. Intuitively, the
important observation in this respect is that the advantage of SASCA really
depends on the amount and type of intermediate values leaking information,
which highly depends on the algorithms and implementations analyzed.

The latter observation suggests two interesting directions for further research.
On the one hand, the AES Rijndael is probably among the most challenging tar-
gets for SASCA. Indeed, it includes a strong linear diffusion layer, with many
XOR operations through which the information propagation is rapidly amor-
tized. Besides, it also relies on a non-trivial key scheduling, which prevents the
direct combination of information leaked from multiple rounds. So it is not
impossible that the gap between SASCA and standard DPA could be larger
for other ciphers (e.g. with permutation based diffusion layers [4], and very min-
imum key scheduling algorithms [5]). On the other hand, since the propagation
of the leakage information through the MixColumns operation is hard(er), one
natural solution to protect the AES against such attacks would be to enforce
good countermeasures for this part of the cipher, which would guarantee that
SASCA do not exploit more information than the one of a single round. Ideally,
and if one can prevent any information propagation beyond the cipher rounds,
we would then have a formal guarantee that SASCA is equivalent to DPA.

Acknowledgements. F.-X. Standaert is a research associate of the Belgian Fund
for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the
European Commission through the ERC project 280141 (CRASH).

310

V. Grosso and F.-X. Standaert

References

10.

11.

12.

13.

14.

15.

16.

. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks

in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1-14. Springer, Heidelberg (2006)

Banciu, V., Oswald, E.: Pragmatism vs. Elegance: comparing two approaches to
simple power attacks on AES. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 29-40. Springer, Heidelberg (2014)

Bogdanov, A., Kizhvatov, 1., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. IACR Cryptol. ePrint
Arch. 2015, 795 (2015)

Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450-466.
Springer, Heidelberg (2007)

Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a
small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45-62. Springer, Heidelberg (2012)
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16-29.
Springer, Heidelberg (2004)

Carlet, C., Faugere, J.-C., Goyet, C., Renault, G.: Analysis of the algebraic side
channel attack. J. Crypt. Eng. 2(1), 45-62 (2012)

Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr, B.S., Kog,
C.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2002. LNCS, vol. 2523. Springer, Heidelberg (2002)

Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25—
28, 2008, Philadelphia, PA, USA, pp. 293-302. IEEE Computer Society (2008)
Pub, FIPS 197. Advanced encryption standard (AES). http://csrc.nist.gov/
publications/fips/fips197 /fips-197.pdf

Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theor. 8(1), 21-28
(1962)

Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Crypt. Eng. 3(1),
45-58 (2013)

Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426-442. Springer,
Heidelberg (2008)

Glowacz, C., Grosso, V., Poussier, R., Schueth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. ITACR Cryptol.
ePrint Arch. 2014, 920 (2014)

Guo, S., Zhao, X., Zhang, F., Wang, T., Shi, Z.J., Standaert, F.X., Ma, C.: Exploit-
ing the incomplete diffusion feature: A specialized analytical side-channel attack
against the AES and its application to microcontroller implementations. IEEE
Trans. Inf. Forensics Secur. 9(6), 999-1014 (2014)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

ASCA, SASCA and DPA with Enumeration 311

Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148-162. Springer,
Heidelberg (2009)

Kerckhoffs, A.: La cryptographie militaire, ou, Des chiffres usités en temps de
guerre: avec un nouveau procédé de déchiffrement applicable aux systémes a double
clef. Librairie militaire de L, Baudoin (1883)

Lange, T., van Vredendaal, C., Wakker, M.: Kangaroos in side-channel attacks. In:
Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 104—121. Springer,
Heidelberg (2015)

MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, vol. 7.
Cambridge University Press, Cambridge (2003)

Mangard, S.: Hardware countermeasures against DPA — a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222-235. Springer, Heidelberg (2004)

Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100-110 (2011)
Mather, L., Oswald, E., Whitnall, C: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar and Iwata [33], pp. 243-261
Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann,
J.: Improved algebraic side-channel attack on AES. J. Crypt. Eng. 3(3), 139-156
(2013)

Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in
the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 428—-442. Springer, Heidelberg (2010)

Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks
beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140-154. Springer, Heidelberg (2012)

Oren, Y., Weisse, O., Wool, A.: A new framework for constraint-based probabilistic
template side channel attacks. In: Batina, L., Robshaw, M. (eds.) CHES 2014.
LNCS, vol. 8731, pp. 17-34. Springer, Heidelberg (2014)

Pearl, J.: Reverend Bayes on inference engines: a distributed hierarchical approach.
In: Waltz, D.L. (ed) Proceedings of the National Conference on Artificial Intelli-
gence, Pittsburgh, PA, August 18-20, 1982, pp. 133-136. AAAI Press (1982)
Rebeiro, C., Selvakumar, D., Devi, A.S.L.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203—
212. Springer, Heidelberg (2006)

Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393-410. Springer,
Heidelberg (2010)

Bauer, A., Coron, J.-S., Naccache, D., Tibouchi, M., Vergnaud, D.: On the broad-
cast and validity-checking security of PKCS#1 v1.5 encryption. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 1-18. Springer, Heidelberg (2010)
Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97-111. Springer, Heidelberg (2009)

Sarkar, P., Iwata, T. (eds.): Advances in Cryptology - ASTACRYPT 2014. LNCS,
vol. 8873. Springer, Berlin Heidelberg (2014)

Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30-46. Springer, Heidelberg (2005)

312

35.

36.

37.

38.

39.

V. Grosso and F.-X. Standaert

Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison side-
channel distinguishers: an empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253-267. Springer, Heidelberg (2009)
Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390-406. Springer, Heidelberg
(2013)

Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126-141. Springer, Heidelberg (2013)

Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar and Iwata [33], pp. 282-296

Zhao, X., Zhang, F., Guo, S., Wang, T., Shi, Z., Liu, H., Ji, K.: MDASCA: an
enhanced algebraic side-channel attack for error tolerance and new leakage model
exploitation. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275,
pp. 231-248. Springer, Heidelberg (2012)

	ASCA, SASCA and DPA with Enumeration: Which One Beats the Other and When?
	1 Introduction
	2 Background
	2.1 Measurement Setup
	2.2 Information Detection Tools
	2.3 Gaussian Templates Attacks
	2.4 Key Enumeration and Rank Estimation
	2.5 Algebraic Side-Channel Attacks
	2.6 Soft Analytical Side-Channel Attacks

	3 Comparison with ASCA
	3.1 Our Representation for SASCA
	3.2 Comparison Setup
	3.3 Experimental Results

	4 SASCA Against a Concrete AES Implementation
	4.1 Profiling Step
	4.2 Experimental Results

	5 Comparison with DPA and Enumeration
	5.1 Evaluation of Profiled Template Attacks
	5.2 Comparing SASCA and DPA with Enumeration

	6 Conclusion and Open Problems
	References

