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Abstract. Let g be an element of prime order p in an abelian group
and let α1, . . . , αL ∈ Zp for a positive integer L. First, we show that, if

g, gαi , and gαd
i (i = 1, . . . , L) are given for d | p − 1, all the discrete log-

arithms αi’s can be computed probabilistically in ˜O(
√

L · p/d +
√

L · d)
group exponentiations with O(L) storage under the condition that L �
min{(p/d)1/4, d1/4}.

Let f ∈ Fp[x] be a polynomial of degree d and let ρf be the number
of rational points over Fp on the curve determined by f(x) − f(y) = 0.

Second, if g, gαi , gα2
i , . . . , gαd

i are given for any d ≥ 1, then we propose an
algorithm that solves all αi’s in ˜O(max{√L · p2/ρf , L · d}) group expo-

nentiations with ˜O(
√

L · p2/ρf ) storage. In particular, we have explicit
choices for a polynomial f when d | p ± 1, that yield a running time of
˜O(
√

L · p/d) whenever L ≤ p
c·d3 for some constant c.

Keywords: Discrete logarithm problem · Multiple discrete logarithm ·
Birthday problem · Cryptanalysis

1 Introduction

Let G be a cyclic group of prime order p with a generator g. A discrete logarithm
problem (DLP) aims to find the element α of Zp when g and gα are given. The
DLP is a classical hard problem in computational number theory, and many
encryption schemes, signatures, and key exchange protocols rely on the hardness
of the DLP for their security.

In recent decades, many variants of the DLP have been introduced. These
include theWeakDiffie–HellmanProblem [13], StrongDiffie–HellmanProblem [2],
Bilinear Diffie–Hellman Inversion Problem [1], and Bilinear Diffie–Hellman Expo-
nent Problem [3], and are intended to guarantee the security of many cryptosys-
tems, such as traitor tracing [13], short signatures [2], ID-based encryption [1], and
broadcast encryption [3]. These problems incorporate additional information to
the original DLP problem. Although such additional information could weaken
the problems, and their hardness is not well understood, these variants are
widely used because they enable the construction of cryptosystems with various
functionalities.
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These variants can be considered as the problem of finding α when
g, gαe1

, . . . , gαed are given for some e1, . . . , ed ∈ Z. This problem is called the
discrete logarithm problem with auxiliary inputs (DLPwAI).

On the other hand, in the context of elliptic curve cryptography, because of
large computational expense of generating a secure elliptic curve, a fixed curve is
preferred to a random curve. One can choose a curve recommended by standards
such as NIST. Then this causes an issue with the multiple DLP/DLPwAI and
leads the following question. Can it be more efficient to solve them together than
to solve each of instances individually when needed, if an adversary collects many
instances of DLP/DLPwAI from one fixed curve?

In multiple discrete logarithm problem, an algorithm [11] computes L dis-
crete logarithms in time ˜O(

√
L · p) for L � p1/4. Recently, it is proven that

this algorithm is optimal in the sense that it requires at least Ω(
√

L · p) group
operations to solve the multiple DLP in the generic group model [19].

On the other hand, an efficient algorithm for solving the DLPwAI is proposed
by Cheon [5,6]. If g, gα, and gαd ∈ G (resp. g, gα, . . . , gα2d ∈ G) are given, then
one can solve the discrete logarithm α ∈ Zp in O(

√

p/d+
√

d) (resp. O(
√

p/d+d))
group operations in the case of d | p−1 (resp. d | p+1). Since solving the DLPwAI
in the generic group model requires at least Ω(

√

p/d) group operations [2],
Cheon’s algorithm achieves the lower bound complexity in the generic group
model when d ≤ p1/2 (resp. d ≤ p1/3). Brown and Gallant [4] independently
investigated an algorithm in the case of d | p − 1.

However, as far as we know, the DLPwAI algorithm in the multi-user setting
has not been investigated yet. This paper proposes an algorithm to solve the
multiple DLPwAI better than O(L · √

p/d) group operations in the case of d |
p ± 1, where L denotes the number of the target discrete logarithms.

Our Contributions. We propose two algorithms for the multiple DLPwAI.
Our first algorithm is based on Cheon’s (p − 1)-algorithm [5,6]. If g, gαi , and
gαd

i (i = 1, 2, . . . , L) are given for d | p − 1, our algorithm solves L discrete loga-
rithms probabilistically in ˜O(

√

L · p/d +
√

L · d) group operations with storages
for O(L) elements whenever L ≤ min{cp/d(p/d)1/4, cdd

1/4} (for some constants
0 < cp/d, cd < 1). We also show a deterministic variant of this algorithm which
applies for any L > 0 and has the running time of ˜O(

√

L · p/d +
√

L · d + L),
although it requires as large amount of the storage as the time complexity. How-
ever, an approach based on Cheon’s (p+1)-algorithm does not apply to improve
an algorithm in multi-user setting.

Our second algorithm is based on Kim and Cheon’s algorithm [10]. The
algorithm basically works for any d > 0. Let f(x) ∈ Fp[x] be a polynomial
of degree d over Fp and define ρf := |(x, y) ∈ Fp × Fp : f(x) = f(y)|. If
g, gαi , gα2

i , . . . , gαd
i (i = 1, 2, . . . , L) are given, the algorithm computes all αi’s in

˜O
(

max{√

L · p2/ρf , L·d})

group operations with the storage for ˜O(
√

L · p2/ρf )
elements.
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In particular, if L · d ≤ √

L · p2/ρf (i.e. L ≤ p2

d2·ρf
), the time complexity

is given by ˜O(
√

L · p2/ρf ). Since p ≤ ρf ≤ dp, this value is always between
˜O(

√

L · p/d) and ˜O(
√

L · p). Explicitly, if d | p − 1, one can choose the polyno-
mial by f(x) = xd and in the case the complexity is given by the lower bound
˜O(

√

L · p/d) whenever L ≤ p/d3. Similarly, in the case of d | p+1, if one takes the
polynomial f(x) = Dd(x, a), where Dd(x, a) is the Dickson polynomial of degree
d for some nonzero a ∈ Fp, then it also has the running time of ˜O(

√

L · p/d) for
L � p/(2d3).

As far as the authors know, these two algorithms extend all existing DLPwAI-
solving algorithms to the algorithms for multi-user setting.

Organization. This paper is organized as follows. In Sect. 2, we introduce sev-
eral variants of DLP including a problem called discrete logarithm problem in the
exponent (DLPX). We also show that several generic algorithms can be applied
to solve the DLPX. In Sect. 3, we propose an algorithm solving the multiple
DLPwAI based on Cheon’s algorithm. In Sect. 4, we present another algorithm
to solve the multiple DLPwAI using Kim and Cheon’s algorithm. We conclude
with some related open questions in Sect. 5.

2 Discrete Logarithm Problem and Related Problems

In this section, we introduce several problems related to the discrete logarithm
problem. Throughout the paper, let G = 〈g〉 be a cyclic group of prime order p.
Let Fq be a finite field with q elements for some prime power q = pr. Let ZN be
the set of the residue classes of integers modulo an integer N .

– The Discrete Logarithm Problem (DLP) in G is: Given g, gα ∈ G, to solve
α ∈ Zp.

– The Multiple Discrete Logarithm Problem (MDLP) in G is: Given
g, gα1 , . . . , gαL ∈ G, to solve all α1, . . . , αL ∈ Zp.

– The (e1, . . . , ed) -Discrete Logarithm Problem with Auxiliary Inputs (DLP-
wAI) in G is: Given g, gαe1

, gαe2
, . . . , gαed ∈ G, to solve α ∈ Zp.

– The (e1, . . . , ed) -Multiple Discrete Logarithm Problem with Auxiliary
Inputs (MDLPwAI) in G is: Given g, gα

e1
i , gα

e2
i , . . . , gα

ed
i ∈ G for i =

1, 2, . . . , L, to solve α1, . . . , αL ∈ Zp.

In the case of (e1, e2, . . . , ed) = (1, 2, . . . , d), we simply denote (1, 2, . . . , d)-
(M)DLPwAI by d-(M)DLPwAI.

We also introduce the problem called Fp -discrete logarithm problem in the
exponent (Fp-DLPX).

– The Fp -Discrete Logarithm Problem in the Exponent (Fp -DLPX) in G is
defined as follows: Let χ ∈ Fp be an element of multiplicative order N , i.e.
N | p − 1. Given g, gχn ∈ G and χ ∈ Fp, compute n ∈ ZN .

– The Fp -Multiple Discrete Logarithm Problem in the Exponent (Fp-MDLPX)
in G is: Given g, gχn1

, . . . , gχnL ∈ G and χ ∈ Fp, to solve n1, . . . , nL ∈ ZN . In
both cases, the Fp-(M)DLPX is said to be defined over ZN .
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Algorithm for DLPX. Observe that several DL-solving algorithms can be
applied to solve the DLPX with the same complexity. For example, the baby-
step-giant-step (BSGS) algorithm works as follows: Suppose that the DLPX is
defined over ZN . Set an integer K ≈ √

N and write n = n0K + n1, where
0 ≤ n0 ≤ N/K ≈ √

N and 0 ≤ n1 < K. For given g, gχn ∈ G and χ ∈ Fp,

compute and store the elements gχi·K
=

(

gχ(i−1)·K )χK

for all i = 0, 1, . . . , N/K.

Then compute
(

gχn)χ−j

for all j = 0, 1, . . . , K −1 and find a match between the
stored elements. Then the discrete logarithm is given by n = iK+j for the indices
i and j corresponding to the match. It costs O(

√
N) group exponentiations by

elements in Fp and O(
√

N) storage.
In a similar fashion, it is easy to check that the Pollard’s lambda

algorithm [15] also applies to solve the DLPX. It takes O(
√

N) group opera-
tions to solve the problem with small amount of storage. Also, check that the
other algorithms such as Pohlig-Hellman algorithm [14] or the distinguished
point method of Pollard’s lambda algorithm [17] apply to solve the DLPX. The
above observation was a main idea to solve the DLPwAI in [5,6].

3 Multiple DLPwAI: Cheon’s Algorithm

In this section, we present an algorithm of solving the (1, d)-MDLPwAI based
on Cheon’s algorithm [5,6] when d | p − 1.

Workflow of This Section. Description of our algorithm is presented as fol-
lows. First, we recall how Cheon’s algorithm solves the DLPwAI. In Sect. 3.1,
we observed that the DLPwAI actually reduces to the DLPX (defined in Sect. 2)
by Cheon’s algorithm. It is, then, easy to check that to solve the MDLPwAI
reduces to solve the MDLPX. So, we present an algorithm to solve the MDLPX
in Sect. 3.2. Combined with the above results, we present an algorithm to solve
the MDLPwAI in Sect. 3.3.

3.1 Reduction of DLPwAI to DLP in the Exponent Using Cheon’s
Algorithm

We briefly remind Cheon’s algorithm in the case of d | p − 1. The algorithm
solves (1, d)-DLPwAI. Let g, gα, and gαd

be given. Let ζ be a primitive element
of Fp and H = 〈ξ〉 = 〈ζd〉 be a subgroup of F

∗
p of order p−1

d . Since αd ∈ H,
we have αd = ξk for some k ∈ Z(p−1)/d. Our first task is to find such k. This
is equivalent to solve the Fp-DLPX defined over Z(p−1)/d, that is, to compute
k ∈ Z(p−1)/d for given g, gξk ∈ G and ξ ∈ Fp. Note that gξk

= gαd

is given
from an instance of the DLPwAI and we know the value of ξ, since a primitive
element in Fp can be efficiently found. As mentioned before, solving the DLPX
over Z(p−1)/d takes O

(√

p/d
)

group exponentiations using BSGS algorithm or
Pollard’s lambda algorithm.



178 T. Kim

Continuously, if we write α ∈ Fp as α = ζ�, then since αd = ζd� = ζdk = ξk,
it satisfies � ≡ k (mod (p−1)/d), i.e. αζ−k = (ζ

p−1
d )m for some m ∈ Zd. Now we

know the value of k, it remains to recover m. This is equivalent to solve Fp-DLPX
over Zd, that is, to solve m ∈ Zd given the elements g, gμm

= (gα)ζ−k ∈ G and
μ ∈ Fp, where μ = ζ

p−1
d is known. This step costs O

(√
d
)

group exponentiations.
Overall, Cheon’s (p − 1) algorithm reduces of solving two instances of DLP in
the exponent with complexity O

(√

p/d +
√

d
)

.

3.2 Algorithm for Multiple DLP in the Exponent

In this section, we describe an algorithm to solve L -multiple DLP in the expo-
nent : Let L be a positive integer. Let χ be an element in Fp of multiplicative order
N . The problem is to solve all ki ∈ ZN for given g, y1 := gχk1

, . . . , yL := gχkL

and χ.
We use Pollard’s lambda-like algorithm. Define pseudo-random walk f from

y := gχk

(k ∈ ZN ) as follows. For an integer I, define a pseudo-random function
ι : {gχn

: n ∈ ZN} → {1, 2, . . . , I} and set S := {χs1 , . . . , χsI } for some random
integers si. For y = gχk

, a pseudo-random walk f is defined by f : y �→ yχ
sι(y) =

gχ
k+sι(y)

.
Notice that Pollard’s rho-like algorithm does not apply to solve the DLPX1.

For instance, it seems hard to compute gχ2k

from gχk

for unknown k if the
Diffie-Hellman assumption holds in the group G. This is why we take Pollard’s
lambda-like approach.

The proposed algorithm is basically the same with the method by Kuhn and
Struik [11]. It uses the distinguished point method of Pollard’s rho (lambda)
method [17]. Applying their method in the case of the DLPX, we describe the
algorithm as follows.

Step 1. For y0 := gχk0 for k0 = N − 1, compute the following chain until it
reaches to a distinguished point d0.

C0 : y0 �→ f(y0) �→ f(f(y0)) �→ · · · �→ d0.

Step 2. For y1 = gχk1 , compute a chain until a distinguished point d1 found.

C1 : y1 �→ f(y1) �→ f(f(y1)) �→ · · · �→ d1.

If we have a collision d1 = d0, then it reveals a discrete logarithm k1. Oth-
erwise, set y′

1 = y1 · gχz

for known z and use it as a new starting point to
compute a new chain to obtain a collision.

Step 3. Once we have found the discrete logarithm k1, . . . , ki, then one iter-
atively computes the next discrete logarithm ki+1 as follows: Compute a
chain as Step 2 with a starting point yi+1 until a distinguished point di+1 is

1 In the paper [16], they indeed consider Pollard’s lambda algorithm rather than rho
algorithm.
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found. Then try to find a collision di+1 = dj for some 1 ≤ j ≤ i. It reveals
the discrete logarithm of yi+1. If it fails, compute a chain again with a new
randomized starting point y′

i+1 = yi+1 · gχz′
for known z′.

By the analysis in [11], this algorithm has a running time of ˜O(
√

L · N)
operations for L ≤ cNN1/4 (where 0 < cN < 1 is some constant depending on
N) with storage for O(L) elements of the distinguished points.

Remark 1. If we allow large amount of storage, then we have a determinis-
tic algorithm solving the DLPX based on the BSGS method2. It works for
any L ≥ 0 as follows. First, choose an integer K = √N/L� and compute

gχK·t
=

(

gχK·(t−1))χK

for all t ≤ √
L · N using O(

√
L · N) group exponenti-

ations and store all of the elements. Then, for each i = 1, 2, . . . , L, compute

gχki−s

=
(

gχki
)χ−s

for all s ≤ √

N/L and find a collision with the stored ele-
ments. It takes O(L · √

N/L) operations for all. If one has a collision, then we
have ki = s + t · K for the indices s and t corresponding to the collision.

Remark 2. There is a recent paper by [7] that claims that the MDLP can be
solved in ˜O(

√
L · N) for any L with small amount of storage. However, their

analysis (Sect. 2, [7]) seems somewhat questionable.
In their analysis, they essentially assumed that a collision occurs indepen-

dently from each different chains. The pseudo-random function, however, once it
has been fixed, it becomes deterministic and not random. For example, assume
that we have a collision between two chains, say C1 and C2. If a new chain C3

also collides with C1, then it deterministically collides with C2, too. This contra-
dicts with independency assumption. The event that the chain C3 connects to
the chain C2 should be independent whether C3 is connected to C1 or not. This
kind of heuristic might be of no problem when L is much smaller than compared
to N . However, this is not the case for large L.

Several literatures focus on this rigour of pseudo-random function used in
Pollard’s algorithm. For further details on this, refer to [9].

3.3 Solving Multiple DLPwAI Using Cheon’s Algorithm

Combined with the results from Sects. 3.1 and 3.2, we propose an algorithm solv-
ing the (1, d)-MDLPwAI in the case of d | p−1. In Appendix A, we explain that
Cheon’s (p + 1)-algorithm does not help to solve the MDLPwAI in the case of
d | p + 1.

Theorem 1 (Algorithm for (1, d)-MDLPwAI, d | p − 1). Let the nota-
tions as above. Let α1, . . . , αL be randomly chosen elements from Zp. Assume
that d | p − 1. For L ≤ min{cp/d(p/d)1/4, cdd

1/4} (where 0 < cp/d, cd < 1 are
some constants on p/d and d respectively), given the elements g, gαi and gαd

i for

2 The proof is contributed by Mehdi Tibouchi.
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i = 1, 2, . . . , L, we have an algorithm that computes αi’s in ˜O(
√

L · p/d+
√

L · d)
group exponentiations with storage for O(L) elements in the set of the distin-
guished points.

Proof. Similarly as in Sect. 3.1, let H = 〈ξ〉 = 〈ζd〉 ⊂ G for a primitive element
ζ ∈ Fp. Since αd

i ∈ H, we have αd
i = ξki for some k1, . . . , kL, where ki ∈ Z(p−1)/d,

and if we write αi = ζ�i , then we have αiζ
−ki = μmi for mi ∈ Zd. Thus the

problem reduces of solving two multiple DLP in the exponent with instances
gξ, gξk1 = gαd

1 , . . . , gξkL = gαd
L and gμ, gμm1 = (gα1)ζ−k1

, . . . , gμmL = (gαL)ζ−kL ,
where ξ and μ are known. We compute αi’s as follows:

1. Given gξ, gαd
1 = gξk1

, . . . , gαd
L = gξkL for ki ∈ Z(p−1)/d, compute ki’s using

the algorithm in Sect. 3.2. It takes time ˜O(
√

L · p/d) with storage for O(L)
elements.

2. Given gα1 , . . . , gαL and k1, . . . , kL, compute ζ−k1 , . . . , ζ−kL in O(L) exponen-
tiations in Fp and compute

gμm1 = (gα1)ζ−k1
, . . . , gμmL = (gαL)ζ−kL

in O(L) exponentiations in G.
3. Compute m1, . . . , mL ∈ Zd from gμm1

, . . . , gμmL using the algorithm in
Sect. 3.2. It takes time ˜O(

√
L · d) with storage for O(L) elements.

The overall complexity is given by ˜O(
√

L · p/d +
√

L · d + L). Since L ≤
min{p/d, d} by the assumption, i.e. L ≤ min{√

L · p/d,
√

L · d}, it is equiva-
lent to ˜O(

√

L · p/d +
√

L · d). ��
Remark 3. Note that we can replace the algorithm to solve the MDLPX used
in Step 1 and Step 3 with any algorithm solving the MDLPX. In that case,
the complexity solving the MDLPwAI totally depends on that of the algorithm
solving the MDLPX. For example, if we use the BSGS method described in
Remark 1, then the proposed algorithm solves the MDLPwAI for any L in time
complexity O(

√

L · p/d +
√

L · d + L) with the same amount of storage.

4 Multiple DLPwAI: Kim and Cheon’s Algorithm

In this section, we propose an approach to solve the d-MDLPwAI. The idea is
basically based on Kim and Cheon’s algorithm [10]. To analyze the complexity,
we also need some discussion on non-uniform birthday problem.

4.1 Description of Algorithm

Let G = 〈g〉 be a group of prime order p. For i = 1, 2, . . . , L, let g, gαi , . . . , gαd
i be

given. We choose a polynomial f(x) ∈ Fp[x] of degree d and fix a positive integer
� which will be defined later. The proposed algorithm is described as follows:
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Step 1. For each i, given g, gαi , . . . , gαd
i and f(x), we compute and store a

constant number of sets each of which is of form

Si := {gf(ri,1αi), . . . , gf(ri,�αi)},

where ri,j ’s are randomly chosen from Fp.
Step 2. We also compute and store a constant number of sets each of which

consists of
S0 := {gf(s1), . . . , gf(s�)},

where sk’s are known random values from Fp.
Step 3. We construct a random graph with L vertices: we add an edge between

vertices i and j, if Si and Sj collide.
Step 4. If f(ri,jαi) = f(sk) for some i, j and k, then αi is one of d roots of the

equation of degree d in variable αi:

f(ri,jαi) − f(sk) = 0.

Step 5. If f(ri,jαi) = f(ri′,j′αi′), for some i, j, i′ and j′, where αi is known,
then αi′ is one of d roots of the following equation of degree d in variable αi′ :

˜f(αi′) := f(ri,jαi) − f(ri′,j′αi′) = 0.

We recover all αi’s when they are connected into a component with known
discrete logs. In the next subsection, we analyze the complexity of the proposed
algorithm more precisely.

4.2 Complexity Analysis

We analyze the complexity of the proposed algorithm.

Theorem 2 (Algorithm for d-MDLPwAI). Let the notations as above. Let
f(x) be a polynomial of degree d over Fp. Define ρf := |{(x, y) ∈ Fp × Fp :
f(x) = f(y)}|. Given g, gαi , . . . , gαd

i for i = 1, 2, . . . , L, we have an algorithm
that computes all αi’s in ˜O(max{√

L · p2/ρf , L · d}) group exponentiations with
storage for ˜O(

√

L · p2/ρf ) elements in G.

Proof. Consider the complexity of each step in the proposed algorithm. Through-
out the paper, we denote M(d) by the time complexity multiplying two poly-
nomials of degree d over Fp (typically, we will take M(d) = O(d log d log log d)
using the Schönhage-Strassen method).

In Step 2, we compute f(s1), . . . , f(s�) using fast multipoint evaluation
method. It takes O(�/d · M(d) log d) = O(� log2 d log log d) operations in Fp if
� ≥ d. Otherwise, the cost is bounded by O(M(d) log d) = O(d log2 d log log d)
operations in Fp. Then compute gf(s1), . . . , gf(s�) in O(�) exponentiations in G.

In Step 1, we use fast multipoint evaluation method in the exponent as
described in [10, Theorem 2.1], which is the following: given gF0 , . . . , gFd , where
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Fi is the coefficient of xi of a polynomial F (x) ∈ Fp[x], and given random ele-
ments r1, . . . , rd ∈ Fp, it computes gF (r1), . . . , gF (rd) in O(M(d) log d) operations
in G.

In our case, for given g, gαi , . . . , gαd
i and f(x) = a0+· · ·+adx

d, we set fi(x) :=
f(αix) = a0 + (a1αi)x + · · · + (adα

d
i )x

d and compute ga0 , (gαi)a1 , . . . , (gαd
i )ad in

O(d) exponentiations in G for each i. It totally costs O(L · d) exponentiations
for all i = 1, . . . , L. Applying Theorem 2.1 in [10] to each polynomial fi(x), if
� ≥ d, we compute

Si = {gfi(ri,1), . . . , gfi(ri,�)} = {gf(ri,1αi), . . . , gf(ri,�αi)}

in O(�/d · M(d) log d) operations in G for each i. It costs O(L · � log2 d log log d)
operations overall for all i = 1, . . . , L. Otherwise, if � ≤ d, then this step costs
O(L · d logd log log d) operations.

In Step 4 and Step 5, the cost takes O(M(d) log d log(dp)) field operations on
average [18] to compute roots of equation of degree d over Fp. For each equation,
we need to find αi among at most d possible candidates. It takes O(d) operations.
These steps need to be done L times since we have L equations to be solved.

Consequently, to recover all αi’s, it takes overall ˜O(max{L·�, L·d}) operations
with O(L · �) storage. Now it remains to determine the value of �. To this end,
we need to clarify the probability of a collision between Si and Sj (for i �= j) in
Step 3. It leads us to consider non-uniform birthday problem of two types. We
will discuss on details for this in Appendix B.

We heuristically assume that the probability of a collision between Si and
Sj in Step 3 is equiprobable for any i �= j and we denote this probability by ω3.
By Corollary 1 in Appendix B, the probability is given by ω = Θ(�2 · ρf/p2)
for large p. Then the expected number of edges in the graph in Step 3 will be
(

L
2

) · ω ≈ L2ω
2 ≈ L2�2

2 · ρf

p2 . We require this value to be larger than 2L ln L to
connect all connected components in the graph (see [7]), i.e.

� ≥ 2

√

p2

ρf
· ln L

L
.

If we take � = 2
√

p2

ρf
· lnL

L , the overall time complexity becomes (without log

terms) ˜O(max{L · �, L · d}) = ˜O
(

max
{

√

L · p2/ρf , L · d
})

with storage for
˜O(L · �) = ˜O

(√

L · p2/ρf

)

elements in G. ��
Remark 4. In general, the computation of ρf seems relatively not so obvious.
However, for some functions f which are useful for our purpose, it can be effi-
ciently computable. See Sect. 4.3.

3 The assumption is reasonable, since every exponents of the elements in Si’s are
randomly chosen from Fp, i.e. the sets Si’s are independent from each other. Observe
that this does not conflict with Remark 2.
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If L ≤ p2

d2·ρf
, then the time complexity of the algorithm is given

by ˜O
(√

L · p2/ρf

)

. Note that this value is always between ˜O
(√

L · p
d

)

and
˜O(

√
L · p). In the next subsection, we observe that one can find polynomials

f with ρf ≈ C · dp for some constant C in the case of d | p ± 1. In such cases,
the proposed algorithm has a running time of ˜O(

√

L · p/d) whenever L ≤ p
C·d3 .

It should be compared that application of Cheon’s (p + 1)-algorithm failed
to achieve the lower bound complexity ˜O(

√

L · p/d) in the case of d | p + 1 (see
Appendix A).

4.3 Explicit Choices of Polynomials for Efficient Algorithms in the
Case Of d | P ± 1

For efficiency of the algorithm, we require a polynomial f(x) with large ρf . In
particular, ρf becomes larger as the map x �→ f(x), restricted on Fp or a large
subset of Fp, has a smaller value set. See the examples below. For details on
choices of these polynomials, refer to [10].

d | p−1Case. Let f(x) = xd. Then the map by f is d-to-1 except at x = 0. Then
we have ρf = 1 + d(p − 1) ≈ dp. In this case, the complexity of our algorithm
becomes ˜O

(√

L · p/d
)

for L ≤ p/d3.

d | p + 1Case. Let f(x) = Dd(x, a) be the Dickson polynomial for a nonzero
element a ∈ Fp, where

Dd(x, a) =
�d/2�
∑

k=0

d

d − k

(

d − k

k

)

(−a)kxd−2k.

If d | p + 1, then by [8,12], we have ρf = (d+1)p
2 + O(d2) ≈ dp

2 . In this case, our
algorithm has the complexity of ˜O(

√

L · p/d) for L � p/(2d3).

5 Conclusion

In this paper, we proposed algorithms for the MDLPwAI based on two different
approaches. These algorithms cover all extensions of existing DLPwAI-solving
algorithms, since, up to our knowledge, there are only two (efficient) approaches
solving the DLPwAI: Cheon’s algorithm and Kim and Cheon’s algorithm.

Our analysis shows that our algorithms have the best running time of either
˜O(max{√

L · p/d,
√

L · d}) when d | p − 1, or ˜O(max{√

L · p/d, L · d}) when
d | p + 1. It shows that the choice of the prime p should be chosen carefully so
that both of p + 1 and p − 1 have no small divisors. Readers might refer to [5,6]
for careful choices of such prime p.

However, our second algorithm is based on some heuristics and requires rel-
atively large amount of memory. Thus, it would be a challenging question either
to reduce the storage requirement in the algorithm, or to make the algorithm
more rigorous.
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It would be also interesting to determine the lower bound complexity in the
generic group model for solving the multiple DLPwAI. A very recent result [19]
showed that at least Ω(

√
L · p) group operations are required to solve the L

multiple DLP in the generic group model. Recall that the generic lower bound
for the DLPwAI is Ω(

√

p/d). Then it is natural to ask the following questions.
What is the lower bound complexity in the generic group model to solve the
multiple DLPwAI? Do we need at least Ω(

√

L · p/d) operations for solving the
multiple DLPwAI?

Acknowledgement. The author would like to thank Pierre-Alain Fouque, Soojin
Roh, Mehdi Tibouchi, and Aaram Yun for their valuable discussion. He also would like
to extend his appreciation to anonymous reviewers who further improved this paper.

A A Failed Approach for MDLPwAI When d | P + 1

Fp2-Discrete Logarithm Problem in the Exponent. To define Fp2 -
(M)DLPX, we introduce the following definition4.

Definition 1. Let G = 〈g〉 be a group of prime order p. Let Fp2 = Fp[θ] =
Fp[x]/(x2 − κ) for some quadratic non-residue κ ∈ Fp. For γ = γ0 + γ1θ ∈ Fp2 ,
we define gγ = (gγ0 , gγ1) with abuse of notations. For g := (g0, g1) ∈ G × G, we
define

gγ = gγ0+γ1θ = (gγ0
0 gκγ1

1 , gγ1
0 gγ0

1 ), where θ2 = κ.

One can readily check that (gγ)δ = (gγ0 , gγ1)δ = (gγ0δ0+κγ1δ1 , gγ0δ1+γ1δ0) = gγδ,
where δ = δ0 + δ1θ. Now we define Fp2 -(M)DLPX.

– The Fp2 -Discrete Logarithm Problem in the Exponent (Fp2-DLPX) in G is
defined as follows: Let χ ∈ Fp2 be an element of multiplicative order N , i.e.
N | p2 − 1. Given g ∈ G and gχn ∈ G × G and χ ∈ Fp2 , compute n ∈ ZN .

– The Fp2 -Multiple Discrete Logarithm Problem in the Exponent (Fp2-
MDLPX) in G is: Given g ∈ G, gχn1

, . . . , gχnL ∈ G × G and χ ∈ Fp2 , to
solve n1, . . . , nL ∈ ZN . In both cases, the Fp2 -(M)DLPX is said to be defined
over ZN .

Observe that generic approaches to solve the (M)DLPX described in Sects. 2 and
3.2 also apply to solve the Fp2 -(M)DLPX.

A Failed Approach when d | p + 1. We consider the MDLPwAI in the case
of d | p + 1. Recall Cheon’s (p + 1) algorithm [5,6] which solves 2d-DLPwAI.
Let g, gαi , . . . , gα2d

i , for i = 1, 2, . . . , L, be given. We try to solve the prob-
lem as follows: For each i = 1, 2, . . . , L, let βi := (1 + αiθ)p−1 ∈ Fp2 = Fp[θ]
and let ξ ∈ Fp2 an element of multiplicative order (p + 1)/d. We compute

gi := g(1−κα2
i )

d

and gξki

i = g
βd

i
i := (gf0(αi), gf0(αi)) for the given elements

4 This notion can be found in [5,6] when he solves DLPwAI using Pollard’s lambda
algorithm. We simply formalize them.
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g, gαi , . . . , gα2d
i , where βd

i = 1
(1−κα2

i )
d {f0(αi)+f1(αi)θ}. The remaining task is to

solve k1, . . . , kL ∈ Z(p+1)/d. This translates to solve L instances of the Fp2 -DLPX,

say (g1, g
ξk1

1 ), (g2, g
ξk2

2 ), . . . , (gL, gξkL

L ). Note that, however, these L instances
cannot be solved efficiently in a batch computation based on our MDLPX algo-
rithms, since all the bases of the instances are not the same.

B Non-uniform Birthday Problem: Girls and Boys

In this section, we consider the probability of a collision in Step 3, Sect. 4.1.
More generally, we consider non-uniform birthday problem of two types. The
main goal in this section is to prove the following theorem.

Theorem 3. For a positive integer N and i ∈ {1, 2, . . . , N}, assume that the
probability of a randomly chosen element from the set {1, 2, . . . , N} to be i is ωi.
Let T1 (respectively, T2) be a set consisting of �1 (reps. �2) elements randomly
chosen from {1, 2, . . . , N}. Then the probability ω that T1 and T2 have an element
in common satisfies

�1�2 ·
N

∑

i=1

ω2
i ≥ ω ≥ �1�2 ·

N
∑

i=1

ω2
i −

(

�1 ·
(

�2
2

)

+ �2 ·
(

�1
2

))

·
N

∑

i=1

ω3
i

+
(

�1
2

)(

�2
2

)

⎛

⎝

N
∑

i=1

ω4
i −

∑

1≤i<j≤N

ω2
i ω2

j

⎞

⎠. (1)

Proof. For each i ∈ {1, 2, . . . , N}, let B
(�1,�2)
i be the event that two sets T1 and

T2 have the element i in common. Then the probability ω that T1 and T2 have
at least one element in common is given by

ω = Pr[B(�1,�2)
1 ∪ · · · ∪ B

(�1,�2)
N ].

From now on, we shall omit superscript in B
(�1,�2)
i and simply denote it by Bi.

To bound the value ω, we use Bonferroni inequality,

N
∑

i=1

Pr[Bi] −
∑

1≤i<j≤N

Pr[Bi ∩ Bj ] ≤ ω ≤
N

∑

i=1

Pr[Bi]5.

5 It is easy to check the lower bound inequality. Assume that Pr[B1 ∪ B2] ≥
Pr[B1] + Pr[B2] − Pr[B1 ∩ B2] (indeed the equality holds in this case). Then to
see that

Pr[(B1 ∪ B2) ∪ B3] = Pr[B1 ∪ B2] + Pr[B3] − Pr[(B1 ∪ B2) ∩ B3]

≥ Pr[B1] + Pr[B2] + Pr[B3] − Pr[B1 ∩ B2] − Pr[B1 ∩ B3] − Pr[B2 ∩ B3],

it is enough to check that

Pr[(B1 ∪ B2) ∩ B3] = Pr[(B1 ∩ B3) ∪ (B2 ∩ B3)] ≤ Pr[B1 ∩ B3] + Pr[B2 ∩ B3].
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Now apply the induction on N .
We shall investigate bounds on Pr[Bi] and Pr[Bi ∩ Bj ] in the followings.
For each i, the set T1 with �1 elements has the element i with probability

1 − (1 − ωi)�1 and similarly for T2. Thus both of T1 and T2 have the element i
with probability Pr[Bi] =

(

1 − (1 − ωi)�1
) · (1 − (1 − ωi)�2

)

. Using the inequality
1 − nx ≤ (1 − x)n ≤ 1 − nx +

(

n
2

)

x2 for 0 ≤ x ≤ 1 and n > 1, we have
(

�1ωi −
(

�1
2

)

ω2
i

)

·
(

�2ωi −
(

�2
2

)

ω2
i

)

≤ Pr[Bi] ≤ �1�2 · ω2
i .

Furthermore, we have Pr[Bi ∩ Bj ] ≤ (

�1
2

)(

�2
2

)

ω2
i ω2

j , since T1 has the element
i and j with probability at most

(

�1
2

)

ωiωj and similarly for T2.
Then the upper bound for ω directly comes from the upper bound for Pr[Bi]

and the lower bound comes from

ω ≥
N

∑

i=1

Pr[Bi] −
∑

1≤i<j≤N

Pr[Bi ∩ Bj ]

≥
N

∑

i=1

(

�1ωi −
(

�1
2

)

ω2
i

)

·
(

�2ωi −
(

�2
2

)

ω2
i

)

−
∑

i<j

(

�1
2

)(

�2
2

)

ω2
i ω2

j .

This concludes the proof. ��

Corollary 1. Let W :=
∑N

i=1 ω2
i in Theorem 3. If � = �1 = �2 = O

(√

1
W

)

and
W → 0, we have

�2W − (�2W )2

8
+ O

( 1√
W

) ≤ ω ≤ �2W.

Proof. Evaluating � = �1 = �2 in the right most side of Eq. (1), we have

ω ≥ �2W − �2(� − 1)
N

∑

i=1

ω3
i +

�2(� − 1)2

4

(

3
2

∑

i

ω4
i − 1

2
W 2

)

≥ �2W − �3
N

∑

i=1

ω3
i − 1

8
(�2W )2.

In the first inequality, we used that
∑

i<j ω2
i ω2

j = 1
2

[

(
∑

i ω2
i

)2 − ∑

i ω4
i

]

. To

see that �3
∑

i ω3
i ≤ O

(

1√
W

)

, it is enough to check that
∑

i ω3
i =

∑

i ω2
i ωi =

∑

i ω2
i · ∑

i ωi − ∑

i	=j ω2
i ωj ≤ ∑

i ω2
i = W (recall that

∑

i ωi = 1). ��
Return to our interest. Intrinsically, in our application (Sect. 4), we consider the
intersection between two sets T1 := {t1, . . . , t�} = {f(r1), . . . , f(r�)} and T2 :=
{t′1, . . . , t

′
�} = {f(r′

1), . . . , f(r′
�)} for a degree d polynomial f(x) ∈ Fp[x]. This can

be regarded as non-uniform birthday problem described in Theorem 3 similarly
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as in [10]: An element t ∈ T1 (or t′ ∈ T2) is randomly chosen from Fp with
the probability |f−1(t)|

p . Let Ri := |{t ∈ Fp : |f−1(t)| = i}| for a non-negative
integer i. We have Ri = 0 for i > d since deg(f) = d. Then we might say that
an element in T1 (or T2) is drown by following the probability distribution (with
proper rearrange)

(ω1, . . . , ωp) =
(

0, . . . , 0
︸ ︷︷ ︸

R0

,
1
p
, . . . ,

1
p

︸ ︷︷ ︸

R1

,
2
p
, . . . ,

2
p

︸ ︷︷ ︸

R2

, · · · ,
d

p
, . . . ,

d

p
︸ ︷︷ ︸

Rd

)

.

Then W =
∑p

i=1 ω2
i =

∑d
i=1 i2Ri

p2 = ρf

p2 , where ρf := |{(x, y) ∈ Fp × Fp :

f(x) = f(y)}|. In our case, we usually take � = 2
√

p2

ρf
· lnL

L = O(
√

1/W ) (see
the proof of Theorem 3), where L is the constant given by the number of the
target discrete logarithms. Then, by Corollary 1, we roughly have �2W− (�2W )2

8 ≤
ω ≤ �2W for large enough p, i.e. ω = Θ(�2W ) (using x − x2/8 ≥ (7/8)x for
0 ≤ x ≤ 1). Consequently, this gives what we want for the analysis.
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